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Abstract The solution of a Dirichlet boundary value prob-
lem of plane isotropic elasticity by the boundary integral
equation (BIE) of the first kind obtained from the Somigliana
identity is considered. The logarithmic function appearing
in the integral kernel leads to the possibility of this operator
being non-invertible, the solution of the BIE either being non-
unique or not existing. Such a situation occurs if the size of
the boundary coincides with the so-called critical (or degen-
erate) scale for a certain form of the fundamental solution
used. Techniques for the evaluation of these critical scales
and for the removal of the non-uniqueness appearing in the
problems with critical scales solved by the BIE of the first
kind are proposed and analysed, and some recommendations
for BEM code programmers based on the analysis presented
are given.

Keywords Boundary integral equation of the first kind ·
Critical scale · Symmetric Galerkin boundary element
method · Plane elasticity

1 Introduction

The direct Boundary Element Method (BEM), when applied
to a Dirichlet Boundary Value Problem (DBVP) of plane
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isotropic elasticity (with prescribed boundary displacements),
usually leads to the solution of the Boundary Integral Equa-
tion (BIE) of the first kind obtained from the Somigliana
displacement identity. The integral kernel of the operator of
this BIE includes the logarithmic function. It is well known
that the logarithmic function present in the integral kernel
may cause the corresponding operator to be non-invertible,
the solution of the BIE either being non-unique or not exist-
ing. Although, the occurrence of the phenomenon is strictly
size dependent and arises only under very specific conditions,
it requires accounting for. The corresponding boundary sizes
are usually referred to as critical (or degenerate) scales. For
each domain with a bounded boundary there exist one or two
such scales, see Vodička and Mantič [15].

The phenomenon of critical scales can be avoided when
solving DBVPs using second-kind BIEs, e.g. by applying the
hypersingular BIE (the Somigliana traction identity) solved
by the direct BEM or the strongly-singular double-layer
potential BIE solved by the indirect BEM, see Vodička and
Mantič [16] and Linkov [10], respectively, for other refer-
ences and discussions of these approaches in the potential
theory and elasticity. However, the Galerkin discretizations
of these BIEs do not lead to symmetric linear systems, which
is the case of the present first-kind BIE. Moreover, error esti-
mates can be obtained more easily for the present symmet-
ric first-kind BIE, see Hsiao and Wendland [9], than in the
second-kind BIEs, in particular for non-smooth boundaries.

The above phenomenon appears not only in elasticity
problems, but also in other two-dimensional BVPs which
lead to BIEs with logarithmic kernels, e.g. those governed
by the Laplace or biharmonic equations, see [3,4,6]. For the
plane elasticity theory, the proof of the critical scale existence
was given by Constanda [5], introducing a 3 × 3 constant
matrix to identify the critical scales of a boundary. Recently,
the theory has been further developed by the authors [15]
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reducing the dimension of this matrix by one and determin-
ing its scaling properties, which made it possible to show
the existence of two single or one double critical scale for
any bounded boundary. Additionally an upper bound for the
size of the boundary which ensures the positivity and invert-
ibility of the single-layer operator has been determined. At
the same time, closely related results concerning the possi-
ble lack of positivity of the single-layer operator have been
obtained by Steinbach [13], where, in addition to positivity
dealt with in [15], a stronger property of the ellipticity of
the single-layer operator has been ensured for an appropriate
scaling of the fundamental solution.

Several approaches to the elimination of the non-trivial
null-space in the resulting linear system caused by the crit-
ical scale of the boundary have been presented in the past.
Simple re-scaling of the domain or an equivalent modifica-
tion of the fundamental solution represent the most often used
approaches in BEM. Nevertheless, there are also some other
theoretically well-based approaches for removing the non-
uniqueness from the solution of the single-layer potential
BIE, which may be solved by BEM, proposed in [2,8].

Two techniques, based on the Fredholm theory of integral
operators [2], for the removal of the non-uniqueness appear-
ing in the BVPs solved by the BIE of the first kind with
critical scales are discussed in the present work. For the sake
of brevity, the present paper relies highly upon the previous
results of the authors, published especially in [15] and [18],
some previous theoretical results being shown, tested and
explained through numerical solutions by BEM. Moreover,
propositions only mentioned in [15] are described here in
detail and proven.

