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THE METHOD OF FUNDAMENTAL SOLUTIONS FOR
STATIONARY HEAT CONDUCTION PROBLEMS IN

ROTATIONALLY SYMMETRIC DOMAINS∗

YIORGOS-SOKRATIS SMYRLIS† AND ANDREAS KARAGEORGHIS†

Abstract. We propose an efficient boundary collocation method for the solution of certain
two- and three-dimensional problems of steady-state heat conduction in isotropic bimaterials. In
particular, in two dimensions we consider the case where a circular region composed of one material is
coated with an annular region of another material. In three dimensions, we examine the corresponding
case for axisymmetric domains. The proposed method involves the use of a domain decomposition
technique in conjunction with a matrix decomposition algorithm. The circulant structure of the
matrices appearing in this method is exploited by using fast Fourier transforms. The method is
tested numerically on several problems.
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1. Introduction. We consider steady-state heat conduction in an isotropic bi-
material. The bimaterial is decomposed into two subdomains O1 and O2, with bound-
aries ∂O1 and ∂O2, respectively, which are separated by an interface S = ∂O1. The
two materials in O1 and O2 are characterized by the thermal conductivity constants
k1 and k2, respectively. The temperature distribution in each subdomain satisfies the
Laplace equation. On the interface S we have continuity of the temperature

u1 = u2

and continuity of the flux

k1
∂u1

∂n
= k2

∂u2

∂n
,

where ∂/∂n denotes the normal derivative in the outward direction to O1 on the
interface. Examples and details about the modeling of such problems may be found
in [18, 24].

The aim of this study is to develop efficient algorithms for the numerical solution
of such problems in the case when O1 ⊂ O2 and both domains are axisymmetric
about the same axis. In two dimensions this means that we consider the case where
one material occupies a circular region and another material occupies a concentric
annular region surrounding it. In three dimensions, we examine the case where one
material occupies an axisymmetric region and is coated by another material occupying
a region which is axisymmetric about the same axis.
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The numerical method that we use is the method of fundamental solutions (MFS)
which is a boundary collocation meshless technique. In recent years, the MFS has
become very popular, primarily because of the ease with which it can be implemented.
It belongs to the family of Trefftz-type methods (see [4]), and details about its imple-
mentation and its various applications can be found in the survey articles [6, 7, 11]
and the books [10, 14].

We use a domain decomposition approach and a matrix decomposition algorithm.
The domain is decomposed in a natural way into two subdomains, each containing a
different material. Domain decomposition MFS applications can be found in [1], where
heat conduction in layered materials is considered, and in [2, 9], where linear elasticity
problems are studied. In the current work, in both the two- and the three-dimensional
cases, the MFS discretization leads to the solution of linear systems whose coefficient
matrices have block circulant structures which can be exploited by using fast Fourier
transforms (FFTs). The circulant and/or block circulant structure of the matrices
appearing when the MFS is applied to axisymmetric problems has been exploited in
[8, 22]. The idea of exploiting the FFTs to solve axisymmetric integral equations was
introduced in [12]; see also [16]. The circulant structure of the coefficient matrices also
arises from the application of other boundary methods such as the boundary element
method (BEM), and this has been exploited in the past (see, e.g., [3, 15]). Details
of applying a multiregion BEM approach to heat conduction problems in layered
materials are presented in [19].

This paper is organized as follows. In section 2, we present the MFS formulation
in the two-dimensional case. In section 3, we present the MFS formulation in the
three-dimensional case. In section 4, we test numerically the proposed algorithms.
Finally, in section 5, we give some concluding remarks.

2. The two-dimensional case.

2.1. The problem. We consider the bimaterial problem in R
2,

Δu1 = 0 in B�1 ,(2.1a)

Δu2 = 0 in A�1,�2 ,(2.1b)

subject to the boundary condition

u2 = f on S�2
(2.1c)

and the interface conditions

u1 = u2 and(2.1d)

k1
∂u1

∂n
= k2

∂u2

∂n
on S�1 .(2.1e)

Here,

B� = {x : |x| < �}, S� = {x : |x| = �},

and

A�1,�2 =
{
x ∈ R

2 : �1 < |x| < �2

}
.

The coefficients k1, k2 in (2.1e) are the thermal conductivity constants. Δ denotes the
Laplacian and f is a given function. The boundary of A�1,�2 is ∂A�1,�2 = S�1 ∪ S�2 .
In (2.1e), ∂/∂n denotes the normal derivative in the outward direction to B�1 on S�1 .
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2.2. MFS formulation. We treat the two subdomains separately: in B�1
we

approximate u1 at a point P by

uN
1 (c,Q;P ) =

N∑
ν=1

cνϕ(P,Qν),

and in A�1,�2
we approximate u2 at a point P by

uN
2 (d, e,S,T ;P ) =

N∑
ν=1

dνϕ(P, Sν) +

N∑
ν=1

eνϕ(P, Tν),

where the 2N -dimensional vectors Q, S, and T contain the coordinates of the singu-
larities. In particular, the singularities described by Q lie outside B�1 , whereas the
singularities described by S and T lie outside the annulus A�1,�2

.

The function ϕ(P,Q) is a fundamental solution of the Laplacian Δ, i.e.,

−Δϕ(·, Q) = δQ,(2.2)

where δQ is the Dirac unit mass at Q. Equation (2.2) is satisfied in the sense of
distributions. In particular, we take

ϕ(P,Q) = − 1

2π
log |P −Q|,

with |P − Q| denoting the distance between the points P and Q. The vectors c =
(c1, . . . , cN ), d = (d1, . . . , dN ), and e = (e1, . . . , eN ) contain the coefficients of the
fundamental solutions.

