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Abstract. This paper considers divergent integrals with different type of singularities, which arise when the
boundary integral equation (BIE) method is used to solve boundary value problems in the theory of
potentials. The main equations related to formulation of the boundary integral equation and boundary
element methods in 2-D and 3-D cases are discussed in details. For their regularization an approach based on
the theory of distribution and application of the Green theorem has been used. The expressions, which allow
an easy calculation of the weakly singular, singular and hypersingular integrals in 2-D case, have been
constructed.

1. Introduction. In recent years, more and more of publications is devoted to the boundary integral equation
methods (BEM) and its application science and engineering. It is because the BIE is a very powerful tool for
solution of the mathematical problems science and engineering [1]. When the BIE are solved numerically
divergent integrals have to be calculated. Numerical methods developed for regular integrals calculation can
not be used for their calculation. There are many methods for calculation of the divergent integrals, for
references see review articles [2-4] and references there. We will consider here in more details method of the
divergent integrals regularization developed in [5-14] and it application in the 2-D and 3-D BIE. The method
is based on the theory of distributions and idea of finite part integrals according to Hadamard.

In our previous publications approach based on the theory of distributions has been developed for
regularization of the divergent integrals with different singularities. We apply the approach based on the
theory of distributions and finite part integrals for the problems of fracture mechanics firstly in [5]. Then it
was further developed for regularization of the hypersingular integrals in static and dynamic problems of
fracture mechanics in [13, 14] respectively. Further development of this approach and application of the
Green’s theorems in the sense of theory of distribution has bean done in [5, 6] for piecewise constant and in
[7, 8] piecewise linear approximation respectively. The equations presented in [12] permit transforms
divergent hypersingular integrals into the regular ones. The developed approach can be applied not only for
hypersingular integrals regularization but also for a wide class of divergent integral regularizations and any
polynomial approximation.

In this paper, the approach for the divergent integral regularization which is based on the theory of
distributions and Green’s theorems is further developed and applied for the potential theory problems. The
divergent integral regularization have been done for 2-D and 3-D the weakly singular and hypersingular
integrals and regular formulas for their calculation have been obtained. The weakly singular and
hypersingular integrals piecewise constant approximation have been considered for arbitrary convex
polygon. It is important to mention that in presented equations all calculations can be done analytically, no
numerical integration is needed.

2. Statement of problem and BIE. Let consider a homogeneous region, which in 2-D or 3-D Euclidean
space occupies volume V with smooth boundary &/ . The region V is an open bounded subset of the
Euclidean space with a C®' Lipschitzian regular boundary 6V . In the region ¥ we consider scalar function
u(x) that subjected to Poisson equation

Au(x)+ f(x)=0, vxeV @)

Here A= 26, 0, is the Laplace operator, 0, = 9/dx, denotes the partial derivatives with respect to space,
i=1
f(x)is given in the region function. Throughout this paper we use the Einstein summation convention.
If the eq (1) is defined in an infinite region, then its solution must satisfy additional conditions at the
infinity in the form
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in2-D case u(x)=0(n(r™)) , 8,u(x)=p(x)=0(") for r—>w
in3-Dcase u(x)=0("), 0,u(x)=p(x)=0(r") for r—>w )
Here n, are components of the outward normal vector, 0, =n,0, is a derivative in direction of the vector
n(x) normal to the surface 0V, r is the distance in the Euclidian space.

If the body occupied a finite region J with the boundary 6V, it is necessary to establish boundary
conditions. We consider the mixed boundary conditions in the form

u(x)=p(x) , vxedV, ,p(x)=w(x), VxedV, 3)

The boundary contain two parts 6V, and oV, such that oV, "oV, =< and oV, wdlV, =0V . On the part
0V, is prescribed unknown function u(x) and on the part 0V, is prescribed it normal derivative
p(x)respectively.

In order to establish integral representations for the function u(x)and it normal derivative p(x) we start

from second Green theorem in the form
[ du—uta™ydv = [wo,u” —u’0,u ))dS )
v av
which take place for any two functions u(x)and #"(x) with continuous first and second derivatives within
the region V.
Let us consider solution of the elliptic partial differential eq (1) in an infinite space for the function

/() =6(x-y)

AU(x-y)+6(x-y)=0, Vx,ye®’ 5)
Solution of this equation is called the fundamental solutions. In 2-D and 3-D cases it has the form
11 1
Ux-y)=—h-, Ux-y)=—o (6)
2z r 4rr