First, starting from an analysis of the positiveness of the
integral operator of the first kind [15], this operator is aug-
mented as proposed in [6,7], yielding an invertible BIE sys-
tem. Following [6], this augmenting leads to a definition of
the operator BΓ defined on R

2, which represents a general-
ization of the Robin constant in the potential theory to plane
elasticity and permits an easy search for critical scales of a
boundary, see [15]. Moreover, some important properties of
this operator obtained from its tensor character are shown
here, together with a simple proof of the tensor character
itself. Note that the 2 × 2 matrix of the operator BΓ is in
fact the left-upper corner submatrix of the 3 × 3 matrix stud-
ied in [5] and is also represented by the matrix of Lagrange
multipliers introduced in [13].

Second, the nontrivial null-space of the original BIE oper-
ator is eliminated by adding an operator with a suitable degen-
erate kernel.

The Symmetric Galerkin Boundary Element Method
(SGBEM) [1] has been used for the numerical analysis of
DBVPs. A procedure for the evaluation of critical scales is
implemented and tested using two boundary shapes. The val-
ues of the critical scales are computed by using SGBEM

for the evaluation of the numerical approximations of the
corresponding operators BΓ . Examples of the matrices of
BΓ , associated to these boundary shapes, are presented, for
the first time to the authors’ knowledge. At the same time,
the numerical results obtained by both aforementioned tech-
niques for the non-uniqueness removal in the solution of the
DBVPs are presented and discussed. The differences in the
solution of the BIEs in their original or modified form are
discussed in order to give, thinking in particular of the pro-
grammers of BEM codes, ideas on how to treat the results
obtained.

2 BIE

The traction t = (t1, t2) solution of a DBVP with the dis-
placement boundary condition u = (u1, u2) = g prescribed
on the bounded Lipschitz boundary Γ of a domain Ω ⊂
R

2 can be computed by solving the BIE obtained from the
Somigliana displacement identity:

∫

Γ

Ui j (x, y)t j (y)dΓ (y)

= 1

2
gi (x) + −

∫

Γ

Ti j (x, y)g j (y)dΓ (y) =: g̃i (x), (1)

with i = 1, 2. The equation can be written in a matrix oper-
ator notation as

UΓ t = g̃. (2)

The integral kernel

Ui j (x, y) = Λ

(
κδi j ln

1

|x − y| + (xi − yi )(x j − y j )

|x − y|2
)

(3)

with

κ = 3 − 4ν, Λ = 1

8π G(1 − ν)
(4)

represents the symmetric tensor of a fundamental solution of
the Navier equation for the plane strain case, with G being
the elastic shear modulus, ν the Poisson ratio, and Ti j the ten-
sor of the pertinent tractions, defined using the unit normal
vector outward with respect to Ω . Note that ν for practical
materials lies in the interval

〈
0; 1

2

)
. In the standard numerical

solution the case of ν very close to 1
2 originates difficulties

as the operator UΓ loses its ordinary positivity property for
ν = 1

2 . DBVPs with ν very close to 1
2 should be studied

separately [12] and will not be considered in what follows.
The same BIE (1) is valid for both interior and exte-

rior DBVPs, where for the exterior DBVPs we assume the
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radiation condition:

ui (x) = Ui j (x, 0)b j + O(‖x‖−1),

b j =
∫

Γ

t j (y)dΓ (y), ‖x‖ → ∞. (5)

It should be noted that this solution may be different from
that known as a generalized regular solution, see [2], which
assumes zero integral of the traction along the boundary.

3 Prediction and analysis of critical scales

3.1 BΓ as a generalization of the Robin constant

In this section the results obtained in [15] will be resumed
and completed, see also [5–7,13]. The invertibility of the left-
hand side operator in (2) depends on the size and shape of the
boundary and on the fundamental solution considered. With
the present Ui j , if Γ is contained in the interior of a disk with
radius R = exp

( 1
2κ

)
, then UΓ is positive, hence invertible.

There exist one or two positive constants ρ, such that UρΓ

is not invertible, where ρΓ = {
ρx ∈ R

2| x ∈ Γ
}

naturally
violates the previous condition. Nevertheless, augmenting
the operator UΓ may lead to an invertible operator [6,7].
The system

UΓ t −
2∑

k=1

ωkµ
k = g̃,

∫

Γ

µk
i ti dΓ =

∫

Γ

tkdΓ = ξk,

µ1(x) =
{

1
0

}
, µ2(x) =

{
0
1

}
,

(6)

has for any g̃ and for each ξ a unique solution (t, ω). The func-
tions µk form a basis for the space of rigid body translations
in plane.

