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Abstract

Fracture behavior of piezoelectric solids under time-harmonic loading is numerically analyzed in this paper. A 2-D boundary element
method (BEM) based on both displacement and traction boundary integral equations is presented. The time-harmonic Green’s functions
for the infinite plane are split into singular plus regular terms, the singular ones coinciding with the static Green’s functions. In this man-
ner the singular and hypersingular integrals arising in the formulation may be treated by the same simple regularization procedure
proposed by the authors for static piezoelectricity. Quarter-point elements are used for the direct evaluation of stress and electric dis-
placement intensity factors from nodal values. Several numerical examples for the scattering of waves by different crack configurations
including branched and curved cracks and crack interaction problems are given to demonstrate the performance of the proposed method.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years structural control applications using pie-
zoelectric materials are receiving increasing attention. Due
to the inherent coupling between their electric and mechan-
ical behavior, piezoelectric materials are being widely used
as the actuator materials for active vibration control in
smart structures. However, because of their brittleness
piezoelectric materials have a tendency to develop cracks
during their manufacturing process and service. The exis-
tence of such flaws critically affects the mechanical inte-
grity and electromechanical behavior of these materials.
Thus, the proper understanding and evaluation of the
fracture process in piezoelectric materials are crucial to
the advancement of modern intelligent material systems.
As a consequence, this topic has attracted increasing atten-
tion from many researchers [2,3,11,12,14,19–21,26].
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Analytical solutions are mostly restricted to simple
geometries and load conditions, so that numerical methods
are necessary for general complex applications. It is well
known that the BEM presents significant advantages over
other numerical techniques for the analysis of fracture
mechanics problems [5]. In particular, only the boundary
of the domain has to be discretized and very accurate
results are obtained on the boundary. In the case of crack
propagation, the advantage of the BEM are even more
obvious since any remeshing process is fairly simple to
achieve. Additionally when dealing with boundless regions
under dynamic loading the radiation conditions at infinity
are automatically satisfied, so only the internal boundaries
need to be discretized. This fact has led to the publication
of several BE approaches for the analysis of cracks in pie-
zoelectric solids in the last few years. However, few papers
on BE formulations for dynamic fracture of piezoelectric
solids have been published. The main difficulties in the field
are related to derivation and integration of fundamental
solutions. Previous works by Pan [13] reported a single
domain BEM formulation for 2-D static crack problems.
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He computed the hypersingular integrals using a numerical
quadrature. A time-harmonic classical BEM formulation
has recently been presented and implemented for straight
line elements by Denda et al. [4]. Zhang and coworkers
[23–25] have presented BEM formulations to study crack
problems in the time domain subjected to both anti-plane
and in-plane loading.

In this paper we investigate the response of cracked 2-D
piezoelectric materials under time-harmonic dynamic load-
ing by means of a hypersingular BEM approach. The time-
harmonic fundamental solution obtained by Denda et al.
[4] is split into singular and regular parts, the singular
one coinciding with the static fundamental solution. In this
manner, only regular (frequency dependent) terms need to
be added to the static BEM formulation previously deve-
loped by Garcı́a-Sánchez et al. [8] in order to solve the
dynamic problem. The generality of this procedure permits
the use of general straight or curved quadratic boundary
elements. In particular, discontinuous quarter-point ele-
ments are used to capture the crack-tip behavior. Stress
(SIF) and electric displacement (EDIF) intensity factors
are computed directly from nodal values of the crack open-
ing displacements (COD) and the electric potential jump at
the quarter-point element.

As compared to Ref. [4], the present paper includes the
hypersingular and the mixed formulations for dynamic
crack piezoelectric problems. The procedure allows to
represent cracks by means of quadratic straight or curved
crack elements. Denda et al. [4] presented the basic classical
BEM formulation and its use was restricted to straight
elements to solve general eigenvalue problems.

Several numerical examples are presented to illustrate
the accuracy and robustness of the present approach. In
particular, kinked and curved crack geometries as well
as interaction between cracks subjected to mechanical in-
plane loading are presented for the first time. These
obtained results may be considered as benchmark results
for future research.

2. A frequency domain mixed BEM formulation for

dynamic fracture in piezoelectric materials

A mixed or dual BEM formulation for crack problem is
next presented. Pioneer dual BEM formulations were
developed by Chen, Aliabadi and co-workers [1,10,18] for
isotropic and anisotropic media.

