
OCTOBER 1963 TECHNICAL NOTES AND COMMENTS 2387

Uniformly distributed load

$ = 0 = [(1 - 0.014a)/(l - a)] (15)

Uniformly varying load

$ = [(l - 0.076a)/(l - a)] load = w

0.056a)/(l - a)] load = 0
(16)

The accuracy of these equations is significantly better than
Eqs. (9) and (10) because of the integrations involved.
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Stress-Intensity Factors for
Longitudinal Shear Cracks

G. C. Sm*
Lehigh University, Bethlehem, Pa.

THE concept of crack-tip stress-intensity factors applied
to predictions of the fracture strength of cracked cylinders

having finite cross sections has been discussed in previous
work.1"3 In this note, the cross sections are assumed to be
infinite in extent owing to loads directed along the generators
of the cylinder. This problem is of special interest, since it
enables the consideration of exact solutions of many configura-
tions, which are inaccessible for cracks under plane ex-
tension. Moreover, for cracks under longitudinal shear, it
is possible to obtain results that will reveal certain qualita-
tive effects common to all modes of crack surface displace-
ments.

If an infinite body is subjected to longitudinal shear loads,
the nonvanishing stress components may be expressed in com-
plex form

- ire. = 0(2/2)v (1)
where r and 6 are polar coordinates, t is the coordinate axis
directed along the center line of the cylinder, and G is the
shear modulus of elasticity. In view of Eq. (1), the state
of stress depends only upon the knowledge of a single function
f(z) of the complex variable z = x + iy.

In order to apply the current fracture mechanics theories to
bodies containing crack-like fault lines, it is necessary to ob-
tain the stress distribution near a crack point. For this
purpose, an auxiliary complex plane f is introduced so that

z = «(f) (2)
maps the crack configuration in the z plane onto the unit
circle |f | = 1 in the f plane. With the aid of Eq. (2), the
right-hand side of Eq. (1) is transformed into

Trt —
«(f)J

(3)

where

f,(* = =J {} d{ dz
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To simplify the analysis, consider the mapping function
co(f) for a single crack of length 2a centered at the origin. It
is given by

f =
z + (z* - a2) 1/2

(4)

The crack tips z = ±a correspond to £ = ±1 on |f | =1.
By way of a translation of the coordinate axes, z — a = reie,
and restricting attention to a small region around the crack
point, where r is small compared to a, Eq. (3) may be written
as

Trt — = ' - [ih/(2r)v*]eie/2 + OO1/2) (5)

in which &3 is a real parameter. In the course of deriving
Eq. (5), F'(f) is assumed to be holomorphic on |f | = 1, i.e.,
the limit of F'(f), as f approaches unity, is F'(l) = -ik^a112/
G. Here, F'(l) is chosen to be purely imaginary so as to
satisfy the free surface conditions ret = 0 for 6 = ±TT. Now,
separating the real and imaginary parts of Eq. (5), the results
are

Tot =

sin(0/2) + Ofr1/2)

cos(0/2) + 0(r1/2)
(6)

These equations were obtained earlier by Irwin,4 who used
a different approach. It is of fundamental interest to note
that the inverse square-root characteristic of the stress
singularity is actually imbedded in the mapping function
and is independent of all the other conditions in the problem.
Hence, the factor l/r1/2 must, of necessity, be common to all
crack problems where mapping of the type shown in Eq.
(4) is employed. In fact, the conformal mapping tech-
nique may be applied to solve a variety of crack problems
such as in the cases of plane extension and plate bending.

Now, equating Eqs. (1) and (5) and remembering that Eq.
(5) holds only in the limit as z approaches Zi, the crack tip,
the stress-intensity factor &3 may be evaluated from

fa = i 21'2G lim (z - Zi)1/2/'(z)
z— »zi

In the mapped plane, Eq. (7) becomes

F'fe = *2^1im [co(f) - cotfOP/' -

(7)

(8)

where fi corresponds to z\. Thus, a knowledge of F'(f) and
co(f ) in the vicinity of ft is sufficient to compute fe.

As an example, consider the problem of an infinite body
containing a circular hole of radius b with two collinear cracks
of equal depth a originating at the edge of the hole. This
configuration can be mapped onto the unit circle in the f
plane by means of

= Z + - 62)1/2 (9)
where

Z = IT 2R = a + b + a + b

In this case, the crack tips z — ±(a + b) on the real axis
transform to f = ±1. At infinity, the body is subjected to
longitudinal shear r°°, which makes an angle a with the
x axis. By virtue of a simple analogy between this problem
and the problem in plane hydrodynamics of potential flow,5

it is possible to construct

(10)G

Inserting Eqs. (9) and (10) into Eq. (8) results in

, ka = '(a + 6)~3/2[(a + 6)4 — 64]1/2r°° sin« (11)
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An approximate solution of the same problem in plane ex-
tension was given by Bowie.6 As a special case of interest,
when 6 = 0, Eq. (11) reduces to r'V/2 sina, which is the
solution of a single crack of length 2a under longitudinal
shear. This limiting case also may be obtained upon sub-
stituting Eqs. (4) and (10) into Eq. (8) with R = a/2.