Thus, we can introduce a linear matrix operator BΓ :
R

2 → R
2 [6,15] which for a given ξ and the fixed g̃ = 0

finds the corresponding ω, i.e.

BΓ ξ = ω ⇔ UΓ t = ω1µ
1 + ω2µ

2 ∧
∫

Γ

tdΓ = ξ . (7)

The operator BΓ inherits the properties of invertibility, sym-
metry and positiveness of the operator UΓ , and the reciproc-
ity also holds. Therefore, the task of finding the critical scales
of the operator UρΓ is reduced to the investigation of these
properties for the operator BρΓ .

Considering ξ1 = µ1 and ξ2 = µ2 in the definition (7)
of the 2 × 2 constant symmetric matrix BΓ , it can be shown,
in view of the invertibility of the system (6), that there exists
a corresponding unique 2 × 2 matrix of the so-called natural
densities T (x) = (

τ 1(x), τ 2(x)
)

defined on Γ such that

UΓ T = BΓ . (8)

In this sense the matrix BΓ represents a generalization of
the Robin constant in the potential theory to plane elastic-
ity. Relation (8) also generalizes in some way a theorem by
Constanda [5] for Γ given by a single curve (Theorem 2
therein).

The key point in an analysis of the critical scales is to know
how the operators change with a domain scaling. The scal-
ing properties of the operator BΓ have been analysed in [15],
where also a relation between the real eigenvalues σ of the
symmetric operator BΓ and the critical scales ρ = ρc of the
operator UρΓ was deduced:

BρΓ = BΓ − Λκ ln ρ I ⇒ ρc = exp
( σ

Λκ

)
, (9)

I being the unit operator. If there is only one critical scale,
ρc, the null-space dimension of UρcΓ is two. Otherwise for
each particular ρc this dimension is one.

3.2 BΓ as a tensor

Another important property of the operator BΓ is its tensor
character, BΓ representing a second order tensor. The proof
of its transformation property between two orthogonal carte-
sian coordinate systems in R

2 is rather straightforward.
Let Q be the orthogonal matrix of the transformation from

the original coordinate system (x1, x2) to the transformed one
(x ′

1, x ′
2). Rewriting (7) for the new coordinate system,

B′
Γ ξ ′ = ω′ ⇔ U′

Γ t′ = ω′
1µ

′1 + ω′
2µ

′2 ∧
∫

Γ

t′dΓ = ξ ′,

(10)

introduces the transformed vector t′, operator B′
Γ and rigid

body translation µ′. The tensor character of tractions and dis-
placements makes valid the following relations, transforming
the quantities to the original coordinate system:

t′ = Qt, U′
Γ t′ = Q (UΓ t) . (11)

Substituting these relations into (10), we have

QUΓ t = ω′
1µ

′1 + ω′
2µ

′2 ∧ Q
∫

Γ

tdΓ = ξ ′, (12)

and realizing that the rigid body translations are the same in
both coordinate systems, i.e. µi (x) = µ′i (x ′) renders

UΓ t = QT
(
ω′

1µ
1 + ω′

2µ
2
)

∧
∫

Γ

tdΓ = QT ξ ′. (13)

Then, definition of BΓ in (7) can be used to find the trans-
formation rule for B′

Γ :

BΓ QT ξ ′ = QT ω′ ⇒ B′
Γ = QBΓ QT . (14)

The tensor character of BΓ expressed by (14)2, together
with its natural invariance with respect to a translation

123



820 Comput Mech (2008) 41:817–826

tranformation of Γ , helps to understand its form for a bound-
ary Γ with a non-trivial symmetry transformation group.

Consider, first, a boundary with a reflection symmetry.
Let the x1-axis of the coordinate system be the symmetry
axis of Γ . Then, the reflection transformation given by the

matrix Q1 =
(

1 0
0 −1

)
transforms Γ to itself. Therefore for

the matrix of the operator BΓ we have

(
b11 b12

b12 b22

)
= BΓ = B′

Γ = Q1BΓ QT
1 ⇒ b12 = 0, (15)

this matrix being thus diagonal. It should be noted that this
diagonal form is maintained also in the case where only the
outer contour of a bounded domain with holes has a reflection
symmetry. The reason for this is that BΓ does not depend on
the number, shape and position of holes in a bounded domain,
as has been shown in [15].