The mixed BEM formulation presented herein is an
extension of the one previously developed by the authors
for anisotropic crack problems [9]. This may be easily
achieved provided that piezoelectric materials are always
anisotropic and their behavior can be formulated in an
elastic-like fashion, as in Barnett and Lothe [2], by using
a displacement vector extended with the electric potential
(u)

uI ¼
ui I ¼ 1; 2;

u I ¼ 3

�
ð1Þ
and a stress tensor extended with the electric displacement
components (Di)

riJ ¼
rij J ¼ 1; 2;

Di J ¼ 3:

�
ð2Þ

These extended stresses will have an associated tractions
vector extended with the normal electric displacement (D)

pI ¼
pi ¼

X2

j¼1

rijnj I ¼ 1; 2;

D ¼
X2

j¼1

Djnj I ¼ 3:

8>>>>><>>>>>:
ð3Þ

The constitutive relations may be written as

riJ ¼ CiJLmuL;m; ð4Þ
where the lowercase (elastic) and uppercase (extended)
subscripts take values 1, 2 and 1, 2, 3; respectively.

In Eq. (4) the behavior matrix, CiJKl, contains the elastic
moduli Cijkl, the piezoelectric coefficients, eijk and the
dielectric constants, eij; according to the following
expression

CiJKl ¼

Cijkl J ;K ¼ 1; 2;

elij J ¼ 1; 2; K ¼ 3;

eikl J ¼ 3; K ¼ 1; 2;

�eil J ;K ¼ 3:

8>>><>>>: ð5Þ

The mixed formulation of the BEM for Fracture Mechan-
ics applications makes use of both the extended displace-
ment and the traction integral representations. The 2-D
displacement integral representation for a collocation point
n in an piezoelectric domain X with boundary C can be
written for time-harmonic loading as

cIJ ðnÞuJ ðn;xÞ þ
Z

C
p�IJ ðx; n;xÞuJ ðx;xÞdCðxÞ

¼
Z

C
u�IJ ðx; n;xÞpJ ðx;xÞdCðxÞ; ð6Þ

where I,J = 1,2,3; x is an observation point on the bound-
ary C; x is the angular frequency of excitation; u�IJ and p�IJ
are the fundamental solution displacements and tractions,
respectively; and cIJ(n) is the so-called free term that results
from the Cauchy principal value (CPV) integration of the
strongly singular p�IJ kernels.

The 2-D hypersingular traction integral representation
for the same source point n can be obtained by differentia-
tion of Eq. (6) with respect to nk and the subsequent appli-
cation of Hooke’s law, to yield

cIJ ðnÞpJ ðn;xÞ þ Nr

Z
C

s�rIJ ðx; n;xÞuJ ðx;xÞdCðxÞ

¼ Nr

Z
C

d�rIJ ðx; n;xÞpJ ðx;xÞdCðxÞ; ð7Þ

where r = 1,2 and N denotes the outward unit normal to
the boundary at the source point.
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The kernels s�rIJ and d�rIJ are, therefore, obtained by dif-
ferentiation of p�IJ and u�IJ , respectively, with the following
expressions

d�rIJ ¼ CrIMlu�MJ ;l; ð8Þ
s�rIJ ¼ CrIMlp�MJ ;l: ð9Þ

Let C = CC [ Ccrack, Ccrack = C+ [ C� being the two geo-
metrically coincident crack lines and CC denoting the rest
of the (crack free) boundary. To solve crack problems,
the traction boundary integral equation (BIE) will be ap-
plied on either side of the crack, say C+, and the displace-
ment BIE on CC to yield a complete set of equations to
compute the extended displacements and tractions on CC

and the extended crack opening displacements (ECOD)
on Ccrack

cIJ uJ þ
Z

CC

p�IJ uJ dCþ
Z

Cþ

p�IJDuJ dC ¼
Z

CC

u�IJ pJ dC; ð10Þ

pI þ Nr

Z
CC

s�rIJ uJ dCþ Nr

Z
Cþ

s�rIJDuJ dC ¼ N r

Z
CC

d�rIJ pJ dC;

ð11Þ

where the independent variables have been omitted for the
sake of clarity.

Note that in Eq. (11) the free term has been set to 1
because of the additional singularity arising from the co-
incidence of the two crack surfaces.

To write Eqs. (10) and (11) the cracks considered are
free of tractions or self-equilibrated from the mechanical
point of view, and subjected to impermeable conditions
from the electrical point of view, so that

Dp ¼ pþK þ p�K ¼ 0; ð12Þ
where the superscripts + and � stand for the upper and
lower crack surfaces, respectively.

