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Abstract

In the present note, three infinite boundary elements are proposed for the quasi-static 2D elastic problem. Within the framework of

hypersingular boundary integral equations, a polynomial decaying, a reciprocal decaying, and a constant-logarithmic infinite boundary

element are formulated, implemented and tested with respect to the analytical 2D plane strain solution of a strip load on a half-plane.

r 2007 Elsevier Ltd. All rights reserved.
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1Indeed many commercial codes do implement infinite elements for half-

plane problems, see among others [6].
2If the half-space fundamental solution is used (Mindlin solution for

static problems, Lamb solution for frequency-domain problems) there is

no need for infinite boundary elements. Moreover, only the loaded

surface, and in case other finite surfaces like tunnel openings, need to be

discretized. Thus there is the advantage of having less unknowns and the

disadvantage of a more involved calculation, that implies higher CPU

times, even by a factor of 300 [8]. Half-space fundamental solutions were

used for instance to formulate the axisymmetric BIE for a layered

viscoelastic half-space [9,10]. In [11] two strategies are used alternatively:

at the internal points, infinite elements permit using the fundamental

solutions for a full-space to evaluate strains and stresses, thus decreasing

the elaboration time.
3Accordingly, a truncation problem arises. However, truncation with
1. Introduction

Modeling unbounded domains is an important issue in
engineering: electro-magnetism, fluid dynamics, soil and
soil-structure mechanics are but a few areas in which
unbounded domains are of usual concern [1–3]. The
present work focuses on the last topic and shall be con-
ceived as a first step towards modeling half-plane engineer-
ing problems—as foundation vibration problems—in the
frequency domain.

Whereas in studying the dynamics of soils it is important
to take into account their porous nature [4], in soil-
structure interaction problems a one-phase linearized
modeling of the ground can often be accepted. The
unbounded nature of the domain can be reproduced in two
ways: (i) by selecting a fictitious truncated domain; (ii) via
infinite domain techniques, the topic the present note deals
with. In the first class, the so-called finite domain technique,
the most challenging task—especially in dynamics [5]—is
enforcing the appropriate boundary conditions along the
artificial boundaries that give rise from the domain
truncation: the bibliography on this important topic is
extremely large.

In all infinite domain techniques the problem domain
remains unbounded. The numerical solution can be
achieved by several methods: in the finite element method
e front matter r 2007 Elsevier Ltd. All rights reserved.
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(FEM), the use of suitable infinite elements is required;1 in
the boundary element method (BEM), the fundamental
solutions for a half-space [7] can be considered to solve the
problem along the boundary. Such an approach reveals to
be quite time consuming,2 due to the complexity of the
involved kernels. To avoid such a drawback, infinite
elements have been implemented in the framework of the
BEM as well3 adopting the fullspace solution (Kelvin–
Gebbia solution in statics, Stokes solution for frequency-
domain problems).
Following [13], infinite elements can be categorized into

two types, namely displacement descent or elements with
BE has less consequences than truncation with FE: FE truncation implies

the whole domain and not merely its surface. BEM relying on Stokes

solution with truncated meshes were successfully used in soil-structure

problems [12].

in 2D elasticity. Eng Anal Bound Elem (2007), doi:10.1016/
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decaying functions [14–16] and co-ordinate ascent or
elements of the mapped kind [17,18]. In the displacement
descent formulation, the domain of natural co-ordinate
is assumed to be extending to infinity. The field variable
shape functions are obtained by modifying the usual
shape functions to a descent towards infinity. This is
achieved by incorporating a decay pattern into the
conventional shape functions of the C0 type. On the other
hand, in the case of co-ordinate ascent formulation, the
domain of natural co-ordinate is assumed to be finite.
Ascent shape functions are used with a singularity at the
boundary nodes, which sends the physical co-ordinates to
infinity, whereas the conventional shape functions for the
C0 type are used in the field variables transformation. By
comparing the above two formulations with each other, it
can be found that the displacement descent formulation
requires numerical integration over a semi-infinite range,
whereas for the co-ordinate ascent formulation, integration
can be made using the conventional Gauss–Legendre
integration scheme. The success of formulation of any
infinite element is contingent on satisfying some require-
ments [13]: in particular the shape function behavior at
infinity should reproduce the asymptotic behavior of the
problem solution.

