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Abstract This paper presents some recent developments of the meshless boundary element method based on
radial integration method (RIM) for solving 2D and 3D heat transfer and thermoelasticity problems. Special
attention is paid to the consideration of the effects such as structural multi-sizes, nonlinear, non-
homogeneous, and anisotropic problems. Firstly, general boundary-domain integral equations for heat
conduction and stress analysis are derived using the weighted residual method based on the source point
isolation technique, in which fundamental solutions for the corresponding linear homogeneous problems are
adopted. The use of linear isotropic fundamental solutions for anisotropic, nonlinear and nonhomogeneous
problems results in domain integrals appearing in the basic integral equations. The domain integrals
appearing in the integral equations, then, are transformed into equivalent boundary integrals using RIM,
resulting in a pure boundary element analysis algorithm without the need of internal cells. The thermal and
mechanical material properties can be the functions of both temperature (resulting in nonlinear heat transfer)
and spatial coordinates (for non-homogeneous materials). The Newton-Raphson iteration scheme is applied
to solve the resulting nonlinear equation set. The nearly singular boundary integrals stemming from treating
thin-structures using BEM are evaluated using the non-equally spaced element sub-division technique. The
three-step solver of multi-domain BEM is employed to solve composite structural problems consisting of
different materials. Finally, numerical examples are given to demonstrate the accuracy and efficiency of the
presented method.

1. Introduction

Thin structures are frequently used in aerospace engineering [1], such as multi-layered coatings, laminated
structures, honeycomb structures etc. The investigation shows that the thermal stresses induced in laminated
structures are the main cause of structural failure [2]. Therefore, the thermal stress analysis of composite
structures is significantly important in aerospace engineering. The boundary element method (BEM) has
distinctive advantages in solving problems of fracture mechanics [3] and thin structural problems [4], since
it only needs to discretize the boundary of the problem into elements. However, the conventional BEM is not
so attractive in solving nonhomogeneous, nonlinear and thermoelasticity problems, since domain integrals
are inevitably introduced in the resulting integral equations [5]. A direct evaluation of domain integrals
requires the discretization of the domain into internal cells. This severely eliminates the advantage of BEM.
To overcome this disadvantage, Nardini and Brebbia [6] developed the dual reciprocity method (DRM) to
transform the domain integrals into equivalent boundary integrals. To avoid using particular solutions
required in the DRM, Gao proposed the radial integration method (RIM) [7] which can transform any
domain integrals to the boundary based on a pure mathematical manipulation. RIM has been successfully
applied to solve thermoelasticity [8], elastic inclusion [9], and creep damage mechanics problems [10]. In
view of the robustness and simplicity of RIM in evaluating domain integrals without using internal cells,
Hematiyan [11] gave a very good assessment to RIM, and Albuquerque et al. [12] compared RIM to DRM
numerically through applications to dynamic problems with a more positive conclusion.

Although thermoelasticity problems with constant material properties have been solved using the boundary-
only element method based on RIM [8], this methodology has yet not been applied to solve heat conduction
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and thermoelastic thin structure problems with varying material properties. This paper is an attempt for this
purpose. First, boundary-domain integral equations for temperature and displacements are derived from the
weighted residual forms of governing equations. Then, the domain integrals arising in the integral equations
are transformed into equivalent boundary integrals using RIM, resulting in a pure boundary element solution
algorithm. Material properties are allowed to be any type of functions of spatial coordinates. The treatment
of nearly singular integrals is a challenge issue in solving thin structural problems using BEM [13]. A non-
equally spaced element sub-division technique is presented for evaluating the nearly singular integrals.
Numerical examples are given to demonstrate the correctness and efficiency of the presented method.

2. Boundary-domain integral equations for general nonlinear and nonhomogenous heat
conduction problems

2.1. Formulations for general heat conduction problems
The governing equation for general heat conduction problems can be expressed as
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where k; and Q are the thermal property tensor and the source term, respectively, and 7 denotes the
temperature. k; and 7 both may be functions of spatial coordinates for non-homogeneous problems

or functions of the temperature for non-linear problems. It is noted that the thermal property tensor
is symmetric, i.e., k; = k; . The repeated subscripts in eq (1) represent summation over the ranges

of their values. Using a weight function G to multiply both sides of eq (1) and integrating over the
entire domain Q, the following weak-form can be written.
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in which I denotes the boundary of the domain Q, », is the i-th component of the outward normal vector to

I', and g is the heat flux. It is noted that the domain integral in eq (5) may be strongly singular (depending on
the choice of G) and, therefore, a different integral symbol is used to denote this.

