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Abstrct-In this paper integral transform techniques are used to find the mode III stress intensity 
factors for cracks at the edge of an elliptic hole in an infinite elastic solid. 

1. INTRODUCTION 

WE PROPOSE to determine the stress intensity factors for one and two cracks at the edge of an elliptic 
hole in an infinite elastic solid which is subject to out of plane shear. These problems were first 
investigated by Yokobori et al.[l, 21 who solved them by means of continuous dislocations. The 
purpose of the present paper is to verify Yokobori’s solutions and to show that they can be obtained 
elegantly via integral transforms. 

In Cartesian coordinates (x, y) our ellipse is given by the equation 

g+g= 1. (1.1) 

In problem 1 there is an edge crack defined by the relations c < x < b, y = 0 while, in 
problem 2, there are two edge cracks defined by c < (x 1 c b, y = 0. The cracks and the hole 
are assumed to be traction free while the solid is subject to a uniform out of plane shear 
load T as shown in Fig. 1. In the interest of brevity, solution details are provided only for the 
case in which h < c. It should be noted, however, that the case h > c can be dealt with 
similarly and yields precisely the same expressions for the stress intensity factors and other field 
quantities. 

To facilitate the use of integral transforms we introduce elliptic coordinates (5, q) which are 
defined by 

x = R ch < cos q, y = R sh 5 sin q (1.2) 

where 5 2 0, 0 < q < 211 and R = (c2 - h2)‘12, so that our ellipse becomes the coordinate line 
5 = y = ch-‘(c/R), 0 d q < 27~ Since the presence of the cracks and the hole perturbs the uniform 
field, our solution must take the form 

Z+ = u,, = 0, u, = F [sh 5 sin rl + $J (5, rl )I (1.3) 

where 4(<, q) is a harmonic function. It follows at once that the only non-zero stresses are given 

by 

T w 
be = K chr sinrt +z 1 (1.4) 

and 

(1.5) 

where 

K = (ch2 5 - cos’ q)“’ (1.6) 
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Fig. 1. The variation of k&)/T& with b/c for various values of h/c. 

2. STATEMENT AND SOLUTION OF PROBLEM 1 

By symmetry problem 1 reduces to that of finding a harmonic function 4(<, q) in the strip 
y < < < o3,O < q < K subject to the conditions 

(1) 9(L t1)-+0 as <-+a2 

(2) +(r,n)=O 5>Y 

a4 
(3) 3 (Y, 11) = - ch Y sin v 0<?<7I 

(4) ;tn$ $ ((7 0) = 0 

a$ 
$LO)= -shr 

where B = ch-‘(b/R) 

4(5,0) = 0 B<e<co 

On introducing new variables X = r - y, Y = ‘1, B = /I - y and +(X, Y) = 4(<, q) we obtain 
the equivalent problem 

P.D.E. 
a** a*+ 
s+w== O<X<co,O<Y<R 

B.C. (1) 4+(X9 Y)-+O as X+co 

(2) @(X,n)=O x>o 

(3) g (0, Y) = -ch y sin Y as O<Y<7t 

(4) /la+ Fx (X, 0) = 0 
-+ 

$(X,0)= -sh(X+y) O<X<B 

$(X,0)=0 B<X<co 



Out of plane shear 

whose solution is clearly given by 

$(X, Y)=P6, 
[ 

p-‘Q(p)Sh~~p~ ‘);p+X 1 +chyeeXsin Y, 

where 9, is the Fourier cosine transform 

pt,V(p); P -+x1 = 
Js 

; mf(~)cos px dp, 
0 
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(2.1) 

provided R(p) satisfies the dual integral equations 

F(X) = FJCJ(p)coth alp; p +X] = eY ch X 0 < X < B 

G(X) = FC[p -‘R(p); p +X] = 0 B<X<co 

2% 7 
dG(X) = o 

* (2.2) 

Assuming a representation of the form 

Q(p) = (2.3) 

we find that 

and 

1 
F(X) = 71 

s 

B sh tp(t) dt 

o cht-chX (2.4) 

G(X) = H(B - X) 
s 

‘p(f) dt (2.5) 
X 

and hence that (2.3) satisfies the dual equations if p(t) is given by the integral equation 

1 Bshtp(t)dt - 
s 

=eYchX O<X<B 
71 o cht -chX (2.6) 

with subsidiary condition 

p(0) = 0. (2.7) 