Specifically, the singularities Q = (Q1, . . . , QN ) are placed on the circle of radius
R1, i.e., SR1 = {x : |x| = R1}, where R1 > �1, at the points

Qj = (R1 cosϑj , R1 sinϑj), ϑj =
2π(j − 1 + α)

N
, j = 1, . . . , N,

and the singularities S = (S1, . . . , SN ) and T = (T1, . . . , TN ) are placed on the
circles SR2

= {x : |x| = R2}, and SR3
= {x : |x| = R3}, respectively, with

R2 < �1 < �2 < R3, at the points

Sj = (R2 cosψj , R2 sinψj), Tj = (R3 cosψj , R3 sinψj), ψj =
2π(j − 1 + β)

N
,

j = 1, . . . , N . The parameters α and β, where α, β ∈ [− 1
2 ,

1
2 ], describe rotations of

the singularities. It has been observed that such rotations improve the approximation
significantly, especially when the singularities are close to the boundary. (See [20, 21,
23, 25]).

Two sets of equally spaced collocation (or observation) points P 1 = (P 1
1 , . . . , P

1
N )

and P 2 = (P 2
1 , . . . , P

2
N ) are taken on the circles S�1

and S�2
, respectively:

P 1
j = (�1 cosχj , �1 sinχj), P 2

j = (�2 cosχj , �2 sinχj), χj =
2π(j − 1)

N
,
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where j = 1, . . . , N . The vectors of coefficients c, d, and e are determined from the
collocation equations

uN
1 (c,Q;P 1

j ) = uN
2 (d, e,S,T ;P 1

j ),(2.3a)

k1
∂

∂n
uN

1 (c,Q;P 1
j ) = k2

∂

∂n
uN

2 (d, e,S,T ;P 1
j ),(2.3b)

uN
2 (d, e,S,T ;P 2

j ) = f(P 2
j ),(2.3c)

j = 1, . . . , N . Clearly, (2.3a), (2.3b), and (2.3c) correspond to (2.1d), (2.1e), and
(2.1c), respectively. These yield the 3N × 3N system

H

⎛
⎝ c

d
e

⎞
⎠ =

⎛
⎝ 0

0
f

⎞
⎠,(2.4)

where

H =

⎛
⎜⎜⎝

A(P 1,Q) −A(P 1,S) −A(P 1,T )

k1B(P 1,Q) −k2B(P 1,S) −k2B(P 1,T )

0 A(P 2,S) A(P 2,T )

⎞
⎟⎟⎠ =

⎛
⎝ H11 H12 H13

H21 H22 H23

H31 H32 H33

⎞
⎠

and f =
(
f(P 2

1 ), . . . , f(P 2
N )

)
, with

(
A(V ,W )

)
μν

= − 1

2π
log |Vμ −Wν | and

(
B(V ,W )

)
μν

= − ∂

∂nVμ

1

2π
log |Vμ −Wν |

for V =
(
V1, . . . , VN

)
, W =

(
W1, . . . ,WN

)
, and μ, ν = 1, . . . , N .

2.3. Matrix decomposition algorithm. All the blocks Hij , i, j = 1, 2, 3, of
the coefficient matrix H in system (2.4) are circulant. A square matrix G is circulant
(see [5]) if it has the form

G =

⎛
⎜⎜⎝

g1 g2 · · · gN
gN g1 · · · gN−1

. . . . . . . . . . . . . . . . . . .
g2 g3 · · · g1

⎞
⎟⎟⎠(2.5)

and is denoted by G = circ(g1, g2, . . . , gN ). Circulant matrices are diagonalizable by

G = U∗DU,

where

D = diag
(
λ1, . . . , λN

)
is a diagonal matrix whose diagonal elements are the eigenvalues of the matrix G,
given by (see [5])

λj =

N∑
�=1

ω(j−1)(�−1)g�(2.6)
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and

U∗ =
1√
N

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2N−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 ωN−1 ω2(N−1) · · · ω(N−1)(N−1)

⎞
⎟⎟⎟⎟⎟⎠,(2.7)

with ω = e
2πi
N . The matrix U∗, known as the Fourier matrix, is unitary.

It is obvious from (2.6) that the λj can be obtained from the g� via discrete Fourier
transforms. The blocks Hij , i, j = 1, 2, 3, of the system matrix H can therefore be
diagonalized by the Fourier matrix so that (2.4) may be written as

(
I3 ⊗ U

)
H
(
I3 ⊗ U∗)(I3 ⊗ U

)⎛⎝ c
d
e

⎞
⎠ =

(
I3 ⊗ U

)⎛⎝ 0
0
f

⎞
⎠ ,(2.8)

where I3 is the 3 × 3 identity matrix and ⊗ is the Kronecker tensor product.1

Thus system (2.8) can be written as

⎛
⎜⎝ D11 D12 D13

D21 D22 D23

D31 D32 D33

⎞
⎟⎠

⎛
⎜⎝

ĉ

d̂

ê

⎞
⎟⎠ =

⎛
⎜⎝

0
0

f̂

⎞
⎟⎠,(2.9)

where

ĉ = Uc, d̂ = Ud, ê = Ue, f̂ = Uf ,

and

Dij = UHijU
∗ = diag

(
λ1
ij , . . . , λ

N
ij

)
, i, j = 1, 2, 3.