Computation of the traction BIE requires C1 continuity
of the displacements. As in previous works [6–9] discontin-
uous quadratic elements with the two extreme collocation
nodes shifted towards the element interior are used to mesh
the cracks. The asymptotic ECOD behavior near the tip of
the crack is captured by means of discontinuous quarter-
point elements (see Fig. 1). Semidiscontinuous elements
are used on the external boundaries when intersection with
a crack occurs. For the rest of the boundaries, continuous
quadratic elements are employed. A complete justification
of the discretization procedure may be found in [7,8].
Fig. 1. Discontinuous quarter point element (for f1 = �0.75 and f2 =
+0.75).
3. Fundamental solutions

Green’s functions for 2-D piezoelectric elastic media
under time-harmonic loading have been obtained by
Denda et al. [4], based on the Radon transform. They
follow a similar procedure to that proposed by Wang
and Achenbach [22] for anisotropic solids.

The fundamental solution displacements are then given
in the form of a contour integral over a unit circumference
as

u�IJ ðx; n;xÞ ¼
1

8p2

Z
jgj¼1

X2

m¼1

Em
IJ ðgÞ

qc2
mðgÞ

Wðkmjg � ðx� nÞjÞdSðgÞ;

ð13Þ
where g = (g1,g2) is a unit vector describing the position on
the unit circumference; cm are the phase velocities; km = x/
cm are the wave numbers; q is the density of the material
and

Em
IJ ðgÞ ¼

Em
ijðgÞ=Em

kkðgÞ I ; J ¼ 1; 2

�
Em

iqðgÞCq3ðgÞ
C33ðgÞEm

kkðgÞ
I ¼ 1; 2; J ¼ 3

Em
pqðgÞC3pðgÞCq3ðgÞ

C2
33ðgÞEm

kkðgÞ
I ¼ J ¼ 3 ðSum on kÞ

8>>>>><>>>>>:
ð14Þ

where CIJ is the Christoffel matrix defined as

CIJ ðgÞ ¼ CrIJsgrgs ð15Þ
and Em

jkðgÞ is given by

Em
jkðgÞ ¼ adjðbCjkðgÞ � djkkmðgÞÞ; ð16Þ

where bCij is the reduced Christoffel matrix

bC ijðgÞ ¼ CijðgÞ �
Ci3ðgÞC3jðgÞ

C33ðgÞ
ð17Þ

and km(g) are the eigenvalues of bCij.
The W(s) function in Eq. (13) is defined as

WðsÞ ¼ ip expðisÞ � 2½cosðsÞciðsÞ þ sinðsÞ siðsÞ�; ð18Þ
ci(s) and si(s) being the cosine and sine integrals

ciðsÞ ¼ �
Z 1

s

cosðtÞ
t

dt ¼ cþ
Z s

0

cosðtÞ � 1

t
dt þ lnðsÞ;

ð19Þ
siðsÞ ¼ �

Z 1

s

sinðtÞ
t

dt: ð20Þ

Green’s functions in Eq. (13) may be decomposed into the
sum of singular plus regular terms as shown in [4]

u�IJ ðx; n;xÞ ¼ u�SIJ ðx; nÞ þ u�RIJ ðx; n;xÞ: ð21Þ
The singular part is frequency independent and it coincides
with the piezoelectric elastostatic Green’s functions

u�SIJ ðx; nÞ ¼
�1

4p2

Z
jgj¼1

X2

m¼1

Em
IJ ðgÞ

qc2
mðgÞ

log jg � ðx� nÞjdSðgÞ;

ð22Þ
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whilst the regular part is frequency dependent

u�RIJ ðx;n;xÞ ¼
1

8p2

Z
jgj¼1

X2

m¼1

Em
IJ ðgÞ

qc2
mðgÞ

WRðkm; jg � ðx� nÞjÞdSðgÞ;

ð23Þ
where

WRðkm; jg � ðx� nÞjÞ ¼ Wðkmjg � ðx� nÞjÞ þ 2 log jg � ðx� nÞj:
ð24Þ

The corresponding fundamental solution tractions are
obtained for the regular part as

p�RIJ ðx; n;xÞ ¼ CmJRlu�RIR;lðx; n;xÞnm

¼ 1

8p2

Z
jgj¼1

X2

m¼1

Em
IRðgÞ

qc2
mðgÞ

CJRkmw

� ðkmjg � ðx� nÞjÞsign½g � ðx� nÞ�dSðgÞ;
ð25Þ

where

CJR ¼ CmJRlnmgl ð26Þ

and

wðkmjg � ðx� nÞjÞ ¼ oWRðkm; jg � ðx� nÞjÞ
oxl

; ð27Þ

so that

wðsÞ ¼ �p expðisÞ � 2½cosðsÞ siðsÞ � sinðsÞciðsÞ�: ð28Þ
For the sake of simplicity and numerical efficiency the
explicit static piezoelectric fundamental solution obtained
using the complex variable solution approach, as in
Garcı́a-Sánchez et al. [8], will be considered