A simple change of variable reduces (2.6) to the finite Hilbert Transform discussed by Tricomi[3], 
from which we obtain 

(2.8) 

The stress intensity factor at the tip (6,O) is defined by the limit 

k,(b) = - hrl_ p[2(6 - x)]l/zz (x, 0). (2.9) 

Therefore, if we let k, = T,/& it is readily seen that 

k,(b) 2{ch/I -chl} “* 1 
-= 

ko 

lim 

e-t chb > 
&pa - 7). (2.10) 

After a little algebra we find, in agreement with Yokobori, Ichikawa, Konosu and Takahashi[l], 
that 

k,(b) Cc + h)(s + 1) s*- 1 

> 

112 
-= 

ko 2 bs{(c+h)s*-c+h} 
(2.11) 

where 

.S= 
b + (b* - c* + h*)“* 

c+h . 
(2.12) 
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3. STATEMENT AND SOLUTION OF PROBLEM 2 

Since the configuration to be investigated in problem 2 is symmetric with respect to both the 
x and y axes, we require to find a function +(C, q) which is harmonic in the strip 
y <(<co,O< 

As in the 

9 < n/2 and satisfies the conditions 

(1) $(5, rl)--+O as ~+CC 

5>Y 

(3) ag (Y, rl) = -ch Y sin rl 

(4) ,“m $ (I$ 0) = 0 
_? + 

z&O)= -sht Y<5<P 

#J<r, 0) = 0. B-=5-==! 

previous case the change of variables X = 2(5 - y), Y = 25 B = 2(/l -7) and 
$(X, Y) = 4(5, r~) produces the equivalent problem 

P.D.E. $+$O o<x<co,o<Y<7t 

B.C. (1) +(x Y)+O as X-too 

(2) -g (Jr, 71) = 0 x>o 

(3) g (0, Y) = -i ch y sin i O<Y<n 

(4) !ry+ g (X, 0) = 0 

Fy(X,O)= - ;sh 
( > 

;+y O<X<B 

$(X,0)= 0. B<X<co 

It is readily seen that this problem has solution 

Ii/(X, Y)=.Ft, 
[ 

p-‘S2(~)~~:;~; ‘);p+X 1 +e-xl’singchy 

provided a(p) satisfies the dual equations 

F(X)=9F,[a(p)thpn;X]=;eYch$ O<X<B 

G(X)=.F,.[p-Q(p);X]=O BcX<m 

?'y+ Fx = 0. 

Again we assume a representation of the form 

(3.1) 

(3.2) 

p(t)sin pt dt (3.3) 
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which yields 

x 

F(X) = ; s B sh;ch2 

’ 
,p(r) dt 

sh’;- sh2? 
(3.4) 

and 

G(X) = H(B - X) 
s 

‘p(t) dt 
x 

and hence requires that p(t) satisfy the singular integral equation 

(3.5) 

1 

s 

B sh fp(t) dt 
1 - X=jeY, O<X<B 

sh2;-shZI 
(3.6) 

x 0 

with subsidiary condition 

p(0) = 0. (3.7) 

Once more a simple change of variables facilitates the use of the finite Hilbert Transform and leads 
to the result 

fevshichf 

p(t)=(sh$_sh2f)li:’ 

This time we find that 

k3(b) - _ 

ko 

lim 2(ch/!I -chr) “2 1 84 

t-r chb > 
shz (LO) 

and hence, in agreement with Yokobori, Kamei and Konosu[Z], that 

k,(b) (s4- 1) 

> 

I/2 

ko = (’ + h) 2bs{(c + h)s2 - (c - h)} 

(3.8) 

(3.9) 

(3.10) 

where s is given by (2.12). 

4. CONCLUSION 

The results of Sections 2 and 3 are presented graphically in Fig. 1 which shows the variation 
of k,(b)/T$ with b/c for several values of h/c. In both the one and two crack cases we find that 
if b - c 4 c then k,(b) N rfi where r = T(l + c/h) = a,,,(~, 0) is the stress at the edge of the 
elliptic hole in the absence of cracks. If b % c we find, in the one crack case that 
k3(b) k T,/m and, in the two crack base that k,(b) = T,/%. Lastly if h = 0 we find, as 
expected, that k,(b) = TJw in the one crack case and k,(b) = T$ in the two crack case. 
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