Here r :\/(x1 )+ (x,—y,)" and r :\/(x1 =)+ (x, —y,)  +(x, —y;)* for 2-D and 3-D case
respectively.
Now considering that

u' (x)=U(x-y) and p/(x)=0,u" (x)=IW(x,y) (O]
from eq (4) we obtain the integral representation for the unknown function u(x)
u(y) = [(pOU(x=y)—u(x) =W (x,¥))dS + [b)U (x—y)dV ®)
ov v

The kernels U(x—y) and W(x,y) are called fundamental solutions for Laplace equation. After some
transformations and simplifications the expression for the kernel W (x,y) will has the following form

_ n; (X)('xi _yi)

W(x.y) = . ©

arr
Applying to eq (8) the differential operator of normal derivative 0, =n,(x)0, we will find integral
representation for the unknown function p(x) in the form

p(y) = j(p(x)K(x,y)—u(x)m, Y)S + [bOK (x,y)dV (10)

The kernels K(x,y) and F(x,y) may be obtained applying the differential operator 0, =n,(y)0, to the
kernels U(x—y) and W(x,y) respectively. After some transformations and simplifications the expression
for the kernels K, (x,y) and Fj;(x,y)have the form

n,(Y)(x, -y, n, (), (Y)(x, —y)(x; =y;)
(03

Kixy) =0 ),F(x,y)=mlr,, [ﬂ . —m(x)n,(y)] (1n

r
Intheeq (9)and (11) @ =4,2 and B=3,2 in 3-D and 2-D cases respectively.
The kernels U(x—y),W(x,y), K;(x,y) and F;(x,y) contain different kind singularities, therefore

corresponding integrals are divergent. Simple observation shows that the kernels in the integral
representations (8) and (10) tend to infinity when » — 0.
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In the 3-D case with x >y
Ux-y)—=>r" Wxy) > r? Kxy) = r’, F(x,y)—>r" (12)

In the 2-D case with x —>y
Ux-y)—> (") Wxy) —>r'  Kxy) —>r! Fxy) —>r” (13)

Tending y in eq (8) and (10) to the boundary 0V and taking into consideration boundary properties of
the kernels (9), (11) we obtain representation of the functions #(x) and p(x)on the smooth parts of
boundary surface o/ in the following form

r%u(y)= j(p(x)U(x—y)u(x)—W(x,y))dS+ jp(x)U(x—y)dv,
(14)
2P0 = [(POOK R YU() ~ F(x ) + [Pk x.y)dV

o
The plus and minus signs in these equations are used for the interior and exterior problems, respectively.
To transform the BIE into the finite dimensional BEM equations we have to split the boundary 0V into a

collection of finite boundary elements (BE)

aV:plaVn, oV AV, =D, if nxk. (15)
On each BE we shall choose Q nodes of int;.erpolation and the shape functions ¢, (x). Then the
displacement and traction on each BE 6V, will be approximately represented in the form

0 0
u(x)zzw’(x }0 (x), xeaV",p( ) Zp"(xq)goq(x) xedV, (16)
and on the whole crack surface o7 in the form

u(x)ziiu”(xq }pq(x), er@Vﬂ ,p(x)zﬁ:ip"(xq)'pq(x), xegal/" 17)

n=1 g=1 n=1 g=1
Substitution of the expressions (17) in eq (14), gives us the finite-dimensional representations for the
vectors of displacements and traction on the boundary in the form

1 v, 2
L ()= ox o) o e Uy, )

K7 (y,.x,)p"(v,,) - F"(y,.x, 0" (x, )+ K(£,y,7, )]

[

(18)

Me

1 m —
51’ (yr)— -

il
<
IR

where
U l(y,.x,)= IU y,,x)'p (x)ds, w(y,.x,) _[W y,,x);uq (x)ds,

v, v,

K"(y,.x, IK Y, X, ()ds, Fr(y,.x,)= [Fly,.x)p,(x)ds.

v,

19)

In the case of piecewise constant approxlmatlon the finite-dimensional representations for the vectors of
displacements and traction on the boundary take the form

:g[U"(y,,Xm )PT(X,,,)— wr(x,,x, (x )+ u(t,y.v, )l
Lty )= S, x5 )- Pl e, ) K7, )

2 pE|

(20)

where
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U'ly,.x,)= [Uly,xHS, W"(y,.x,)= [W(y, x)s.
v, oy

21
K'(y,.x,)= [K(y,.xMS, F'(y,.x,)= [F(y,.x}s.

o, o,

2. Divergent integrals and distributions. Let us consider function f(x) that contain singular points in the
regionx € V in n-D space and definite integral

I, = [/(x)dx (22)