u�SIJ ðx; nÞ ¼ �
1

p
Re

X3

M¼1

AJM HMI ln zx
M � zn

M

� �( )
; ð29Þ

where zn and zx are, respectively, the source and the ob-
servation point defined on the complex plane from their
coordinates on the real plane as

zn
M ¼ n1 þ lMn2; zx

M ¼ x1 þ lM x2; M ¼ 1; 2; 3; ð30Þ
lM being the roots of the following characteristic equation

jC1IJ1 þ ðC1IJ2 þ C2IJ1ÞlM þ C2IJ2l
2
M j ¼ 0: ð31Þ

The roots of (31) are either complex or purely imaginary
and always occur in conjugate pairs [2]. For each of these
characteristic roots lM, the columns of the A matrix are
obtained from

½C1IJ1 þ ðC1IJ2 þ C2IJ1ÞlM þ C2IJ2l
2
M �AJM ¼ 0

ðno sum on MÞ ð32Þ

and the matrix H is obtained from

H ¼ A�1ðB�1 þ B�1Þ�1 with B ¼ iAL�1; ð33Þ

where the components of the L matrix are given by
LIM ¼
X3

R¼1

½C2IR1 þ C2IR2lM �ARM

¼ � 1

lM

X3

R¼1

½C1IR1 þ C1IR2lM �ARM

ðno sum on MÞ: ð34Þ
From Eq. (29) follow the static fundamental solution
tractions as

p�SIJ ðx; nÞ ¼ �
CrJKn

p
Re

X3

M¼1

AKM H MI

zx
M ;n

zx
M � zn

M

( )
nr; ð35Þ

where

zx
M ;n ¼

ozx
M

oxn
¼ d1n þ lMd2n; n ¼ 1; 2; M ¼ 1; 2; 3: ð36Þ

Using the expression (34), Eq. (35) may be rewritten as

p�Sij ðx; nÞ ¼
1

p
Re

X2

m¼1

LjmH mi
lmn1 � n2

zx
m � zn

m

( )
: ð37Þ

The roots lM and the matrices A and L may be computed
alternatively by solving the following eigenvalue problem [2]

N#a ¼ la#a; ð38Þ
where

N ¼ �C�1
2IJ2C2JI1 �C�1

2IJ2

�C1IJ2C�1
2IJ2C2JI1 þ C1IJ1 �C1IJ2C�1

2IJ2

 !
ð39Þ

and

#a ¼
Aa

Ba

� �
: ð40Þ

The elastostatic Green’s functions defined in Eqs. (22) and
(29) only differ by the constant terms ,IJ (see Ref. [4] for
details)

,IJ ¼
1

p
Re

X3

M¼1

AJM HMI lnði� lMÞ
( )

; ði ¼
ffiffiffiffiffiffiffi
�1
p

Þ: ð41Þ

These constants are inessential for the elastostatic BEM
formulation [4], but they are required for the time-har-
monic BEM.

The derivatives of the fundamental solution displace-
ments at the collocation point are evaluated from

u�SMJ ;lðx; nÞ ¼
ou�SMJ ðx; nÞ

onl
¼ 1

p
Re

X3

R¼1

AJRH RM

zn
R;l

zx
R � zn

R

( )
ð42Þ

for the displacements singular part and

u�RMJ ;lðx; n;xÞ ¼ �
1

8p2

Z
jgj¼1

X2

q¼1

Eq
MJ ðgÞ

qc2
qðgÞ

kqglw

� ðkqjg � ðx� nÞjÞsignðg � ðx� nÞÞdSðgÞ
ð43Þ

for the displacements regular part.
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Similarly, the derivatives of the fundamental solution
tractions at the collocation point are obtained as

p�SMJ ;lðx; nÞ ¼
1

p
Re

X3

R¼1

LJRH RM
lRn1 � n2

ðzx
R � zn

RÞ
2

zn
R;l

( )
ð44Þ

for the singular part of the solution and as

p�RMJ ;lðx; n;xÞ ¼
1

8p2

Z
jgj¼1

X2

q¼1

Eq
MRðgÞ

qc2
qðgÞ

CJRk2
qglW

� ðkqjg � ðx� nÞjÞdSðgÞ ð45Þ

for the regular part, where W(s) has been previously defined
in Eq. (18).
4. Integration scheme and implementation

To compute the integrals of the fundamental solution
singular part, the same kind of singular and hypersingular
integrations that arise in the elastostatic mixed BEM
formulation for piezoelectrics need to be solved. We here
follow the regularization procedure developed by Garcı́a-
Sánchez et al. [8] for static crack analysis. Therefore, all
the singular and hypersingular integrals are transformed
into regular integrals and simple singular integrals with
known analytical solution. A brief description of this
procedure is given in the appendix for completeness.