The elements λ�
ij can be computed from (2.6), with the appropriate choice of g�’s.

Thus the linear system (2.9) reduces to N independent 3 × 3 systems:

⎛
⎝ λ�

11 λ�
12 λ�

13

λ�
21 λ�

22 λ�
23

λ�
31 λ�

32 λ�
33

⎞
⎠

⎛
⎝ ĉ�

d̂�
ê�

⎞
⎠ =

⎛
⎝ 0

0

f̂�

⎞
⎠ , � = 1, . . . , N.(2.10)

Finally, system (2.4) can be solved efficiently using the following algorithm:

1The tensor (or Kronecker) product of the m×n matrix V and the �×k matrix W is the m�×nk
matrix

V ⊗W =

⎛
⎜⎜⎝

v11 W v12 W · · · v1n W
v21 W v22 W · · · v2n W
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vm1 W vm2 W · · · vmn W

⎞
⎟⎟⎠.

Basic properties are (i) V ⊗ (W ⊗Z) = (V ⊗W )⊗Z, (ii) (V1 ⊗W1) (V2 ⊗W2) = (V1V2)⊗ (W1W2),
and (iii) V ⊗ (W + Z) = V ⊗W + V ⊗ Z. A comprehensive list of properties of the tensor product
can be found in [5, pp. 22–23] or [17, pp. 597–598].



1498 YIORGOS-SOKRATIS SMYRLIS AND ANDREAS KARAGEORGHIS

Step 1: Compute f̂ = Uf .
Step 2: Evaluate the (diagonal) elements the diagonal matrices Dμν , μ, ν = 1, 2, 3,

using formula (2.6).

Step 3: Solve the N systems of order 3 in (2.10) to determine the vectors ĉ, d̂,
and ê.

Step 4: Compute the vectors c = U∗ĉ, d = U∗d̂, and e = U∗ê.

Cost. (i) In Steps 1 and 4, because of the form of the matrices U and U∗, the
operations can be carried out via FFTs at a cost of O(N logN) operations.

(ii) FFTs can also be used for the evaluation of the diagonal matrices in Step 2
at a cost of O(N logN).

(iii) In Step 3, we need to solve N complex linear systems of order 3 which can
be done at a cost of O(N) operations.

3. The three-dimensional case.

3.1. The problem. We consider the bimaterial problem in R
3,

Δu1 = 0 in Ω1,(3.1a)

Δu2 = 0 in Ω2�Ω1,(3.1b)

where Ω1 ⊂ Ω2, subject to the boundary condition

u2 = f on ∂Ω2(3.1c)

and the interface conditions

u1 = u2 and(3.1d)

k1
∂u1

∂n
= k2

∂u2

∂n
on ∂Ω1.(3.1e)

The regions Ω1,Ω2 ⊂ R
3 are axisymmetric, which means that they are formed by

rotating regions Ω′
1,Ω

′
2 ⊂ R

2 (Ω′
1 ⊂ Ω′

2), respectively, about the z-axis.

3.2. MFS formulation. As in the two-dimensional case, we treat the two sub-
domains separately: in Ω1 we approximate u1 at a point P by

uM,N
1 (c,Q;P ) =

M∑
μ=1

N∑
ν=1

cμ,ν Φ(P,Qμ,ν)

and in Ω2�Ω1, u2 at a point P is approximated by

uM,N
2 (d, e,S,T ;P ) =

M∑
μ=1

N∑
ν=1

dμ,νΦ(P, Sμ,ν) +

M∑
μ=1

N∑
ν=1

eμ,νΦ(P, Tμ,ν).

Here

c = (c11, c12, . . . , c1N , . . . , cM1, . . . , cMN )T ,

d = (d11, d12, . . . , d1N , . . . , dM1, . . . , dMN )T ,

e = (e11, e12, . . . , e1N , . . . , eM1, . . . , eMN )T ,



MATRIX DECOMPOSITION MFS ALGORITHM 1499

and Q, S, T are 3MN -vectors containing the coordinates of the singularities Qμ,ν ,
Sμ,ν , Tμ,ν , μ = 1, . . . ,M, ν = 1, . . . , N . The singularities described by Q lie out-
side Ω1, whereas the singularities described by S and T lie outside Ω2 �Ω1. More
specifically, the singularities S lie in Ω1 and the singularities T lie outside Ω2.

The function Φ(P,Q) is a fundamental solution of Laplace’s equation in R
3 given

by

Φ(P,Q) =
1

4π |P −Q|
with |P −Q|, as before, denoting the distance between the points P and Q.

Two sets of MN collocation points {P 1
m,n}

M,N
m=1,n=1 and {P 2

m,n}
M,N
m=1,n=1 are chosen

on ∂Ω1 and ∂Ω2, respectively, in the following way.
We first choose N points on each of the boundaries ∂Ω′

1 and ∂Ω′
2. These are

described by their cartesian coordinates
(
rP

1

n , zP
1

n

)
, n = 1, . . . , N , and

(
rP

2

n , zP
2

n

)
,

n = 1, . . . , N , in Ω′
1 and Ω′

2, respectively. Here rP
i

n denotes the horizontal distance

from the axis of rotation, and zP
i

n denotes the z-coordinate. The points on ∂Ωi,
i = 1, 2, are taken to be

xP i
m,n

= rP
i

n cosϕm, yP i
m,n

= rP
i

n sinϕm, zP i
m,n

= zP
i

n ,(3.2)

where ϕm = 2(m−1)π
M ,m = 1, . . . ,M .