The classical approach can not provide the meaning of the integral /. The integrals with singularities can

not be considered in usual (Riemann or Lebegue) sense. In order to such integrals have sense it is necessary
special consideration of them. Following [5] we consider here the above divergent integrals in the sense of
distribution. To do that we introduce function g(x), such that the function f(x)can be presented in the form

F)=A"g(x), (23)
where A' =87* +83*, which is called the k& — dimensional Laplace's operator.
This representation of the function f(x) has to be considered in the sense of distribution in the region V.
To do that we introduce test function @(x)e C”(R"). Then the eq (22) can be presented in the form of
distributions

(/-9) = [f0pdx= [pr g(xdx. 24

Application of the Green theorem gives the following identity, which also take place only in the sense of
distributions

Jlot0n g0~ (-1 gAY = 3 (1) [px00, 4 '8~ 80,4 p(xIdS . (29)

Here, 0, =n,0, is the normal derivative on the surface with respect to x and #,(x) is a unit normal to the

surface.
Taking into account eq (24) we obtain equality

FP.JF0(0d =3 ()" [io000, 4 ¢(x) - g(00,4p(x01dS + (1) [gC0n' o1y (26)

which can be consider as definition of the finite part (F.P.) of the divergent integral according to Hadamard
in the sense of distribution in n-D case. This equation can be used for the divergent integrals calculation. For

the singular function f(x) of the form f(x)= % we have
r

X NN i P P, i cr 1 e
ROy =3 - [N 000, = 0, A p0MS + () [ A el s (2)
v i=0 av v
- 1
where P = (=DTT" ' —— for k.m>1.
k ( ) H,:o (m+2i)2 m

In the case @(x)=1 the above equations are significantly simplified. The eq (26) has the form

I,=FP.[f(x)dV = [0,A"g(x)dS , for k=1 1, =F.P.[f(x)dV = [6,g(x)dS , (28)

From eqs (27) and (28) follows
Jo=Fp B 1 [0, —vdi=——1 [La (29)
s, (k - z)h as, r (k - 2) s, T

Sn

Here r, =x,n, and o =1,2.
For a circular area integral (29) can be easy calculated and the following result be obtained

r 1 = 27 27
Jo=—|2tdl=——— |dp=—"— , J =272R , J, == 30
! J rt (k—2)R"? Oj Ty T ' R G0
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Here polar coordinates are used, were R and ¢ are the circle radius and polar angle respectively.
In the 1-D case singular function of one variable f(x) is defined in the region xeV =[a,b] and can be
represented in the form

VAE )fdg(x), (31)

which also has to be considered in the sense of dlstrlbutlons as it was shown in the eq (24).
In the same way as in 2-D case integrating by path we obtain

L0 4= ;ﬁx)uu ' Iqo(X) 20 g, (32)

This equality can be consider as definition of the F.P. of the divergent integral according to Hadamard in the
sense of distribution in 1-D case and can be used for the divergent integrals calculation in 1-D case. For the

dx =

F.P. Ig(x)

function f(x) of the form f(x)= Lm we have
r

b k-1 i k=1-i =b
o) md Pod e P d w(X)
FR dX—;(*D pe e IR I : 33)
where P, =(-1)" H, Oﬁ for k,m>1.
In the case @(x)=1 the above equations are significantly simplified. The eq (32) has the form
b P (x) x=b
I, =F.P.[f(x)dx = Tﬁl for k=11, = (34)
which is the well known Leibniz's formula for the definite integral.
Examples of the divergent integralq calculation in the 1-D case are presented below
ijln dx b=y ‘—(a—y)ln !
a—
. ‘ . ‘ L (33)
F.P.j —In~ Y FPj —
aX=y J=p»)?' b-y a-y

4.2. Piecewise constant approximation in the 1-D case.

Let us consider a straight BE of the length A . The piecewise constant approximation is the simplest

one. We transform global coordinates in the way that they are related to the local coordinate
£ e[-1,1] by the equations

x(&)=r=4,8,x()=0,n()=0,n()=1 (36)
Interpolation function has the form
1 Veel[-A,.A,]

= 37
0,(9) {0 E el AL (37

Fundamental solutions (6), (9), (11) have the following simple form

1

U ——1 —, W 0,K 0, F =— 38
(x-y) ﬂnA“5 (x.y)= (xy)= x.y)= A§ (3%

Applying corresponding formulas from [9] and considering divergent integrals as it was shown above we get

Lol 1 ol 2
JO_jllnAngA,,dg_zAn[Hln(AnD , JZ_JEdg_—A—W (39)
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5. Piecewise constant approximation in the 2-D case. The piecewise constant approximation is the
simplest one. Interpolation functions in this case do not depend on the FE form and dimension of the domain.
In 2-D case they have the form

()_1 vxeS,, (40)
P70 wxes..