Once the static problem has been dealt with, only regu-
lar (frequency dependent) terms need to be added to the
static BEM formulation in order to solve the dynamic
problem. The computation of the integrals associated to
the regular part involve a double numerical integration:
first along the unit circumference jgj = 1 and then over
the boundary element. In the case of the s*R-kernels terms
in (11), the integration is done numerically with a logarith-
mic quadrature that accounts for the weak singularity
shown by the tractions derivatives. Alternatively, in Denda
et al. [4], straight elements are considered for the displace-
ment BIE, and the order of integration is exchanged
provided that the dynamic terms are regular. Then, the
integration over the boundary element is done analytically,
leaving only the line integral over the unit circumference
for numerical evaluation.

The generality of the present approach permits the use
of general straight or curved quadratic boundary elements.
In particular, discontinuous quarter-point elements are
used to capture the

ffiffi
r
p

displacement behavior near the
crack tips, r being the distance to the tip [12,19,21].

For fracture applications, the SIF and EDIF need to be
computed. To do so, only the leading terms of the extended
displacement field around the tip need to be considered in
the crack tip vicinity. The following relation between the
crack opening displacements and the electrical potential
jumps across the crack, and the SIF and EDIF, respec-
tively, holds
KII

KI

KIV

0B@
1CA ¼ ffiffiffiffiffi

p
8�r

r
Q�1

Du1

Du2

Du

0B@
1CA; ð46Þ

�r being the distance between the crack tip and the point
where Du1, Du2 and Du are evaluated and

Q ¼ ReðBÞ; ð47Þ
where B has been previously defined in Eq. (33).

The performance of the straight discontinuous quarter-
point element used in the present work (Fig. 1) has been
widely tested in preceding works [15,6,8,9] for both static
and dynamic applications in isotropic and anisotropic
materials. It has a collocation point very close to the crack
tip, so that direct substitution of the nodal values of the
ECOD at this point (�r ¼ l=64, l being the quarter-point ele-
ment length) into Eq. (46) provides an accurate and robust
procedure to determine the intensity factors with little mesh
dependence.

5. Numerical examples

Scattering of time-harmonic waves impinging on cracks
embedded in different infinite plane piezoelectric media are
analysed in this section.

To validate the proposed approach a straight crack is
first considered and the obtained results are favorably com-
pared with the semi-analytical solution given by Shindo
and Ozawa [16] and Shindo et al. [17].

Once the method is validated, results for branched
cracks, curved cracks and interaction between parallel
and collinear cracks are presented for the first time in the
literature.

5.1. Incident time-harmonic waves

The analysis of wave scattering by cracks in infinite
media is done by superposition of two problems. One,
the incident field in the uncracked domain, and the other,
the cracked domain loaded on the crack faces by tractions
equal and opposite to those appearing in the uncracked
domain along the crack line. Since there are not infinite val-
ues of the stress in the uncracked plane, the SIF and EDIF
in the original diffraction problem are the same as in the
second problem (scattered field).

The piezoelectric plane solids considered for all the fol-
lowing examples show a poling axis that coincides with the
x2 axis, so that the matrix that governs their constitutive
law has the form

C11 C12 0 0 e21

C12 C22 0 0 e22

0 0 C66 e16 0

0 0 e16 �e11 0

e21 e22 0 0 �e22

0BBBBBBBB@

1CCCCCCCCA
: ð48Þ



Table 1
Properties of materials considered in the examples

C11 C22 C66 C12 e21 e22 e16 e11 e22

PZT-4 139 74.3 113 25.6 �6.98 13.84 13.44 6 5.47
PZT-5H 126 117 23 84.1 �6.5 23.3 17.0 15.04 13
PZT-6B 168 163 27.1 60 �0.9 7.1 4.6 3.6 3.4
BaTiO3 150 146 44 66 �4.35 17.5 11.4 9.87 11.2

Units: Cij (MPa), eij (C/m2), �ij (C/(GV m)).
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Both P and SV incident waves are considered:

5.1.1. Incident P-wave

The incident wave motion is characterized by the follow-
ing extended displacement components

u1 ¼ 0; u2 ¼ û2 exp½ixðx2=cp þ tÞ�;
u ¼ û exp½ixðx2=cp þ tÞ� ð49Þ

with associated extended stress tensor components given by

r11 ¼ ix=cpðC12û2 þ e21ûÞ exp½ixðx2=cpÞ�;
r22 ¼ ix=cpðC22û2 þ e22ûÞ exp½ixðx2=cpÞ�;
r12 ¼ 0;

D11 ¼ 0;

D22 ¼ ix=cpðe22û2 � e22ûÞ exp½ixðx2=cpÞ�:

ð50Þ

The extended tractions for a surface with outer normal
components n1, n2 will be given as

p1 ¼
e22C12 þ e12e22

e22C22 þ e2
22

n1r0 exp½ixðx2=cpÞ�;

p2 ¼ n2r0 exp½ixðx2=cpÞ�;
Dn ¼ 0:

ð51Þ
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Fig. 2. Normalized KI versus dimensionless frequency. Straight crack,
P-wave impinging normally.
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Fig. 3. Normalized KIV versus dimensionless frequency. Straight crack,
P-wave impinging normally.
5.1.2. Incident SV-wave

For this case, the extended displacements are

u1 ¼ û1 exp½ixðx2=cs þ tÞ�; u2 ¼ 0; u ¼ 0 ð52Þ
with extended stress tensor components

r11 ¼ 0;

r22 ¼ 0;

r12 ¼ s0 exp½ixðx2=csÞ�;

D11 ¼ s0
e16

C66

exp½ixðx2=csÞ�;

D22 ¼ 0

ð53Þ

and an extended tractions vector

p1 ¼ n2s0 exp½ixðx2=csÞ�;
p2 ¼ n1s0 exp½ixðx2=csÞ�;

Dn ¼
e16

C66

n1s0 exp½ixðx2=csÞ�:
ð54Þ

In Eqs. (49)–(54), the symbol ‘‘̂ ’’ stands for the amplitude
of a magnitude, cp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC22 þ e2

22=e22Þ=q
p

, cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C66=q

p
,

q being the density of the material, r0 ¼ ixû2ðC22þ
e2

22=e22Þ=cp and s0 = ixû1/cs.

5.2. Straight crack

First the problem of a crack normal to the poling axis
has been analysed when the incident motion is a P-wave
traveling along this axis. Plane strain conditions are
assumed. Three different piezoelectric materials have been
considered: PZT–6B, PZT–5H and BaTiO3, whose pro-
perties are given in Table 1.
The BE mesh consists of 10 elements with lengths
decreasing uniformly towards the crack tips, so that the
length-ratio between the central and crack tip elements is
two. This same mesh is used for the rest of the examples
involving straight cracks.



 PZT-6B
 BaTiO
 PZT-5H

t (C66 /   )
1/2/ aρ

Fig. 6. Normalized KIV versus dimensionless time. Straight crack under
impact load.
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Fig. 2 shows the obtained normalized SIF for mode I
versus the dimensionless frequency xa/cs, together with
the previous results presented for PZT–6B, by Shindo
and Ozawa [16] by means of a semi-analytical method. In
Fig. 3 the normalized EDIF is plotted versus the dimen-
sionless frequency.

Next, the FFT is used to obtain results for the transitory
response of the straight crack to an impact load applied
normally to the crack (see Fig. 4). The results for mode I
SIF versus time are compared with the ones published by
Shindo et al. [17] in Fig. 5. Due to the problem symmetries
mode II SIF is null. Fig. 6 shows the results for the transi-
tory EDIF.

In all the cases good agreement with Shindo et al. [16,17]
solutions is observed. Results in Fig. 2 show a difference
below 2% for the peak value of the SIF. Results in Fig. 5
show slightly larger differences between both sets of solu-
tions for the time where the peak values of the SIF are
reached. The discontinuity in the slope shown by the
BEM results is of the same type of that obtained by analyt-
ical procedures for elastic crack problems [5], and it is a
consequence of the arrival of the Rayleigh waves diffracted
by the other tip.
Fig. 4. Straight crack under impact load.
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Fig. 5. Normalized KI versus dimensionless time. Straight crack under
impact load.
5.3. Parallel cracks

In the following example the problem of two parallel
cracks of equal length under normal impinging P-waves
is considered (see Fig. 7). The cracks are oriented
Fig. 7. Parallel cracks under P-wave impinging normally.
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Fig. 8. Normalized KI at upper crack versus dimensionless frequency.
Parallel cracks under normal P-wave.
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perpendicular to the poling axis of the piezoelectric PZT–
5H material. Results are presented for different separation
between cracks. Plain stress conditions are assumed.