Second, if the symmetry transformation group includes a
rotation by an angle α different from kπ (k being an integer),
then the matrix of the operator BΓ is up to a multiplicative
constant a unit matrix. In this case there exists only one dou-
ble critical scale as mentioned above. Actually, in this case
we can rotate the coordinate system, without a change of BΓ

by the angle α, the matrix of the corresponding transforma-

tion being Qα =
(

cos α sin α

− sin α cos α

)
. Analogously to (15) the

following relation can be obtained:

BΓ = B′
Γ = QαBΓ QT

α ,

(
b11 b12

b12 b22

)
=

(
cos α sin α

− sin α cos α

)(
b11 b12

b12 b22

)(
cos α − sin α

sin α cos α

)
.

(16)

The solution of this matrix equation leads to the two follow-
ing conditions, which render the desired form of BΓ :

(b11 − b22) sin2 α = 2b12 sin α cos α

−(b11 − b22) sin α cos α = 2b12 sin2 α

}
α 
=kπ⇒

⇒ b12 = 0 ∧ b11 = b22.

(17)

This simple character of BΓ is obtained for a bounded domain
with holes also in the case where only the outer contour has
the above symmetry property.

Notice, that a natural consequence of the above studied
properties of BΓ is that its real eigenvalues σ , and subse-
quently also the critical scales ρc associated to Γ through
(9), are invariant with respect to a translation and an orthog-
onal transformation (reflection or rotation) of Γ .

4 Solutions of the modified BIEs

When solving DBVPs by (1) it is necessary to eliminate
unwanted solutions if Γ has a critical size. Two distinct
approaches based on the theory of Fredholm operators
(see [2]) will be discussed.

The first approach uses the augmented system (6), which
has a unique solution for any given data. Unfortunately, if ω

is not equal zero, the found traction field t is not the solution
of the original DBVP.

The idea of the second approach to modify (1) is to pre-
scribe an equation in the form of the Somigliana identity at
a point x0 lying in the exterior to the outermost contour of Γ

and to impose a vanishing displacement at such a point.
Let us discuss the interior DBVP first. As the integral of

the tractions t along the whole boundary always vanishes, the
solution of (6) with ξ = 0 gives the solution of the interior
DBVP, which is also a solution of (2), having vanishing ω,
independently of the size of Γ .

If the solution of (2) is not unique due to a critical scale
of Γ , there exists a non-trivial solution of (6) with g̃ = 0
and ω = 0. Nevertheless, the solution of (2) exists so we can
apply the modification technique proposed in [18]. Let us
introduce functions v and w via relations vl(x) = Ukl(x0, x)
and wl(x) = Tkl(x0, x), where k, is a suitably chosen index
for the fixed point x0 lying out of the domain and its holes.
Note that the functions v and w are not restricted to the present
particular choice, as they can be chosen arbitrarily satisfying
some conditions [2,14,18].

The modified system then reads:

(UΓ t) (x) + v(x)
∫

Γ

v(y)t(y)dΓ (y)

= g̃(x) + v(x)
∫

Γ

w(y)g(y)dΓ (y). (18)

It should be noted that in the case of a two-dimensional null-
space, the above modification has to be done twice with dis-
tinct suitable choices of the couple (x0, k).

The situation with exterior DBVPs is a bit more compli-
cated. The solution of (2) may not exist, because g̃ does not
necessary lie in the range of the operator UΓ if it is not invert-
ible. For example, in the case of g = µk also g̃ = µk and
this function may be out of the range of UΓ , see [15].

If the solutions t of (2) and also of (18) exist and we denote
the solution of (6) by t̂ then we have

UΓ t = g̃,

∫

Γ

tkdΓ = bk, (unknown bk), (19)

UΓ t̂ −
2∑

k=1

ωkµ
k = g̃,

∫

Γ

t̂kdΓ = ξk, (20)
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which renders

UΓ (t̂ − t) =
2∑

k=1

ωkµ
k,

∫

Γ

(t̂k − tk)dΓ = ξk − bk ⇒ BΓ (ξ − b) = ω.

(21)

Then, we can identify the obtained solutions by defining
ξ = b + B−1

Γ ω if BΓ is invertible. Otherwise, we cannot do
it uniquely as the solution of (2) is not unique.