Similarly, we choose three sets of MN singularities {Qμ,ν}M,N
μ=1,ν=1, {Sμ,ν}M,N

μ=1,ν=1,

and {Tμ,ν}M,N
μ=1,ν=1 given by

xQμ,ν
= rQν cosψμ, yQμ,ν

= rQν sinψμ, zQμ,ν
= zQν ,

xSμ,ν
= rSν cosχμ, ySμ,ν

= rSν sinχμ, zSμ,ν
= zSν ,

xTμ,ν = rTν cosχμ, yTμ,ν = rTν sinχμ, zTμ,ν = zTν ,

(3.3)

where

ψμ =
2(μ− 1 + α)π

M
, χμ =

2(μ− 1 + β)π

M
, μ = 1, . . . ,M.

The parameters α, β ∈ [− 1
2 ,

1
2 ] prescribe the rotations of the singularities in the azi-

muthal direction.
The coefficients c, d, and e are determined so that the interface and boundary

conditions are satisfied at the boundary points {P 1
m,n}

M,N
m=1,n=1 and {P 2

m,n}
M,N
m=1,n=1,

respectively,

uM,N
1

(
c,Q;P 1

mn

)
− uM,N

2

(
d, e,S,T ;P 1

mn

)
= 0,

k1
∂

∂n
uM,N

1

(
c,Q;P 1

mn

)
− k2

∂

∂n
uM,N

2

(
d, e,S,T ;P 1

mn

)
= 0,

uM,N
2 (d, e,S,T ;P 2

m,n) = f(P 2
m,n),

m = 1, . . . ,M , n = 1, . . . , N . These equations yield a 3MN × 3MN linear system of
the form

H

⎛
⎝ c

d
e

⎞
⎠ =

⎛
⎝ 0

0
f

⎞
⎠,(3.4)
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where

H =

⎛
⎜⎜⎝

A(P 1,Q) −A(P 1,S) −A(P 1,T )

k1B(P 1,Q) −k2B(P 1,S) −k2B(P 1,T )

0 A(P 2,S) A(P 2,T )

⎞
⎟⎟⎠ =

⎛
⎜⎝ H11 H12 H13

H21 H22 H23

H31 H32 H33

⎞
⎟⎠.

Here f =
(
fmn

)M,N

m=1,n=1
and the MN ×MN matrices are given by

(
A(V ,W )

)
(m−1)N+n,(μ−1)N+ν

=
1

4π|Vm,n −Wμ,ν |
,

(
B(V ,W )

)
(m−1)N+n,(μ−1)N+ν

=
∂

∂nVm,n

{
1

4π|Vm,n −Wμ,ν |

}

for

V = (V11, V12, . . . , V1N , . . . , VM1, . . . , VMN )T ,

W = (W11,W12, . . . ,W1N , . . . ,WM1, . . . ,WMN )T

and m,μ = 1, . . . ,M and n, ν = 1, . . . , N .

3.3. Matrix decomposition algorithm. Each of the nine blocks Hij , i, j =
1, 2, 3, of the coefficient matrix H in (3.4) has a block circulant structure [8, 22] of the
form

Hij =

⎛
⎜⎜⎜⎜⎜⎝

H1
ij H2

ij · · · HM
ij

HM
ij H1

ij · · · HM−1
ij

...
...

. . .
...

H2
ij H3

ij · · · H1
ij

⎞
⎟⎟⎟⎟⎟⎠,

where the matrices H�
ij , � = 1, . . . ,M, i, j = 1, 2, 3, are N ×N matrices defined by

(
H�

11

)
n,ν

=
1

4π|P 1
1,n −Q�,ν |

,
(
H�

12

)
n,ν

= − 1

4π|P 1
1,n − S�,ν |

,

(
H�

13

)
n,ν

= − 1

4π|P 1
1,n − T�,ν |

,
(
H�

21

)
n,ν

= k1
∂

∂nP 1
1,n

{
1

4π|P 1
1,n −Q�,ν |

}
,

(
H�

22

)
n,ν

= −k2
∂

∂nP 1
1,n

{
1

4π|P 1
1,n−S�,ν |

}
,

(
H�

23

)
n,ν

= −k2
∂

∂nP 1
1,n

{
1

4π|P 1
1,n−T�,ν |

}
,

(
H�

31

)
n,ν

= 0,
(
H�

32

)
n,ν

=
1

4π|P 2
1,n − S�,ν |

,
(
H�

33

)
n,ν

=
1

4π|P 2
1,n − T�,ν |

,

n, ν = 1, . . . , N. Because of the block circulant structure of the matrices Hij , following
a technique similar to the ones employed in [8, 22], for every i, j = 1, 2, 3, we have
that

Hij =

N∑
�=1

P�−1 ⊗H�
ij ,
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where the matrix P is the M × M permutation matrix P = circ(0, 1, 0, . . . , 0) and
P0 = IM . Thus