We assume that the weight function G is a fundamental solution of either isotropic or anisotropic problems.
Usually, it is a function of the distance r between the source point p and the field point ¢ [14]. When » — 0,
G may be singular and, therefore, an infinitesimal circular domain €3 centered at the source point p with

radius ¢ can be isolated from Q (Fig. 1).
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Fig. 1 An infinitesimal domain Q isolated from Q

The last term in eq (3) now can be written as
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It is noted that the last domain integral in eq (6) is interpreted in the Cauchy principal value sense.
Substituting eq (6) into eq (3) and the result into eq (2) yields
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Equation (9) is a boundary-domain integral equation valid for isotropic, anisotropic, linear and nonlinear
heat conduction problems. The weight function G can be any type of functions. If G is a regular function, the
coefficient £ as determined by eq (7) will be zero since the radius & — 0; if G is chosen as the Green’s
function [14] which is weakly singular when the source point p approaches the field point g under
integration, & has a finite value; and if G is chosen as a higher singular function than the Green’s function, &
is infinite and, therefore, this type of G doesn’t make sense. Once the weight function G and thermal

property tensor kij are given, all coefficients and kernel functions in eq (9) are known, and the unknown

quantities be computed using the standard BEM discretization procedure [5].

It is noted that although eq (9) is derived for an internal source point p, it can also be used for boundary
nodes since it is actually not necessary to compute the coefficient k directly using eq (7). This is based on the
fact that the contribution of k to the final system of equations is in the diagonal term, which can be
determined using a more efficient way, i.e., the “rigid body motion condition” [5].

2.2 Using isotropic fundamental solutions for general anisotropic heat conduction problems

In principle, the weight function G can be any function. However, the simplest way is to choose G as the
Green’s function for isotropic heat conduction problems, i.e.,
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where r is the distance between the source point p and field point ¢. The derivatives of G can be expressed
as
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where 7; = 0r/0x;, /=2 for 2D and =3 for 3D problems, and a=/1. Since T, is a circle (2D) or a sphere
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(3D), we have n ; = r;. Thus, from eq (7) it follows that
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For an internal point, using the following relationship [5]
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equation (13) can be integrated as
k=k,/p. (15)

It can be seen that £ is the average value of the diagonal term of kij' This is helpful for understanding the

coefficient & in eq (9). It is also pointed out that if the problem is isotropic, the last term in eq (8) is zero and
eq (9) is reduced to the result in [14].

3. Boundary-domain integral equations for thermoelasticity with variable coefficients

The governing equations of the thermoelasticity problems can be expressed as [8]
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in which  represents the shear modulus, v the Poisson’s ratio, & the thermal expansion coefficient, and
u, the displacement components. Both zand & are functions of temperature and spatial coordinates.

Through applying the weighted residual method [8,15] to eq (16), the following boundary-domain integral
equations for the displacements and the stresses can be obtained
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where U, T, V. Uy, Ty, Vi, and Fj, can be found in [15], and other quantities are given by
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Equations (19) and (20) are only suitable for internal points. For boundary nodes, a limiting process is

needed to establish the boundary integral equations from eq (19), and the “Traction-Recovery Method” [5] is
adopted to compute the boundary stresses.

(24)

4. Evaluation of nearly singular integrals using a non-equally spaced element sub-division
technique

When solving thin-structure problems using BEM, the treatment of nearly singular integrals is a challenge
issue [4-6,13]. The element sub-division technique is a simple and robust technique in handling such
problems [16] with the advantage of treating various orders of singularities using a unified way. Gao and
Davies [5] proposed an equally-spaced element sub-division technique for evaluating the nearly singular
integrals. The technique is simple, however, when the source point is very close to the element under
integration, the number of sub-elements is huge and the computational time is intolerable. In this study, a
non-equally spaced element sub-division technique is presented, which is able to reduce the computational
time by several magnitude of orders for the same accuracy. The technique is based on a relationship
proposed by Gao and Davies [16] for Gaussian quadrature regarding the number of Gaussian points, the
minimum distance to element and the element size.
The Gaussian quadrature formula for surface integrals can be expressed as [17]:
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where (£,&/) are the Gaussian point coordinates, w, and w]z. are the weighting factors, m, and m, are

the numbers of Gaussian points, and £, and E, are the integration errors, i.e.,
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in which /" denotes the 27, -th derivative of the function £, L, is the length of the element in the i-th

direction. From eq (25) it can be seen that the integration error relies on the number of Gaussian points and
the element length. Therefore, to ensure a desired accuracy, a big element must be divided into small sub-
elements. Based on the analysis of an upper bound of the relative error, Mustoe [17] presented the following
approximate formula for the specified accuracy tolerance e
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where p is the singularity order of the integral kernel characterized by »”, R is the minimum distance from
the source point to the element. Equation (27) shows that, to retain the specified accuracy e and the number

of Gaussian points cannot exceed a given number, the value of L, /R needs to be reduced by dividing the