In the case, when the solution of (2) does not exist, no ξ

makes ω to vanish in (6). In this case the obtained solution t̂
of (6) corresponds to the following BIE:

UΓ t̂ = g̃ +
2∑

k=1

ωkµ
k, (22)

where the right-hand side can be written as:

g̃i (x) +
2∑

k=1

ωkµ
k
i (x)

= 1

2
gi (x) + −

∫

Γ

Ti j (x, y)g j (y)dΓ (y)

+
2∑

k=1

ωk

⎡
⎣1

2
µk

i (x) + −
∫

Γ

Ti j (x, y)µk
j (y)dΓ (y)

⎤
⎦

= 1

2

[
gi (x) +

2∑
k=1

ωkµ
k
i (x)

]

+ −
∫

Γ

Ti j (x, y)

[
gi (y) +

2∑
k=1

ωkµ
k
i (y)

]
dΓ (y) (23)

due to the properties of the operator with the kernel Ti j (x, y).
Thus the function t̂ is the traction solution of the DBVP with
the boundary condition û|Γ = g+∑2

k=1 ωkµ
k . The function

û satisfies the radiation condition (5), which was not satis-
fied by the solution of the original DBVP with the critical
scale. However, shifting all the solution by −∑2

k=1 ωkµ
k ,

we come to the conclusion that prescribing u|Γ = g leads to
the solution with the radiation condition (for ‖x‖ → ∞):

ui (x) = Ui j (x, 0)ξ j −
2∑

k=1

ωkµ
k(x) + O

(‖x‖−1). (24)

In simple terms it means that, on one hand, neither (2)
nor its modification (18) can be generally used for solving
an exterior DBVP for a domain scaled to its critical size,
because its solution satisfying the condition (5) may not exist.
On the other hand, the system (6) can be used for solving
the exterior DBVP also for the critical scale, although the
solution obtained may not satisfy condition (5) (if ω 
= 0),
only condition (24). In fact, this solution can be considered

a generalized regular solution of the exterior DBVP, see [2],
if we put ξ = 0.

5 Notes on the numerical solution

The discretized versions in SGBEM of (1) and (18) convert
them to systems of linear equations of the form:

UΓ t = g̃ and
[
UΓ + VVT

]
t = g̃ + VWT g, (25)

respectively, where UΓ is a square N × N matrix of the sys-
tem (N is the number of unknowns), and the other matrices
are row or column matrices of nodal unknowns t, given data
g and g̃ and modification data V and W.

The discretization of the system (6) leads to a block matrix
system:
(−UΓ MT

M 0

) (
t̂
ω

)
=

(−g̃
ξ

)
. (26)

The matrix M appears due to integrating the traction approx-
imation over the boundary Γ : Mt̂ = ∫

Γ
Nt̂dΓ , where the

matrix N contains all the nodal shape functions pertinent to
unknown nodal values t̂.

The critical sizes are found using the discretized version of
(7). We have two possibilities. In the first, for two particular
choices of ω the solution of the BIE (25)1 and the pertinent
ξ are found, namely

UΓ0 t1 = µ1, UΓ0 t2 = µ2,

∫

Γ0

Nt1dΓ0 = ξ1,

∫

Γ0

Nt2dΓ0 = ξ2,
(27)

where Γ0 is the outermost contour of the boundary Γ for
interior DBVPs and Γ0 = Γ for exterior DBVPs, and where
the boundary conditions are prescribed as u1|Γ0 = µ1 and
u2|Γ0 = µ2, respectively. Thus, we have for the approxima-
tion BΓ = BΓ0 of the operator BΓ

BΓ

(
ξ1 ξ2

) = (
ω1 ω2

) =
(

1 0
0 1

)
⇒ BΓ = (

ξ1 ξ2
)−1

.

(28)

Notice that initially we have to solve the problem for the
boundary Γ , which can be placed into a small disc with radius
R (see Sect. 3) guaranteeing in this way the invertibility of
the matrix BΓ .

The other possibility uses directly (26) defining g = g̃ = 0
and solving it twice with the following two choices of ξ : ξ1,
ξ2

(
ξ1 ξ2

) =
(

1 0
0 1

)
, BΓ = (

ω1 ω2
)
. (29)
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Fig. 1 The bounded domain of an interior DBVP

This second procedure has the advantage that we do not
need to invert any matrix. Thus, it can also be used if the
scale of the domain is critical.

6 Numerical examples

The author’s SGBEM code has been used to test numerically
some of the properties discussed above. Three examples of
this section include one interior and two exterior problems
in a plane strain state. All calculations have been performed
without considering physical units, defining the elastic con-
stants as G = 1 and ν = 0.25. The tests presented include
the determination of the matrix BΓ and the evaluation of
tractions, especially in the case where the domain is scaled
to one of its critical sizes.