In the context of linear elasticity, a reciprocal—with
respect to the distance from a reference point—decaying
shape function was proposed in [19] in order to model the
unknown displacement field along the boundary. Such a
formulation was further developed in [20] by defining a
mapped infinite element onto the unit square. In [21]
efficient criteria for numerical integration over unbounded
domains have been applied to the aforementioned infinite
element. The algorithm was further improved in a
subsequent paper [22] by means of the analytical integra-
tion of the strongly singular elasticity kernel.

All aforementioned works have two distinct peculiarities.
They: (i) deal with infinite boundary elements for 3D
problems; (ii) lie in the framework of the collocation
scheme.

About the first point, it might be seen as ‘‘a consequence
of the impossibility of having truly 2D unbounded problem
domains’’ ( taken from [3, p. 40]). Nevertheless, many 2D
problems have well-known closed form solutions (see
e.g. [23]); moreover, 2D numerical simulations are of usual
concern for engineering problems with unbounded do-
mains. To this aim, 2D infinite elements have been widely
proposed in the framework of linear elastic problems: a
deep review, up to 1992, can be found in [3]. In 2D
problems ‘‘it is easy to see that in general stresses vary as
1=r and thus so will strains. On integration the displace-
ment field will have a logarithmic form. Since log r

increases with r this gives the paradoxical result that the
displacements at an infinite radius will, themselves, be
infinite.’’ (taken from [3, p. 13]). Such a paradox led to seek
infinite elements with displacement approximation beha-
vior of the form 1=r even in 2D problems, starting from the
pioneering works up to the most recent ones [13,24–28]—
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about FEM as well as about BEM; infinite elements with
reciprocal decaying shape functions are currently imple-
mented in many commercial codes [6]. An insight on the
asymptotical behavior of the displacement field is provided
in Section 4.1: by comparing the half-plane solution and
the asymptotic behavior of a half-space solution, an att-
empt is made to give a rationale to the use of reciprocal
decaying shape functions to model the displacement field at
infinity. A boundary infinite element is thereafter proposed
and implemented by means of analytical integrations.
On the other hand, ‘‘It might be possible to devise an

infinite element which incorporated a logarithmic behavior.
This has not yet been tried.’’ (taken from [3, p. 42]). In
Section 5 an infinite element with constant and logarithmic
shape functions is proposed—which to the best of our
knowledge, has not been considered so far—and once
again implemented by means of analytical and numerical
integration schemes.
As a second characteristic of all cited works, numerical

analysis refer to the boundary element collocation method.
As a main consequence, the Somigliana identity is invoked
in the solution process on the boundary, thus merely
involving strong singularities in the formulation. The
symmetric Galerkin boundary element (SGBEM) scheme
[29], makes use of the boundary integral representation
(BIR) of tractions, that involves a hypersingular Green’s
function (here collected in matrix Gpp). The problem of
hypersingular kernel integrations over finite domains has
been overcome in the last two decades by several authors
with different techniques: with reference to analytical
integrations in two dimensions, the problem has been
investigated in Ref. [30] without the recourse to regulariza-
tion techniques. On the contrary, the problem of singular
and hypersingular kernel integrations over unbounded
domains apparently requires further study for the Galerkin
scheme: to this topic a further publication will be devoted
shortly.
In the present note, three boundary infinite elements are

proposed and implemented: one of them in the hypersin-
gular collocation framework, the remaining in the SGBEM
as well. Apparently, unsurmountable difficulties come into
play in the formulation of an SGBEM scheme for general
shape functions on 2D unbounded elements. Such difficul-
ties are rooted in the variational formulation of the elastic
problem in 2D half-plane, because the total potential
energy of the solution of the elastic problem is itself
unbounded. From the computational side, this fact led to
using weighted functional spaces that give rise to the
Petrov–Galerkin method. A further publication will be
devoted to the afore sketched issues. In the present, three
different elements have been proposed: a polynomial

decaying element, where the displacement field is approxi-
mated by high order lagrangian polynomials truncated
‘‘suitably’’ far away from the loaded zone; a reciprocal 1=r

decaying element, analogous to [15]; a constant and

logarithmic decaying element. In all three cases, analytical
integrations for the hypersingular kernel have been
in 2D elasticity. Eng Anal Bound Elem (2007), doi:10.1016/
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produced.4 The polynomial decaying element has a usual
finite domain: accordingly, making use of analytical
integrations that apply to standard polynomial boundary
elements [30] is allowable. For the reciprocal 1=r decaying

element analytical integrations have been performed in
Section 4 in the general case. For the constant and

logarithmic decaying element analytical integrations have
been performed in Section 5 in the easy case of field point
collinear or inside the unbounded element, whereas for
the general case suitable numerical schemes [31] are
considered.