H =

⎛
⎝ H11 H12 H13

H21 H22 H23

H31 H32 H33

⎞
⎠

=

⎛
⎜⎜⎝

∑M
�=1 P�−1 ⊗H�

11

∑M
�=1 P�−1 ⊗H�

12

∑M
�=1 P�−1 ⊗H�

13∑M
�=1 P�−1 ⊗H�

21

∑M
�=1 P�−1 ⊗H�

22

∑M
�=1 P�−1 ⊗H�

23∑M
�=1 P�−1 ⊗H�

31

∑M
�=1 P�−1 ⊗H�

32

∑M
�=1 P�−1 ⊗H�

33

⎞
⎟⎟⎠

=
M∑
�=1

⎛
⎜⎝ P� −1 ⊗H�

11 P� −1 ⊗H�
12 P� −1 ⊗H�

13

P� −1 ⊗H�
21 P� −1 ⊗H�

22 P� −1 ⊗H�
23

P� −1 ⊗H�
31 P� −1 ⊗H�

32 P� −1 ⊗H�
33

⎞
⎟⎠ .(3.5)

From [5], the matrices P� can be diagonalized as

P� = U∗E�U,

where U is defined from (2.7) and E = diag
(
1, ω, ω2, . . . , ωM−1

)
, with ω = e2πi/M .

Premultiplying system (3.4) by⎛
⎝ U 0 0

0 U 0
0 0 U

⎞
⎠⊗ IN = I3 ⊗ U ⊗ IN

yields

(
I3 ⊗ U ⊗ IN

)
H

(
I3 ⊗ U∗ ⊗ IN

)(
I3 ⊗ U ⊗ IN

)⎛⎝ c
d
e

⎞
⎠ =

(
I3 ⊗ U ⊗ IN

)⎛⎝ 0
0
f

⎞
⎠

(using the fact that
(
I3 ⊗ U∗ ⊗ IN

) (
I3 ⊗ U ⊗ IN

)
= I3MN ) or

H̃

⎛
⎜⎝

c̃

d̃

ẽ

⎞
⎟⎠ =

⎛
⎜⎝

0

0

f̃

⎞
⎟⎠,(3.6)

where

H̃ =
(
I3 ⊗ U ⊗ IN

)
H

(
I3 ⊗ U∗ ⊗ IN

)
and

c̃ =
(
U ⊗ IN

)
c, d̃ =

(
U ⊗ IN

)
d, ẽ =

(
U ⊗ IN

)
e, f̃ =

(
U ⊗ IN

)
f .

From (3.5)

H̃ =
M∑
�=1

(
I3 ⊗ U⊗IN

)⎛⎜⎝ P� −1 ⊗H�
11 P� −1 ⊗H�

12 P� −1 ⊗H�
13

P� −1 ⊗H�
21 P� −1 ⊗H�

22 P� −1 ⊗H�
23

P� −1 ⊗H�
31 P� −1 ⊗H�

32 P� −1 ⊗H�
33

⎞
⎟⎠(

I3 ⊗ U∗⊗IN
)
,
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and using the fact that(
U ⊗ IN

)(
P�−1 ⊗H�

ij

)(
U∗ ⊗ IN

)
= E�−1 ⊗H�

ij ,

we obtain

H̃ =

M∑
�=1

⎛
⎜⎝ E� −1 ⊗H�

11 E� −1 ⊗H�
12 E� −1 ⊗H�

13

E� −1 ⊗H�
21 E� −1 ⊗H�

22 E� −1 ⊗H�
23

E� −1 ⊗H�
31 E� −1 ⊗H�

32 E� −1 ⊗H�
33

⎞
⎟⎠.

Thus, system (3.6) can be written as

M∑
�=1

⎛
⎜⎝ E� −1 ⊗H�

11 E� −1 ⊗H�
12 E� −1 ⊗H�

13

E� −1 ⊗H�
21 E� −1 ⊗H�

22 E� −1 ⊗H�
23

E� −1 ⊗H�
31 E� −1 ⊗H�

32 E� −1 ⊗H�
33

⎞
⎟⎠

⎛
⎜⎝

c̃

d̃

ẽ

⎞
⎟⎠ =

⎛
⎜⎝

0

0

f̃

⎞
⎟⎠.

Since the matrix E is diagonal, each block E�−1 ⊗H�
ij is block diagonal, i.e.,

E�−1 ⊗H�
ij = diag

(
H�

ij , ω
�−1H�

ij , . . . , ω
(�−1)(M−1)H�

ij

)
,

as are the blocks of the matrix H̃:

M∑
�=1

E�−1 ⊗H�
ij = diag

(
M∑
�=1

H�
ij ,

M∑
�=1

ω�−1H�
ij , . . . ,

M∑
�=1

ω(�−1)(M−1)H�
ij

)

= diag
(
H̃1

ij , H̃
2
ij , . . . , H̃

M
ij

)
,

where

H̃m
ij =

M∑
�=1

ω(�−1)(m−1)H�
ij , m = 1, . . . ,M, i, j = 1, 2, 3.(3.7)

System (3.4) thus reduces to the M independent 3N × 3N systems:⎛
⎜⎝ H̃m

11 H̃m
12 H̃m

13

H̃m
21 H̃m

22 H̃m
23

H̃m
31 H̃m

32 H̃m
33

⎞
⎟⎠

⎛
⎜⎝

c̃m

d̃m

ẽm

⎞
⎟⎠ =

⎛
⎜⎝

0

0

f̃m

⎞
⎟⎠, m = 1, . . . ,M,(3.8)

where

c̃m =
(
c̃m1, c̃m2, · · · , c̃mN )T , d̃m =

(
d̃m1, d̃m2, · · · , d̃mN )T ,

ẽm =
(
ẽm1, ẽm2, · · · , ẽmN )T , f̃m =

(
f̃m1, f̃m2, · · · , f̃mN )T .