6.1 An interior DBVP

Consider a domain shown in Fig. 1. A DBVP with the dis-
placement boundary conditions derived from the following
Airy stress function will be considered: F(x1, x2) = sin

( x1
h

)
exp

(− x2
h

)
, h = 1, together with an additional assumption

for fixing the displacements: u1(0, 0) = 0, u2(0, 0) = 0 and
u2(h, 0) = 0. The size of the domain is not critical, thus the
DBVP has a unique solution.

To check initially the SGBEM implementation we have
tested that the solutions obtained by (25)1 and (26) with ξ = 0
coincide with the analytic solution. The approximation is
obtained using a uniform boundary element mesh with ele-
ments of the length 0.05. Figure 2 shows that the numerical
results obtained by both approaches are the same—marks
‘BIE’ and ‘Aug’, respectively, representing the results from
(25)1 and (26) with ξ = 0, and almost coincident with the
analytical solution ‘Anal’.

In what follows the matrix BΓ will be computed by (28)
and its properties will be tested. Finally, it will be applied to
determine the critical scaling factors ρc, for which this matrix
is singular, one of them being used to scale the domain to its
critical size and to analyze the corresponding DBVP.

Let us consider a discretization with the same number of
elements as above. With this discretization, we obtain the

following approximation of the operator BΓ :

BΓ =
(

0.0328128 2.07696 × 10−14

2.07696 × 10−14 0.0469869

)
, (30)

which, due to (9), gives the following critical scales: ρ1 =
1.362407 and ρ2 = 1.557126. We can observe that the matrix
is approximately diagonal, which corresponds to the fact that
the outer contour has two symmetry axes parallel to the coor-
dinate axes. The tensor character of BΓ should cause the
change of the diagonal form when rotating Γ . Applying a
rotation angle α = π

4 (it is clear that the absolute value of the
off-diagonal terms reaches its maximum for this particular
α) should transform this matrix to

B′
Γ =

(
0.0398999 0.00708707
0.00708707 0.0398999

)
, (31)

and the actual calculation using (28) for the rotated boundary
Γα has given the same result:

BΓα =
(

0.0398999 0.00708707
0.00708707 0.0398999

)
. (32)

Now, let us change the scale by ρ1 and let us also change
the parameter h of F(x1, x2) to ρ1. The matrix in (25)1

is singular with one zero eigenvalue, which can be easily
verified numerically. The results are again plotted along the
same faces as above, see Fig. 3. One more data set has been
added to the results, as the plots also contain the results of
(25)2 denoted by the mark ‘Mod’.

We can see that the unmodified system contains an
eigen-solution which causes the solution at the outer con-
tour to be different from the analytical one. Nevertheless, at
the hole boundary the eigen-solution is zero, and thus there
is no significant difference between the solution of (25)1 and
the other numerical solutions or the analytical one. This is
in accordance with the fact that the holes do not influence
the critical scales of a bounded domain. The solutions of the
modified system (25)2 and of the augmented system (26)
with ξ = 0 are the same and coincide with the analytical
solution.

6.2 Exterior DBVPs

The next two examples deal with the exterior DBVPs for a
circular boundary, see Fig. 4.

The critical scale for the circle, with the present fundamen-
tal solution and material properties, equalsρc = exp(0.25) =
1.284025. Due to the symmetry of Γ there is only one such
scale and the matrix BΓ is a multiple of the unit matrix. For
the approximation of BΓ a boundary element mesh consist-
ing of 80 straight linear elements has been used, the approx-
imated value of the critical scale obtained by (9) being ρc =
1.284682.
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Fig. 2 The tractions for a
non-critical scale at the faces
AB (le f t) and A1 B1 (right)

Fig. 3 The tractions for the
critical scale ρ1 at the faces AB
(le f t) and A1 B1 (right)

Fig. 4 The unbounded domain with circular boundary: uniform radial
displacement (top), rigid body displacement (bottom)

Consider, first, the Dirichlet boundary condition in the
form of a uniform radial displacement Fig. 4 (top). It is
expected that the solution for the normal tractions will be con-
stant along the boundary and the solution for the tangential
tractions will vanish. Nevertheless, with a non-zero integral
of the tractions along the boundary the behavior of the trac-
tion solution is different.