The proposed elements have been compared in a
benchmark application—Section 6—in terms of accuracy.
The constant logarithmic element shown to be the most
accurate and effective.
2. Boundary integral equations in elasticity

2.1. Single-zone formulation

Consider a homogeneous isotropic linear elastic solid in
a Cartesian reference system, with unbounded domain O � R2

and with an unbounded Neumann boundary Gp: assuming
small strains and displacements, consider its response to
quasi-static external tractions t̄ðxÞ on Gp (see the prototype
of Fig. 3).

The boundary integral formulation of a linear elastic
problem stems from Somigliana’s identity, which is the
BIR of displacements in the interior of domain O.
Somigliana’s identity is based on Green’s functions (also
called kernels) which represent components ui of the
displacement vector u in a point x due to: (i) a unit force
concentrated in space (point y) and acting on the
unbounded elastic space O1 in direction j (such functions
are gathered in matrix Guuðx� yÞ); (ii) a unit relative
displacement concentrated in space (at a point y), crossing
a surface with normal lðyÞ and acting on the unbounded
elastic space O1 (in direction j) (gathered in matrix
Gupðx� yÞ).

Because all the above introduced kernels are infinitely
smooth in their domain, which is the whole space R2 with
exception of the origin (that is xay), the traction operator
can be applied to Somigliana’s identity, thus obtaining the
BIR of tractions on a surface of normal nðxÞ in the interior
of the domain. Such a BIR, by some authors named
‘‘hypersingular identity’’, involves Green’s functions (col-
lected in matrices Gpu and Gpp) which describe components
(pi) of the traction vector p on a surface of normal nðxÞ due
to: (i) a unit force concentrated in space (point y) and
acting on the unbounded elastic space O1 in direction j;
(ii) a unit relative displacement concentrated in space (at a
point y), crossing a surface with normal lðyÞ and acting on
the unbounded elastic space O1 (in direction j).
4Analytical integrations in the framework of unbounded boundary

elements are not uncommon [22], because they obviate the need of

performing numerical integrations on unbounded regions.
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BIEs for the linear elastic problem can be derived from
the aforementioned two representation formulae perform-
ing the boundary limit5 O 3 x! xo 2 G. In the limit
process: (i) singularities of Green’s functions are triggered
off: kernel Gpu presents a strong singularity of Oðr�2Þ,
whereas kernel Gpp is usually named hypersingular, since it
shows a singularity of Oðr�3Þ greater than the dimension of
the integral; (ii) strongly singular kernel Gpu generates a
free term that holds 1

2
for smooth boundaries; (iii) the

following BIE comes out [33]:

1

2
pðxÞ þ

Z
¼

Gp

Gppðr; nðxÞ; lðyÞÞuðyÞdy

¼

Z
�
Gp

Gpuðr; nðxÞÞp̄ðyÞdy; x 2 Gp ð1Þ

having set r ¼ x� y. After imposing the fulfillment of
Eq. (1) on Gp, one obtains a linear boundary integral
problem

Mu ¼ p (2)

whose operator M is symmetric with respect to a classical
bilinear form. Accordingly, the problem admits of a
variational formulation and its solution is shown to be a
maximum—on a suitable functional space V—of the
functional:

C½u� ¼ 1
2
Aðu;MuÞ �Aðu; pÞ. (3)

Rather unexpectedly, classical solution of elasticity—as
Boussinesques’ ones—do not belong to V, what seems to
state that energy implications of functional (3) have not
been sufficiently investigated on unbounded domains.
Some remarks on this issue are presented in Section 4.1,
whereas for details the reader is referred to a forthcoming
publication.