@7

P

big element into a number of sub-elements. Based on the numerical investigation, Gao and Davies [16, 5]
proposed the following formula for determining the number of Gaussian points.
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Equation (28) can be used to determine the minimum number of Gaussian points for a given accuracy
tolerance e, while eq (30) can be used to determine the length of each sub-element for the specified values of
allowed maximum number of Gaussian points, singularity order and the minimum distance. The non-equally
spaced element sub-division technique can be summarized as follows:

(28)

where

After a rearrangement eq (28) yields

1) Compute length L, of the boundary element under integration and the minimum distance R from the
source point y to the element. Detailed Fortran subroutines for determining L, and R can be found in [5].

2) Calculate the required number of Gaussian points 7, using eq (28) in terms of the values of L, and R.

3) Ifm;<m
Gaussian quadrature formulas.

(m,,, being the specified maximum number of Gaussian points), evaluate integrals using

max

4) If m;>m
direction 7 using the value of R and eq (30).

let m, =m,, and compute the length L] of each sub-element along the integration

max ? max

5) As shown in Fig. 2, mark the graduations in two integration directions in terms of L} and L) and form

all sub-elements (enclosed by dashed lines) from these graduations.
6) Evaluate integrals over each sub-element using Gaussian quadrature formulas.

For understanding this process easily, Fig. 2 gives the schematic show of a big boundary element divided
into 12 sub-elements by partitioning the line along &, direction into 4 segments and the line along &,
direction into 3 segments.

Sub-elements

Fig. 2 Schematic show of the element sub-division

5. Numerical examples

Based on the method described in the paper, a computer code named BERIM (Boundary Element analysis
based on Radial Integration Method) has been developed. In the code, all domain integrals appearing in eqs
(9), (19) and (20) have been transformed into boundary integrals using RIM [7], resulting in a pure boundary
element analysis algorithm without need of internal cells. When the material properties are functions of the
temperature, the Newton-Raphson iteration scheme is applied to solve the nonlinear heat conduction
equations. To solve composite structure problems, the three-step multi-domain BEM (MDBEM) solver
proposed in [18] is adopted for both heat conduction and thermoelasticity problems. Corner and edge points
are treated using the discontinuous elements to model the discontinuity of the heat flux and the traction. Two
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numerical examples are presented in the following.

5.1 Thermal stress analysis over a honeycomb structure

The first example is a honeycomb structure which is commonly used in thermal protection system (TPS) [1].
The structure consists of upper and lower cover plates with a thickness of 0.125mm. The honeycomb core
has a wall thickness of 0.035mm, a wall height of 7.11mm, and a width of 4.76mm. The structure has a total
of 100 honeycombs with the global dimension of 49.98mm X 42.56mm * 7.36mm. Figure 3 shows the BEM
model consisting of 8946 four-noded boundary and interface elements with 8484 nodes. In the BEM model,
the upper and lower plates, the honeycomb wall, and the hollow volume filling with air are treated as
different sub-domains. The heat conductivities are 7.8x 10~ W/(mm-K) for the upper and lower plates,

1.7x107* W/(mm-K) for the honeycomb wall, and 2.3x 10~ W/(mm-K) for the filled air. The thermal
boundary conditions are given as follows:
the top and bottom surfaces are specified with the temperature distribution of

225xz T + 600= + 200 (K) and the side surfaces are adiabatic.
49.98x7.36 49.98 7.36

Firstly, the heat conduction computation is performed to obtain the temperature distribution in the structure,
and then the thermoelasticity computation is carried out using the obtained temperature. In the
thermoelasticity computation, the material parameters are taken as y=280GPa, 1=0.25, and the thermal
expansion coefficient is @ =2.47x10°mm/K . The top surface is uniformly imposed by traction
conditions of 7,=0.05MPa and 7_=-0.5MPa, the bottom surface is fixed, and the side surface is traction-

T(x,y,z) ==

free. Figure 5 shows the computed temperatures at points shown in Fig. 4, which are located below the inner
surface of the upper plate with a distance of 0.0lmm to the inner surface. The computed heat flux g,

displacement u_ and stress o, at these selected points are presented in Figs. 6, 7 and 8, respectively.