Once c̃, d̃, and ẽ are computed, the vectors c, d, and e can be calculated from

c =
(
U∗ ⊗ IN

)
c̃, d =

(
U∗ ⊗ IN

)
d̃, e =

(
U∗ ⊗ IN

)
ẽ.(3.9)

System (3.8) can thus be solved efficiently using the following algorithm:
Step 1: Compute f̃ = (U ⊗ IN ) f .
Step 2: Construct the matrices H̃m

ij , i, j = 1, 2, 3, m = 1, . . . ,M, from formula
(3.7).



MATRIX DECOMPOSITION MFS ALGORITHM 1503

Step 3: Solve the M systems of order 3N in (3.8).
Step 4: Compute c, d, and e from (3.9).
Cost.

(i) In Steps 1 and 4, because of the form of the matrices U and U∗, the opera-
tions can be carried out via FFTs and inverse FFTs at a cost of O(NM logM).

(ii) In Step 2, for each r, s = 1, . . . , N , we need to perform an M -dimensional
inverse FFT, in order to compute the entries

(
H̃1

ij)rs, . . . ,
(
H̃M

ij

)
rs

. This can be done

at a cost of O(N2 M logM).
(iii) In Step 3, we need to solve M complex linear systems of order 3N . This

can be done using an LU-factorization with partial pivoting at a cost of O(MN3)
operations.

4. Numerical experiments.

4.1. Two-dimensional case. In this subsection, we test numerically the al-
gorithms proposed in section 2 in the case of problem (2.1). Since both the exact
solutions u1, u2 and approximate solutions uN

1 , uN
2 are harmonic in O1 = B�1

and
O2 = A�1,�2

, respectively, the maximum principle applies to their difference, and thus

sup
x∈Oj

|uN
j (x) − uj(x)| = sup

x∈∂Oj

|uN
j (x) − uj(x)|, j = 1, 2.

In all of our experiments, we calculated the maximum relative error of the problem

E = max{E1, E2},(4.1a)

where

Ej =
supx∈∂Oj

∣∣uN
j (x) − uj(x)

∣∣
supx∈∂Oj

∣∣uj(x)
∣∣ , j = 1, 2.(4.1b)

The maximum relative error was calculated on uniform grids on the boundaries of the
two regions, namely, at the points {V j

� }
j=1,2
�=1,...,L given by

V j
� =

(
�j cosϑ�, �j sinϑ�

)
, ϑ� =

2π

L
(�− 1).

In most experiments, the parameter L was taken to be equal to 1001.
In our numerical experiments we took the boundary data in (2.1c) to represent

Fourier frequencies, namely, f = �m2 eimϑ, where m is a nonnegative integer. The
exact solution of this problem, for m > 0, is of the form

u1(r, ϑ) = Arm eimϑ, u2(r, ϑ) = B rm eimϑ + Γ r−m eimϑ,

where A, B, and Γ can be uniquely determined from (2.1c)–(2.1e),

A =
2k2 �

2m
2

k1(�2m
2 − �2m

1 ) + k2(�2m
1 + �2m

2 )
,

B =
�2m
2 (k1 + k2)

k1(�2m
2 − �2m

1 ) + k2(�2m
1 + �2m

2 )
,

Γ =
k2 − k1

k1(�2m
2 − �2m

1 ) + k2(�2m
1 + �2m

2 )
.

When m = 0, the solution is u1 = u2 = 1. We also chose �1 = 1, �2 = 3, k2/k1 = 2.
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Fig. 1. Semilog-plot of the error versus ε in Example 1 for different values of N when f =
�m2 eimϑ, m = 0, 1, 2, 3.

The FFT operations were performed using the NAG2 routines C06FPF, C06FQF,
and C06FRF. All numerical experiments were carried out on an IBM RS6000 (375
MHz) workstation.

Figure 1. We present the logarithm of E, as defined by (4.1a) and (4.1b), versus
the distance ε of the three circles SRj , j = 1, 2, 3 describing the pseudoboundaries
from the corresponding boundaries, S�1 and S�2 . That is,

R1 = �1 + ε, R2 = �1 − ε, R3 = �2 + ε.

Here we consider the unrotated case, i.e., α = β = 0. We consider the cases m =
0, 1, 2, 3 with N = 16, 32, 64, 128, 256 and 512.

We observe that, for a fixed m and a fixed N , as ε ∈ (0, 1) grows, the accu-
racy improves exponentially fast. Further, for fixed ε and fixed m, the error decays
exponentially as N grows. Also, for fixed N and ε, as m increases, the error increases.

The cusps in the case m = 0 occur because the coefficient matrix in (2.10), when
� = 1, becomes singular for the values of ε where the cusps occur. When � �= 1, no
such singularity was observed. Since only the solution of system (2.10) for � = m+ 1
contributes to the MFS solution corresponding to m, this phenomenon is not observed
for m �= 0. The analyses of similar observations, in the case of the Dirichlet problem
in the disk and the annulus, are reported in [23, 25], respectively.

Note that as N and ε increase, the errors become close to machine accuracy.

2Numerical Analysis Group (NAG) Library Mark 20, NAG Ltd, Wilkinson House, Jordan Hill
Road, Oxford, UK, 2001.
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Fig. 2. Semilog-plot of the error versus ε in Example 1 for different values of m when f =
�m2 eimϑ and N = 64, 128.