2.2. Symmetric Galerkin approximation

Let h40 be a parameter and let Uh denote a family of
finite dimensional subspaces of U such that

8 _u 2 U ; inf
_uh2Uh

k _u� _uhk ! 0 as h! 0. (4)

The symmetric Galerkin approximation of (2) consists in
finding _uh 2 Uh critical point of the functional

C½ _uh� ¼
1
2
Að _uh;M _uhÞ �Að _uh; _pÞ. (5)

From the algebraic point of view, let wuðyÞ be a matrix of
shape functions and uhðyÞ ¼ wuðyÞû be discrete approxima-
tions of uðyÞ. Let the vector u collect the unknowns û.
From the stationarity of (5), the linear system

Mu ¼ p (6)

comes out, where

M ¼Aðwu;MwuÞ; p ¼Aðwu; pÞ.
5For the hypersingular identity, the boundary limit must be considered

at a smooth point xo with a well-defined normal vector nðxoÞ [32].

in 2D elasticity. Eng Anal Bound Elem (2007), doi:10.1016/
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Fig. 1. A polynomial decaying infinite boundary element.
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The (symmetric) Galerkin approximation scheme ensures
stability and convergence of the numerical solution in
suitable functional spaces (for further details see [34]).
A major drawback of the method consists in the evaluation
of non-integrable kernel Gpp, that is, one has to deal with
the following form:Z
Gp

ckðxÞ

Z
Gp

Gppðx� y; nðxÞ; lðyÞÞchðyÞdGðyÞdGðxÞ, (7)

where ckðxÞ, chðyÞ are test and shape functions that model
the displacement field on the boundary. The evaluation of
(7) is not a trivial task, because of the involved
hypersingularities. Several techniques, collectable in three
principal groups, have been proposed for their evaluation:
(i) regularization techniques, (ii) numerical integrations,
(iii) analytical integrations.
Fig. 2. Local c1ðxÞ and global cðxÞ shape functions.
2.3. Analytical integrations

Analytical integrations have been basically performed
towards three schemes. In the first scheme (see e.g. [35]),
the source point is fixed, while the boundary around the
source point is temporarily deformed to allow an analytical
evaluation of contributions from singular kernels, and
then the limit is taken as the deformed boundary shrinks
back to the actual boundary. In a second approach,
see among others [36], the source point x is first moved
away from the boundary; integrals are evaluated analyti-
cally and a limit process is then performed to bring the
source point back to the boundary. In all the aforemen-
tioned papers, analytical integrations are provided for all
singular integrals, while standard quadrature formulae are
used for non-singular integrals. In the third scheme,
analytical integrations are provided for the complete set
of integrals. A complete analytical integration of 2D
elastostatic kernels has been provided in [30] for arbitrary
degree shape functions on polygonal domains. In the
framework of infinite boundary elements, it is necessary to
extend analytical integrations in [30] over unbounded
domains.
3. Proposal of a polynomial infinite boundary element

Consider a domain T1 (T1 ¼
def
½x10;1½ in Fig. 1),

assumed to be a part of a decomposition Gh of a polygonal
boundary G. A unique polynomial local shape function
c1ðxÞ of degree n is defined as follows6: c1ðx10Þ ¼ 1;
c1ðx1Þ 2 Cn�1ðT1Þ; suppðc1Þ ¼ ½x10;x1� where x1 2 R is
a parameter to be fixed 7 (see Fig. 1).
6By definition, c1ðx1Þ has compact support, that does not match with

Boussinesque’s solution. Shape function c1ðx1Þ may be conceived as a

polynomial approximation of Boussinesque’s solution on Gh.
7Parameter x1, as shown in the applications that follow, can hardly be

identified. Because of such a significant drawback, a polynomial decaying

BE seems not to be a suitable choice in spite of its numerical effectiveness.
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As an example, the quadratic shape function that
satisfies all requirements above reads as follows:

c1ðx1Þ ¼ 1� 2
x1 � x10

x1 � x10

� �
þ

x1 � x10

x1 � x10

� �2

. (8)

Global shape functions ch in Eq. (7) are obtained by
collecting in set Th ¼

def
fTj ;T1g the two panels having the

common vertex Ph (see Fig. 2); then ch is defined as

chðyÞ ¼
def

cj
hðyÞ if y 2 Tj ;

c1ðyÞ if y 2 T1;

0 else;

8><
>: (9)

where cj
h is a usual lagrangian local basis function defined

on Tj such that cj
hðPhÞ ¼ 1 (h ¼ 1 in Fig. 2). By

construction, chðyÞ is continuous over Gh, and its
(bounded) support coincides with Th. In view of the
compactness of Th, making use of analytical integrations
[30] that apply to standard polynomial boundary elements
is allowable.