7. =-0.5Mpa
7, =0.05Mpa

Fig. 3 BEM model and boundary conditions Fig. 4 Points for results plotting
900 0.016 [
800 1 oo |
o 10 | Né 0.012 |
o 6001 = 0.010 F
Z 500 <
s S 0.008
g 100 1 Z 0,006
£ 300 bl
o200 f 3 o001 |
00 | 0.002 [
0 0.000
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
x-coordinate (mm) x-coordinate (mm)

Fig. 5 Distribution of temperature Fig. 6 Distribution of heat flux g,
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Fig. 7 Displacement Fig. 8 Stress o,

From Fig. 6, we can see that the heat flux g, has a much larger value on the honeycomb side wall than in
the hollow air. This important phenomenon captured in the example is attributed to the discretization of the
two surfaces of the honeycomb wall into boundary elements. Figure 8 shows that the computed stress o is

much larger than the imposed tractions. This indicates that the thermal stress is an important factor in TPS
failure analysis.

5.2 Rectangular plate with a crack under tensile loading

The second example analyzed is a rectangular plate with an edge crack, which is subjected to a uniform
tensile loading as depicted in Fig. 9. The geometry of the cracked plate is described by: plate width 6=10,
plate length 24=30 and crack-length a=0.4b. To demonstrate the capability of the presented method to treat
the crack problem, a single computational domain is used in our computation. The upper and lower surfaces
of the crack is very close, but not completely in contact, measured with the width ratio of the opening
distance to the crack-length a. The boundary of the plate including the crack surfaces is discretized into 115
quadratic boundary elements with 254 boundary nodes. Two nodes are defined at the crack-tip for utilizing
the discontinuous element [18] to model the discontinuity of the traction across the tip. Plain strain condition
is assumed in our computation.
ﬂ Tpn= 1

h=15
b=10
a=0.4b
a

 — 2h

y=025
) 1=4000

Fig. 9 A plate with an edge crack Fig. 10 Deformed plate

Figure 10 shows the deformed plate plotted using the computed displacements multiplied by a factor of 200
for the case of the width ratio being 0.1%. To verify the correctness, this problem is also computed using the
multi-domain BEM code [18], in which lower and upper parts of the plate are treated as two sub-domains
along the crack. The displacements in y-direction computed using the present single domain method denoted
by “l-Domain” and using the multi-domain BEM denoted by “2-Domain” are listed in Table 1 for three
corner nodes as shown in Fig. 10. Comparison of the results from the two methods shows that the relative
errors are rather small. To investigate the convergence of the computational results to the width of the crack,
computations are carried out using different ratios of the crack-width to the crack-length. The computed
results for the three selected corner nodes (see Fig. 10) are shown in Fig. 11. From Fig. 11, it can be seen
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that the convergence is achieved when the width ratio is larger than 0.02% which is small enough to model a
real crack-width. Figure 11 also shows that the usual single domain BEM combined with the non-equally
spaced element sub-division technique described in this paper can solve the crack problems efficiently
without the use of other complicated methods [3, 18].
Table 1 Computed displacement u, at three selected nodes
Lower Upper Top
1-Domain  8.66874E-4  5.7889E-3  6.6526E-3
2-Domain  8.75949E-4  5.7325E-3  6.6045E-3

Error (%) -1.04 0.984 0.728
1L.00
R
S 0.80
&)
5 0.60 —
£
£ 0.40 —+— Lower
§ —=— Upper
= —— Top
7 0.2
a . .
0.00 “* : -

0 0.02 0.04 0.06 0.08 0.1

‘Width ratio of crack (%)
Fig. 11 Displacement computed using different values of the crack-width

6. Conclusions

A boundary element technique is presented for solving 2D and 3D nonlinear and non-homogeneous heat
transfer and thermoelasticity problems. A non-equally spaced element sub-division technique is proposed for
evaluating nearly singular boundary integrals in the analysis of thin structures using BEM. Numerical results
show that the presented method can not only effectively solve the thin-wall structure problems, but can also
solve crack problems in the usual way. This is very convenient to solve complicated engineering problems.
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