The solution of (25)2 is found for the domain scaled to
the critical size. Inasmuch as the dimension of the kernel
of the operator in (25)1 is two, and BρcΓ is vanishing, we
need two couples (x0, k) to modify the BIE according to
(18). The first choice (the mark ‘M0’) for these two cou-
ples is x0 = (1.8, 1.8) for both k = 1 and k = 2, which
finds the solution with vanishing displacements at x0 and a
non-vanishing unknown integral of tractions. When we con-
sider another choice (the mark ‘M5’) for the couple (x0, k),
namely x0 = (1.8 × 105, 1.8) for both k = 1 and k = 2, the
displacements vanish far from the boundary, and the integral
of the traction should be rather close to zero, although also
not exactly so the integral does not vanish completely. The
results of these two modifications are plotted on Fig. 5 (Φ is
the angle measured from the positive x1-axis clockwise).

Moreover, the plot contains the solution of (26), denoted
by the mark ‘Aug’, with ξ0 = 0, for which the pertinent ω

Fig. 5 The tractions for the critical scale with uniform radial
displacement
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Fig. 6 Identifying the tractions calculated by (25)2 and by (26) for the
critical scale with uniform radial displacement

also vanishes. This occurs due to the fact that (2) is solvable
and that the dimension of its null space is two; thus, for any
ξ the pertinent ω is zero. The results of ‘Aug’ and ‘M5’ are
rather close to each other, because the traction integral for
the case ‘M5’ is rather close to zero. In contrast, this is not
true for the case ‘M0’, where these integrals are far from
zero. They could be evaluated, but the purpose was to iden-
tify this solution with some solution of (26). Therefore, the
system (26) has been solved two times with ξ1 = (1, 0)T

and ξ2 = (0, 1)T and the results have been compared with
the case ‘M0’, see Fig. 6.

We can see a perfect fit between both results, where the
‘Aug’ solution contains a combination of the solutions
obtained with various ξ . If we denote t̂i the solution of (26)
with ξ = ξ i , i = 0, 1, 2, the data t̂ corresponding to the
curve ‘Aug’ are t̂ = at̂0 + bt̂1 + ct̂2 with a, b and c given
in the picture. The constants a, b and c could not be found
from (21), as the matrix BΓ is singular, and only a numerical
regression fit could be used.

The situation will be totally different in the third exam-
ple, see Fig. 4 (bottom). The prescribed displacements are
equal to a rigid body translation of the boundary. When the
size of the domain is scaled to the critical size, the solu-
tion of (1) does not exist, and therefore the equation (25)1

does not have a solution and the solution of (25)2 does not
have a clear sense. Thus, we can only test that the solution
of (26) has for any ξ a corresponding non-zero ω: taking
ξ = ξ i (i = 0, 1, 2) shows that in all these cases we have
the same ω= (−1, 0)T . This means that according to (23)
all the obtained solutions are the solutions of the exterior
DBVP with the vanishing displacements prescribed along
the boundary. Thus for zero ξ0 the solution is also zero, and
for the other two ξ they are shown in Fig. 7. The distributions
fit with the expected sine and cosine behavior.

The solution of (25)1 exists when the scale of the domain
is not critical, for example with the original domain shown
in Fig. 4 (bottom). Here, we can use the relation (21) to iden-
tify the obtained solution with the solution of (26). We will
continue in the same way as in the case above, but we can
also directly find the coefficients a, b, c. Using (21) we obtain

Fig. 7 The solutions of (26) for the critical scale with the unit dis-
placement along the x1-axis

Fig. 8 Identifying the tractions calculated by (25)1 and by (26) for the
unit radius with the unit displacement along the x1-axis

ξ1 = b + B−1
Γ ω1, (33)

where the matrix of BΓ can be found by (29) and ω1 by
solving (26):

BΓ =
(

0.0265801 −3.44956 × 10−14

−3.44956 × 10−14 0.0265801

)
,

ω1 =
(

−0.973420

−2.78416 × 10−13

)
⇒ b =

(
36.6222

≈ 0

)
,

(34)

thus the parameters should be a = 1 − b, b = 37.6222,
c = 0.

The tractions calculated by (25) (the ‘BIE’ mark) together
with those obtained by (26), denoted by the mark ‘Aug’, are
shown in Fig. 8, where these data, as in the example above,
are plotted in the form t̂ = at̂0 + bt̂1 + ct̂2.