For the sake of brevity only results for the upper crack
are shown. Results for the lower crack can be found in Ref.
[7]. The results for the case of an isolated straight crack
have been included in the graphics as a reference to illus-
trate the effect of the second crack on the SIF and EDIF
behavior.

Fig. 8 shows the normalized SIF for mode I versus the
dimensionless frequency xa/cs. As it could be expected
the peak values are higher as the distance between the
cracks decreases. Such peak values are obtained for values
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Fig. 9. Normalized KII at upper crack versus dimensionless frequency.
Parallel cracks under normal P-wave.
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Fig. 10. Normalized KIV at upper crack versus dimensionless frequency.
Parallel cracks under normal P-wave.
of the dimensionless frequency around 1, and are above the
peak value observed for an isolated crack.

Fig. 9 illustrates the appearance of mode II SIF as a
consequence of the existence of a second crack, with sig-
nificant peak values as the distance between the cracks
decreases.

Fig. 10 shows the normalized EDIF plotted versus the
dimensionless frequency.

5.4. Collinear cracks

Next, the case of two equal length collinear straight
cracks is analysed. The cracks are located normally to the
poling axis of the PZT–5H material and are subjected to
an incident P-wave impinging normally onto the cracks
(Fig. 11). Once more, results are obtained for different
values of the separation between cracks.

In Figs. 12 and 13 mode I SIF and EDIF are plotted,
respectively, versus frequency. The interaction between
cracks is far less significant than for the previous example.
In particular there is not mode II SIF, as for the isolated
crack case. The results shown correspond to the external
tip of the cracks. Results for the internal tips may be found
in Ref. [7].
Fig. 11. Collinear cracks under normal P-wave.
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Fig. 12. Normalized KI at outer tip versus dimensionless frequency.
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Fig. 14. Branched cracks under SV-wave impinging normally onto the
mother crack.
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Fig. 15. Normalized KI at branch tip versus dimensionless frequency for
different branch angles. Branched crack under normal SV-wave.

A. Sáez et al. / Comput. Methods Appl. Mech. Engrg. 196 (2006) 235–246 243
5.5. Branched crack

A mother–daughter crack problem subjected to a SV-
wave impinging normally onto the mother crack, is ana-
lysed next (Fig. 14). The piezoelectric material considered
is a PZT-4. Both branches form an angle b between them,
so that for positive b angles the branch tip is reached by
the incident wave before the main crack. Results for an
incident P-wave can be consulted in Ref. [7].

The BE mesh consists of ten elements with decreasing
size to the crack tips for the main crack and five elements
for the crack branch with increasing size to the mid-length
of the branch.
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Fig. 16. Normalized KII at branch tip versus dimensionless frequency for
different branch angles. Branched crack under normal SV-wave.
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244 A. Sáez et al. / Comput. Methods Appl. Mech. Engrg. 196 (2006) 235–246
Fig. 15 illustrates how the mode I SIF KI increases with
the angle between branches. Nevertheless this tendency
inverts for large angles, as it can be observed for b = 75�.
The main difference between the results obtained for posi-
tive and negative values of b is found after the first peak
value, given rise to a substantially larger decrease for posi-
tive than for negative b angles.

Results for mode II SIF are plotted in Fig. 16. The
greater values correspond now to smaller branch angles,
as it could be expected. In this case, the influence of the
angle sign is significantly more important for the larger
angles.

Results obtained for the EDIF are shown in Fig. 17.
Such values increase with the angle between branches for
the whole range analysed. This intensity factor is less sensi-
tive to the frequency than KI and KII.
Fig. 18. Circular arch crack under SV-wave impinging normally to the
chord.
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Fig. 19. Normalized KI versus dimensionless frequency. Circular arch
crack defined by the semiangle a under a SV-wave impinging normally to
the chord.
5.6. Curved crack

Finally, a circular arch crack in a PZT–4 subjected to an
incident SV-wave impinging along the material poling axis,
and normally to the arch chord, is considered. The arch
shape is defined by the semi-angle a (see Fig. 18).

The crack is discretized into 10 elements. The ones at the
tips are very small (arch length/30) quarter-point straight
elements whilst the rest are curved quadratic discontinuous
boundary elements.

The results presented are the mode I and II SIF (Figs. 19
and 20) and the EDIF (Fig. 21) versus frequency for several
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Fig. 20. Normalized KII versus dimensionless frequency. Circular arch
crack defined by the semiangle a under a SV-wave impinging normally to
the chord.
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Fig. 22. Differential boundary element and outward normal at collocation
point.
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values of the arch angle a. Results for an isolated straight
crack have been included in the figures to illustrate the
effect of crack curvature.