In order to simplify situation we transform global system of coordinates such that the origin is located at
the nodal point, wherey’ =0, the coordinate axes x, and x, are located in the plane of the element, while
the axis x, is perpendicular to that plane. In this case x, =0 and n, =0, n, =0, n, =1 and fundamental
solutions have the following simple form

1 1
Ux-y)=——,Wxy)=0, K(x,y)=0, F(x,y)=——— (41
dxr Axr
Regular representations for integrals with these kernels can be easy calculated using above approach.
From the eq (29) follows
J, =F.P. j§= ["ar, J,=FP. j‘@:— [ (42)
s, 7o, ¥ 5, " s, 7

Calculations of the integrals (42) will be done using the local rectangular coordinate system with its
origin located in the point y?, the x, and x, axis located in the plane of the polygon and the x, axis

perpendicular to this plane as it is shown on Fig. 1.

% 7y (k) (k)

7, (k)

(%, (k), x, (k)

»3) *

A\ 4

Fig. 1.

Global coordinates of the vertexes are (x;,x%). They can be calculate though the nodal points and unit

vector normal to the contour

4k Xk ek Xk ok
x;(k)=#,ﬁl(k)=;,ﬁz(k)=—f- (43)
k

The coordinates of an arbitrary point on the contour 0V, may be represented in the form
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X &= X (k)_gAAﬁz (k) and X, &)= Xy (k)+§AAﬁ1(k) (44)

where x, (k) and x, (k) are the coordinates of the k-th side of the contour, f(7,,7,) is a unit vector normal
to the contour and & e[—1,1] is a parameter of integration along the k-th side, 2A, is the length of a k-th

side.
These are some useful notations

(&) =B E + 2, (k) + 2 (k) , r(k) =2 (k) + 22 (k) , , (k) = x,, (k)n, (k)
r (k) = x, (kYA (k) + x, (k) (k) , 7, (&) =7, (k) J2A, =[(xF —xf )P + (T —xb)* . (45)

Using these notations the integrals under consideration may be represented in a convenient form for the
calculation.

K
U'(y,.x,)= [U(y,,ds =Y [Uly,,xH,
k=1
S, i I ( 4 6)
F'(v,.x,)= [F(y,,x)dS = [F(y, . x}.
S, k=lp,
Here indexes r and m indicate number of nodes.
Substituting eqs (43)-(45) into eqs (42) we obtain formulas for calculation of the corresponding integrals
over each side of polygon in the form

7, (k) (.o
J (k)= |"—=Ad&, J,(k)y=-A, | 5—=d¢& (47)
' '1[ ¢ ’ A,J].Vz(i)
Now these integrals can be calculated over polygon using the formulas
K K
J, =er1 (k)[1,0 , Jy :_zrn(k)lz,u (48)
k=1 k=1
Here we use the following notation for the integrals
gl
I, =(A)" d 49
b =(80) Jr,,@ 3 9)
These integrals may be calculated analytically
Lol | D Acvrky |
I,=A, |—dé=Inr (k)+A, &+ , I, =A dé = . = 50
o=t g de i W a gl by = [ de= T wr@,

Integrals (47) were calculated for the cases of triangular and quadrangular domain of integration. For a
regular triangle with unit side we obtain J, =2,281, J, =—18, and for a square with a unit side we obtain

J, =3,525, J, =—11.31respectively.

Then integrals in egs (46), over any convex polygon may be represented in the form

n 1 n n n 1
U (y,.,xq):EJ. Wy,ox,)=K"ly, x,)=0 , F (y,,xq):EJ; (51
It is important to mention that all calculations here can be done analytically, no numerical integration is
needed.

Conclusions. Based on the theory of distribution and Green theorems the approach for the divergent
hypersingular integrals regularization is developed here and applied for the BIE methods. We consider the 1-
D and 2-D divergent integrals over arbitrary convex polygon for piecewise constant approximation.. The
divergent integrals over the BE have been transformed to regular ones over contour of the BE. Convenient
for their calculation regular formulae have been obtained. In the presented equations all calculations can be
done analytically, no numerical integration is needed. It is important to mention that proposed methodology
easy can be applied for regularization of the divergent integrals in elastostatics and elastodynamics and for
calculation regular integrals when collocation point situated outside BE. Also developed here methodology
can applied to regularization of the divergent integrals in the case of quadratic and higher BE.
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