The values of constants a, b and c shown in the picture
are obtained by numerical regression, but nevertheless they
fit nicely with the calculation in (34).

Finally it should be noted that in both of these last cases
the split of the solution t̂ into the form t̂ = at̂0 + bt̂1 + ct̂2

is in accordance with the possibility of solving an exterior
DBVP on a multiple-connected domain with a non-equil-
ibrated loading as a superposition of a particular solution
for each hole with non-equilibrated load and the generalized
regular solution. Related considerations in the context of the
complex variable BIEs can be found in [10,11].
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7 Conclusions

The DBVPs of linear plane elasticity have been studied. The
phenomenon of the critical scale can influence the solvability
of these problems, when a boundary element scheme which
uses the integral operator of the first kind with a logarithmic
kernel is implemented. Procedures which make it possible to
determine whether this phenomenon takes place or not and
to treat it have been presented.

The first part of the work has dealt with the reduction of
the problem to the linear matrix operator BΓ : R

2 → R
2,

which facilitates the search for the critical scales for a partic-
ular choice of the integral kernel including the logarithmic
function. Then, two techniques have been described which
help to understand the nature of the whole problem and allow
a BEM code programmer to deal with the cases where the
original BIE (2) does not have a unique solution.

In what follows some recommendations for BEM code
programmers based on the analysis presented are given:

• The modification of the BIE with non-unique solutions
described by (18) and (25)2, motivated by an approach
developed in [17,18] for a different kind of BVP solved
by SGBEM, is always applicable for interior problems.
Nevertheless, it has been shown that for the exterior prob-
lems it has only a limited applicability, as it requires that
the original BIE has a solution. It is recommended that
the point x0 used in the BIE modification be taken farther
from the boundary in order to obtain the solution with
a small contour integral of the tractions and close to the
generalized regular solution.

• The augmenting operator technique, based on the theory
from [6,15] and described by (6) and (26), is applicable
to all kinds of DBVPs, both interior and exterior. How-
ever, the solution of the BIE obtained can be a solution of
a problem different from that originally considered if an
inappropriate radiation condition is applied. In the pres-
ent paper, this limitation is related to the fact that a special
type of radiation condition has been considered, such that
the BIE has the same form for both interior and exterior
DBVPs. Nevertheless, if the generalized regular solution
is required, the choice ξ = 0 produces the correct result.

• Probably the easiest technique to implement in a BEM
code applied for the DBVP solution is to scale the size of
the boundary Γ to ensure the invertibility of the operator
UΓ . This can be specified rather precisely, which can be
useful in BEM applications, in particular due to the fact
that the condition number of the corresponding discret-
ized linear system increases with diminishing boundary
scale when considering the boundary scales smaller than
the critical scales ρc [15]. Let us denote Rmin the minimal
radius of a circle which contains Γ , and lmax the diam-
eter of Γ , i.e. lmax = maxx,y∈Γ |x − y|, which can be

found rather easily. Then it can be shown that the rela-
tion

√
3Rmin ≤ lmax ≤ 2Rmin holds, where, for example,

the former equality occurs for an equilateral triangle and
the latter one for a circle. Therefore, any boundary can
be placed within a circle of the radius lmax√

3
and due to the

result mentioned in the first paragraph of Sect. 3 it is suffi-
cient to have lmax ≤ √

3 exp
( 1

2κ

)
. Hence, the unique solu-

tion of BIE (2) always exists for lmax ≤ √
3 exp

( 1
2κ

) ≤√
3 exp 1

6 ≈ 2.046, taking ν ∈ [
0; 1

2

)
. As a conclusion,

the diameter of the boundary equal to 2, or less than and
close to 2, will work well for any practical application of
BEM.

• Recall that modifying the kernel Ui j in (3) by a constant
changes the values of the critical scales ρc, as analysed
in [13,15]. In fact, in view of the above analysis, there is
a possibility to set this constant according to the current
size of the boundary, characterized by lmax, in such a way
that the critical scales are avoided and a reasonable matrix
conditioning is obtained, defining the modified kernel as
follows:

U mod
i j = Ui j +

(
−Λ

2
+ Λκ ln

lmax√
3

)
δi j . (35)

Finally, it should be stressed that for bounded domains
with holes the critical scales do not depend on the holes. The
boundary conditions at these holes can be either of Dirichlet
or Neumann type, and the effect of the critical scales of the
outermost contour can still take place, see [14] for an analysis
of the SGBEM approach.
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