The case of an incident P-wave as well as some other
additional results involving different geometries and loads
may be found in [7].

6. Conclusions

A mixed BEM approach for the solution of time-har-
monic two-dimensional fracture problems in piezoelectric
solids has been presented. The time-harmonic Green’s func-
tions derived by Denda et al. [4] are divided into singular
static plus regular frequency dependent parts. In this way
the singular and hypersingular integrals that arise from
the singular part of the fundamental solution can be dealt
with as in the elastostatic case [8]. Subsequently the regular
part is added up in order to solve the dynamic problem.

This method requires no numerical integration of
strongly singular nor hypersingular integrals thanks to an
easy-to-implement regularization procedure. This allows
for an accurate evaluation of the SIF and EDIF for any
crack geometry with rather coarse meshes, provided that
discontinuous quarter-point elements are adopted to
model the

ffiffi
r
p

displacement behavior near the crack tips.
The accuracy and robustness of the present BEM

approach has been demonstrated by comparison of the
obtained results with some published solutions for a
straight crack. Several other examples including kinked
and curved crack geometries as well as interaction between
cracks have been presented for the first time.
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Appendix A. Regularization of singular and hypersingular

integrals

For the sake of completeness, a brief description of
the integration procedure developed by the authors [8]
for static piezoelectricity in next given.

After discretization of the boundaries and the field vari-
ables, integrals of the p*-kernels lead to basic singular inte-
grals of order O½1=ðzx

R � zn
RÞ� when the source point belongs

to the integration element Ce as

Ip ¼
Z

Ce

lRn1 � n2

zx
R � zn

R

/q dC ðno sum on RÞ; ðA:1Þ

where /q are the boundary element shape functions.
Similarly, integrals of the d*-kernels lead to basic singu-

lar integrals of order O½1=ðzx
R � zn

RÞ� as

Id ¼
Z

Ce

lRN 1 � N 2

zx
R � zn

R

/q dC ðno sum on RÞ; ðA:2Þ
whilst integrals of the s*-kernels lead to basic hypersingular
integrals of order O½1=ðzx

R � zn
RÞ

2� as

Is ¼
Z

Ce

lRn1 � n2

ðzx
R � zn

RÞ
2
/q dC: ðA:3Þ

Considering the change of variables

vR ¼ zR � zn
R ¼ ðx1 � n1Þ þ lRðx2 � n2Þ; ðA:4Þ

it follows that the jacobian of the transformation that maps
the boundary onto the complex plane has the expression
(see Fig. 22)

dvR

dC
¼ dvR

dx1

dx1

dC
þ dvR

dx2

dx2

dC
¼ �n2 þ lRn1: ðA:5Þ

Taking into account Eqs. (A.4) and (A.5), Ip can be trans-
formed to yield

Ip ¼
Z

Ce

1

vR
/q dvR

¼
Z

Ce

1

vR
ð/� 1ÞdvR þ

Z
Ce

1

vR
dvR; ðA:6Þ

where the first integral is regular and can be computed
using a standard Gauss quadrature while the second one
has a well known analytical solution.

Similarly, Id can be transformed to yield

Id ¼
Z

Ce

ðlRN 1 � N 2 � dvR=dCÞ
vR

/q dC

¼
Z

Ce

ðlRN 1 � N 2 � dvR=dCÞ
vR

/q dC

þ
Z

Ce

1

vR
/q dvR; ðA:7Þ

where the first of the integrals is regular since dvR/
dC! (lRN1 � N2) as x! n. The second integral coincides
with Ip and its computation has been described before.

Finally, Is can be transformed with the help of Eqs.
(A.4) and (A.5) as

Is ¼
Z

Ce

1

v2
R

/dvR: ðA:8Þ

This integral is regularized by means of the Taylor series
expansion of the shape function, /q, considered as a func-
tion of the complex vR variable, i.e.,
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/ðvR � 0Þ ¼ /ðvR ¼ 0Þ þ d/
dvR

����
vR¼0

vR þOðv2
RÞ

¼ /0 þ /00vR þOðv2
RÞ ðA:9Þ

to yield

Is ¼
Z

Ce

1

v2
R

ð/� ð/0 þ /00vRÞÞdvR

¼
Z

Ce

/� ð/0 þ /00vRÞ
v2

R

dvR

þ /0

Z
Ce

1

v2
R

dvR þ /00

Z
Ce

1

vR
dvR; ðA:10Þ

where the first integral is regular and the rest of integrals
are singular and hypersingular, respectively, but having
well known analytical solutions.
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