Figure 2. In this case we show the dependence of the logarithm of E on ε for
m = 1, . . . , 7, for the cases N = 64, 128.

We observe that in both cases, as m increases, the accuracy of the approximation
deteriorates. Similar phenomena were observed in previous studies, in particular, in
[13, 23, 25]. In [23], in the case of the Dirichlet problem in a disk of radius �, with
the singularities placed on a circle of radius R, it is shown that the error behaves like

E = O
(( �

R

)N−2m
)
.

Further, we observe that for large m there is a deterioration of the accuracy for ε ≈ 1.
This is due to ill-conditioning resulting from the fact that the radius of SR2 is close
to zero.

Figure 3. We present the dependence of the error on the angular parameters α
and β, when m = 1, ε = .005, .01, .02, .04, .08, .16. The two subplots correspond to
the cases N = 64 and N = 128. For simplicity we took α = β. Because of symmetry
we need to consider only α∈ [0, 1

2 ].
We observe that, for the values of ε presented, as ε increases, the error E is

optimized for α ≈ 1
4 . However, the improvement in the accuracy of the MFS approxi-

mation is more visible for smaller values of ε. In particular, for ε = .005, the accuracy
of the approximation improves by a factor of ten at α ≈ .1, which is where the min-
imum is reached. Further, for larger values of ε the improvement due to rotation is
negligible. These phenomena were also observed in previous studies [20, 21].
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Fig. 3. Semilog-plot of the error versus the angular parameter α when f = �2eiϑ for various
values of ε and N = 64, 128. The parameter β is taken to be equal to α.

4.2. Three-dimensional case. In this subsection we test numerically the algo-
rithm proposed in section 3 for (3.1e). In the three-dimensional case it is difficult to
construct an exact solution for (3.1e), and therefore, in order to test the convergence
of the algorithm, we examine, as an estimate of the error, the supremum norm of
the differences uM,N

i −u2M,2N
i , i = 1, 2, for various values of M and N . Since these

differences are harmonic, from the maximum principle, it is sufficient to consider them
on the boundaries ∂Ωi, i = 1, 2. We therefore calculate

EM,N = max
{
EM,N

1 , EM,N
2

}
,(4.2a)

where

EM,N
1 = sup

x∈∂Ω1

∣∣uM,N
1 (x) − u2M,2N

1 (x)
∣∣,(4.2b)

EM,N
2 = sup

x∈∂Ω1∪∂Ω2

∣∣uM,N
2 (x) − u2M,2N

2 (x)
∣∣.(4.2c)

This quantity was calculated on prescribed grids on the boundaries of the two regions
which will be specified for each case.

We consider two examples of boundary data in (3.1c), namely,
Example 1. f = cosh(.03x) cosh(.04y) cos(.05z).
Example 2. f = (9.5 − x2 − y2 − z2)−1.
In all numerical experiments performed in this study, we took k2/k1 = 2.
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4.2.1. Spherical domains. We consider the case where Ω1 and Ω2 are the
spheres of radii �1 and �2 (�1 < �2), respectively, that is,

Ωj =
{
(x, y, z) ∈ R

3 : x2 + y2 + z2 < �2
j

}
, j = 1, 2.

The singularities {Qμ,ν}M,N
μ=1,ν=1, {Sμ,ν}M,N

μ=1,ν=1, and {Tμ,ν}M,N
μ=1,ν=1 are placed on the

spherical surfaces ∂ΩQ, ∂ΩS , and ∂ΩT , centered at the origin, of radii RQ, RS ,
and RT , respectively, with RS < �1 < RT and �2 < RQ. The coordinates of the
singularities are given by (3.3) with

rQν = RQ sinϑν , zQν = RQ cosϑν ,

rSν = RS sinϑν , zSν = RS cosϑν ,

rTν = RT sinϑν , zTν = RT cosϑν ,

where ϑν = νπ
N+1 , ν = 1, . . . , N. The collocation points {P i

m,n}
M,N
m=1,n=1 on the bound-

aries ∂Ωi, i = 1, 2, are given by

xP i
m,n

= �i sinϑn cosϕm, yPm,n
= �i sinϑn sinϕm, zP i

m,n
= �i cosϑn.(4.3)

Note that we avoid the points corresponding to ϑj = 0 and ϑj = π as they remain
invariant under rotation in the ϕ-direction and would lead to singular matrices.

The error was calculated at the points

V i
k,� = �i(sinΘ� cosΦk, sinΘ� sinΦk, cosΘ�), i = 1, 2,

where Θ� = π�
L+1 and Φk = 2π(k−1)

L , k, � = 1, . . . , L. In most numerical experiments
L was taken to be equal to 31.

In our numerical experiments, we considered the case of the spheres of radii 1 and
3, respectively.

Figure 4. We present the logarithm of error, as defined by (4.2c), versus the
distance ε of the three spherical surfaces ∂ΩQ, ∂ΩS , and ∂ΩT from the corresponding
boundaries ∂Ω1, ∂Ω2. That is,

RQ = �1 + ε, RS = �1 − ε, RT = �2 + ε.

We consider both Examples 1 and 2 in the unrotated case, i.e., α = β = 0. We took
M = N = 12, 16, 24, 32, 48. From this figure we observe that, for both examples, as ε
varies on the interval (10−2, 1), the error decreases exponentially fast. Also, the rate
of convergence is more rapid as N grows.