In closing, it should be pointed out that, in contrast to the
complex variable method used in the plane theory of elas-
ticity, the problem in longitudinal shear permits irrationality
of the mapping function. Consequently, the present ap-
proach will allow the consideration of crack configurations
heretofore avoided.
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Effect of Nodal Regression on Spin-
Stabilized Communication Satellites

B. PAUL* AND E. Y. Yu*
Bell Telephone Laboratories Inc., Murray Hill, N. J.

ASPIN-STABILIZED satellite is useful for communication
purposes if the antenna pattern is symmetric about the

spin axis as in a so-called toroidal antenna where the un-
illuminated region is a cone about the spin axis with semi-
vertex angle /3, as shown in Fig. 1. The illuminated space
consists of a triangle of revolution with an "antenna angle"
2a defined as shown in Fig. 1 by a = 90° — /5. The angle a
will be referred to as the ''semivertex angle" of the antenna.
If the spin axis were to remain perpendicular f to the orbital
plane at all times, the angle a needs never exceed the minimum
value «i, where (see Fig. 1)

sinai = Ro/r (1)

where RQ is the earth radius and r is the geocentric satellite
distance.

However, if the spin axis is initially perpendicular to the
orbital plane, it will not remain so, since the orbit regresses
while the spin-axis direction remains fixed in inertial space. J
Thus, the actual antenna angle 2 a. must be increased by a
certain tolerance angle 2aT in order for the antenna pattern
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t This is not the only useful type of spin-axis orientation. For
example, the Telstar satellite is not oriented in this manner.
However, because of its potentiality for increase in gain, this
method of orientation merits some study.

t Precession of the spin axis due to the interaction between the
geomagnetic field and the magnetic dipole moment of the satellite
will require an additional tolerance on a but is not considered
here.

UNILLUMINATED
CONE

Fig. 1 Antenna shown cast-
ing no shadows.

to maintain full coverage of the visible earth surface. The
authors now show how to find aT for a given circular orbit.

Figure 2 shows, on a unit sphere, the original orbit of a
satellite at inclination i with the equator. The pole of the
original orbit is at S, and the unit vector s = OS is parallel
to the spin axis of the satellite which is chosen to be per-
pendicular to the original orbital plane. As time goes on, the
node (intersection of orbital plane with earth equator) shifts
from its original position Ni through the angle 0 to a new
position N%. At the same time, the satellite may be anywhere
in the perturbed orbit such as at position Q that has radius
vector f from the center of the earth. The radius vector f
lying in the orbital plane is normal to p, the perpendicular to
the perturbed orbit. The tip P of vector p moves through an
angle 12 along the small circle at colatitude i.

In order to find the antenna half-angle a required for a
given orbit, imagine a plane passed through the radius vector
r and the spin vector s, as shown in Fig. 1, from which it is
evident that

and
= 7 -

a = 90° - j8 = 90° + «i - 7

(2)

(3)

where 7 is the acute angle between r and s. The maximum
value of a required anywhere in the orbit occurs where 7 is
minimum. From Fig. 2, it may be seen that the minimum
value of 7 occurs when r is in the plane of p and s, at which
point 7 = 7min and

or

7min = 90° ~ d

sin7min = cos5 = p-s

(4)

(5)

In'order to calculate 5, which is a sector of the great circle,
through P and S, one may apply the cosine law of spherical
trigonometry to the spherical triangle APS (A is the earth's
pole) and find

cosS = cos2^ + sin2i cos£2 (6)

The final expression for the required antenna half-angle is
given by

a = 90° + ai — arc sin(cos2i + sin2i cosO) (7)

This expression is valid so long as a remains less than 90°.
For values of i and 12 such that Eq. (7) predicts a greater than
90°, one must use a = 90° corresponding to an isotropic
antenna. This may be verified from Fig. 1, which shows that
when 7 is less than cti the spin axis intercepts the earth, and
the entire earth cannot be illuminated except by an isotropic
antenna with a = 90°. Thus, the condition for which a
toroidal antenna can provide more intense illumination than
an isotropic antenna with equal total power and complete
earth coverage at all times is that d is less than 90° — «i, or

cos5 = cos2^ + sin2^ cos!2 > (8)
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