4. Proposal of a reciprocal decaying infinite boundary

element

4.1. Remarks on the asymptotical behavior of the

displacement field

4.1.1. Plane strain finite strip problem

Consider the response of an elastic half-plane made of a
homogeneous isotropic material, with Young’s modulus E

and Poisson’s coefficient n, to the following quasi-static
external actions in plane strain hypothesis: a uniformly
distributed load p along the boundary for jxjp1 and a
vanishing load elsewhere, as in Fig. 3. By direct integration
of the fundamental solution Fsðx� x; yÞ of Flamant and
in 2D elasticity. Eng Anal Bound Elem (2007), doi:10.1016/
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Fig. 3. Boussinesq analysis: problem position and vertical displacement

field contour plot.

Fig. 4. Rectangular load on an elastic half-space.

8Quite often b is taken as 1, in order to make the expression of uðx; yÞ
lighter [39].
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Boussinesq—see Appendix A

rðx; yÞ ¼

Z 1

�1

pFsðx� x; yÞdx (10)

the analytical solution for the stress tensor r is obtained
(see also [23]):

sxx ¼ �
p

p
bðx; yÞ � aðx; yÞ

d4
ðx; yÞ

; syy ¼ �
p

p
bðx; yÞ þ aðx; yÞ

d4
ðx; yÞ

sxy ¼ �
p

p
4xy2

d4
ðx; yÞ

, ð11Þ

szz ¼ nðsxx þ syyÞ

having set:

d4
ðx; yÞ ¼ ðð�1þ xÞ2 þ y2Þðð1þ xÞ2 þ y2Þ,

aðx; yÞ ¼ 2yð1� x2 þ y2Þ,

bðx; yÞ ¼ ðx4 þ 2x2ð�1þ y2Þ þ ð1þ y2Þ2Þ arctan
1� x

y

� �

þ ðð�1þ x2Þ
2
þ 2ð1þ x2Þy2 þ y4Þ arctan

1þ x

y

� �
.

From the expressions above, it can be proved that the
stress tensor vanishes at infinity.

In a similar way, by making use of the fundamental
solution Fuðx� x; yÞ of Flamant and Boussinesq [37]—see
Appendix A

uðx; yÞ ¼

Z 1

�1

pFuðx� x; yÞdx (12)
Please cite this article as: Salvadori A. Infinite boundary elements
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the analytical solution for displacements u comes out:

ux ¼ k ð2n� 1Þ ð�1þ xÞ arctan
1� x

y

� ���

þð1þ xÞ arctan
1þ x

y

� ��
þ ð1� nÞy

�½logðð1þ xÞ2 þ y2Þ � logðð�1þ xÞ2 þ y2Þ�

�
, ð13aÞ

uy ¼ k ð2n� 1Þ y arctan
1� x

y
þ arctan

1þ x

y

� �� ��
þ ð1� nÞ½4þ logðb4

Þ þ ðx� 1Þ logðð�1þ xÞ2 þ y2Þ

�ð1þ xÞ logðð1þ xÞ2 þ y2Þ�

�
ð13bÞ

having set k ¼ p
p
1þn

E
. In solving a Neumann problem, a rigid

body motion remains in the displacement field, which is
arbitrary: term logðb2

Þ in Eq. (13b) reflects this point. By
several authors [3,37,38], b is selected imposing ‘‘the
distance along the y-axis at which vertical displacement
vanishes’’.8 Differently from the stress tensor, displacement
field u does not vanish at infinity, giving the paradoxical
result that displacements become higher and higher as the
distance from the load increases. In spite of Eqs. (13), it is
quite common approximating displacement field u by
means of vanishing shape functions, typically of 1

r
decay-

ing—see [3] for a deep review—but, to the best of our
knowledge, no rationale has been proposed to justify this
‘‘routine procedure’’.
In order to further investigate this point, it worths

expressing Eqs. (13) on the y ¼ 0 axis, as follows:

ux ¼
pk
2
ð2n� 1Þ½j1þ xj � jx� 1j�, (14a)

uy ¼ kð1� nÞ½4þ logðb4
Þ þ ðx� 1Þ logð�1þ xÞ2

� ð1þ xÞ logð1þ xÞ2�. ð14bÞ

4.1.2. Rectangular load on an elastic half-space

Consider the response of an elastic half-space made of a
homogeneous isotropic material, with Young’s modulus E

and Poisson’s coefficient n, to the following quasi-static
external actions: a uniformly distributed load p in the
in 2D elasticity. Eng Anal Bound Elem (2007), doi:10.1016/
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domain O ¼ fjxjp1; jwjp b
2
g and a vanishing load else-

where, as in Fig. 4. The expression of the vertical
displacement field along the y ¼ z ¼ 0 axis comes out by
direct integration of the fundamental solution Buz