Figure 5. We present the dependence of the error on the angular parameters α
and β. For simplicity, we considered the case when α = β. Because of symmetry we
need to consider only the case α ∈ [0, 1

2 ] and examine the behavior of the error for
M = N = 16, 24, 32, 48 and fixed ε.

We observe that for small ε an optimal value was reached at about α ≈ 1
4 . This

behavior can be seen in Figure 5 in the case ε = 1
10 for both Examples 1 and 2. For

larger values of ε, the minimum is no longer visible. Similar phenomena have been
observed in previous studies [20, 23].

Figure 6. In Figure 6 we present the logarithm of an estimate of the condition
number in the L∞-norm of the coefficient matrix in system (3.8) for m = 1 versus
ε, for N = 8, 12, 16, 24, 32, and 48. As can be seen from this figure, the conditioning
of the matrix deteriorates considerably as ε increases. The estimate of the condition
number was calculated using the NAG pair F07ARF-F07AUF. The behavior of the
condition number of the matrices in the cases m = 2, 3, . . .M is very similar.
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Fig. 4. Loglog-plot of the error versus ε in Examples 1 and 2 in the case where Ω1 and Ω2 are
spheres.
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Fig. 5. Spherical domains: Semilog-plot of the error versus the angular parameter α in Exam-
ples 1 and 2 for ε = 1/10. The parameter β is taken to be equal to α.



MATRIX DECOMPOSITION MFS ALGORITHM 1509

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

0

10
2

10
4

10
6

10
8

10
10

10
12

k ∞

ε

N=8
N=12
N=16
N=24
N=32
N=48

Fig. 6. Spherical domains: Semilog-plot of the condition number κ∞ of the matrix in the
system (3.8) versus ε.

4.2.2. Cylinder inside a sphere. We consider the case when Ω1 is the cylinder

Ω1 =
{
(x, y, z) ∈ R

3 : x2 + y2 < �2
1, |z| < h

}
and Ω2 is the sphere

Ω2 =
{
(x, y, z) ∈ R

3 : x2 + y2 + z2 < �2
2

}
where �2

1 + h2 < �2
2. The boundary points P 2

μ,ν are chosen as in (4.3). The points

P 1
μ,ν are given by (3.2), where (rP

1

n , zP
1

n ) ∈ R
2 are uniformly distributed on the three

sides of the rectangle [0, �1] × [−h, h] which is the generator of the cylinder.
The singularities Qμ,ν and Sμ,ν are placed on cylinders similar to Ω1, both at

a distance ε from ∂Ω1. The singularities Tμ,ν are placed on a sphere of radius RT ,
where RT − �2 = ε > 0.

In our numerical experiments, we took h = 1, �1 = 1, and �2 = 3.

Figure 7. We present the logarithm of the error as defined by (4.2c) versus ε. We
apply the method to Example 1 in the unrotated case, and we varied ε in the interval
(10−2, 1). We took M = N = 8, 12, 16, 24, 32, 48. From this figure, we observe that
as ε increases, the error decreases exponentially fast up to about ε ≈ 1

2 . For larger
values of ε, the quality of the approximation deteriorates rapidly. For this geometry,
the approximation is considerably less accurate than the corresponding approximation
in the case of the spherical domains. This is due to the presence of the edges in the
cylindrical subdomain. Further, the error in the approximation for this geometry
starts deteriorating for smaller values of ε than for the spherical domains.
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Fig. 7. Cylinder inside a sphere: Loglog-plot of the error versus ε in Example 1.

Figure 8. We present the dependence of the error on the angular parameters α
and β in Example 1. For simplicity, again, we considered the case when α = β, and
because of symmetry we examined α∈ [0, 1

2 ]. In the first subplot we took ε = 1
10 and

M = N = 16, 24, 32, 48. As observed previously, there is a tendency for the optimum
to be reached at α = 1

4 and fixed ε. We observed that for small ε an optimal value
was reached at about α ≈ 1

4 .

In the second subplot we present the corresponding results for ε = 1
2 . As expected,

the accuracy is higher, and similar phenomena to those seen in the first subplot are
observed.

5. Concluding remarks. In this paper, we apply a meshless boundary colloca-
tion method for the solution of certain heat conduction problems in layered materials
in two and three dimensions. In two dimensions, we consider materials in concentric
regions whereas in three dimensions we consider axisymmetric domains possessing the
same axis of symmetry. We employ a domain decomposition technique which leads to
systems whose coefficient matrices exhibit block circulant structures. Matrix decom-
position methods in conjunction with the use of FFTs enable us to construct efficient
algorithms for the numerical solution of these problems.

The algorithms developed in this study could be easily extended to the solution of
bimaterial problems in the same geometries in two and three dimensions but governed
by different differential equations such as the Helmholtz equation, the biharmonic
equation, or the Cauchy–Navier equations of elasticity, in two and three dimensions.
Further, this method is not restricted to dealing with bimaterial problems but could
also be applied to multilayered materials in corresponding axisymmetric domains in
two and three dimensions.
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Fig. 8. Cylinder inside a sphere: Semilog-plot of the error versus the angular parameter α for
ε = 1/10, 1/2. The parameter β is taken to be equal to α.

Finally, the block circulant structure of the matrices arising in these problems is
preserved for other boundary method discretizations. The current algorithm could
thus be used when, for example, the BEM is applied to the type of problems examined
in this work.
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