ðx� x;
y� w; zÞ of Boussinesq—see Appendix A

uzðx; y; z; bÞ ¼

Z b=2

�b=2

Z 1

�1

pBuz
ðx� x; y� w; zÞdxdw (15)

and it reads as follows:

uzðx; y ¼ 0; z ¼ 0; bÞ

¼ kð1� nÞ½l1ðx� 1Þ � l1ðxþ 1Þ þ l2ðx� 1;xþ 1Þ� ð16Þ

having set:

l1ðaÞ ¼
def

a log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
þ a2

p
� bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
þ a2

p
þ b

,

l2ða;bÞ ¼
def

2b log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
þ a2

p
� affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
þ b2

q
� b

.

It is well known [3] and easily checked from Eq. (16)
that, once b is fixed, the displacement field uzðx; y ¼ 0; z ¼
0; bÞ tends to vanish as 1

x
when jxj ! 1:

uzðx!1; y ¼ 0; z ¼ 0; bÞ ¼ 2kð1� nÞ
b

x
þO½x�2�. (17)

With the aim of a deep understanding of the behavior of
the plane strain solution, it is of interest considering the
behavior of the vertical displacement field uzðx; y ¼ 0; z ¼
0; bÞ when b tends to infinity, thus asymptotically reprodu-
cing the plain strain conditions. It appears9 that

uzðx; y ¼ 0; z ¼ 0; b!1Þ

¼ kð1� nÞ½4þ logðb4
Þ þ ðx� 1Þ logð�1þ xÞ2

� ð1þ xÞ logð1þ xÞ2�O½b�1� ð18Þ

that is, uzðx; y ¼ 0; z ¼ 0; b!1Þ coincides with uy of
Eq. (14b). This conclusion applies also to the more general
case of za0, that is uzðx; y ¼ 0; z; b!1Þ coincides with uy

of Eq. (13b). The extensive expressions of the displacement
fields have not been printed here for the sake of brevity.

Eq. (18) gives a deeper insight to the term logðb4
Þ in

Eqs. (13b)–(14b) due to the meaning of b in the 3D
analysis: it plays the role of an unbounded motion that
arises in the limit process in Eq. (18) and that applies to all
points of the surface y ¼ 0, thus making the displacement
field unbounded at all points.10

It is then possible to build a sequence of functions uzn
¼

uzðx; y ¼ 0; z ¼ 0; b ¼ nÞ for all n ¼ 1; 2; . . . and consider if
9All mathematical steps have been conducted via Mathematica. The

corresponding subroutines are presented in Appendix B.
10This observation is in agreement with the remark by [40]: ‘‘unbounded

plane stress and plane strain domains subjected to static loading undergo

infinite displacements, even when the zero displacement boundary

condition at infinity is enforced.’’ and with the examples described therein

(axial rod with varying sections). While the displacement field is

unbounded in all the domain, and zero at infinity, relative displacements,

stress and strain fields are well behaved.
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it exists a norm for which uzn
converges11 to uzðx; y ¼ 0;

z ¼ 0; b!1Þ. Because uzðx; y ¼ 0; z ¼ 0; b ¼ nÞ vanishes
as jxj ! 1 for all n, there is no convergence in the
maximum norm.
For the stress field behavior, on the contrary, conver-

gence in the maximum norm holds. Accordingly, it is
possible to recover the plain-strain stress field in an elastic
half-plane by a limit b!1 of stress field rbðx; y; zÞ that
pertains to the elastic half-space problem depicted in Fig. 4.
Such a stress field, parameterized by b, is related to
displacement field ubðxÞ that vanishes at jxj ! 1 by means
of a 1

r
decaying law.
4.2. Implementation

Consider an unbounded domain T1 (T1 ¼
def
½x10;1½ in

Fig. 1), assumed to be a part of a decomposition Gh of a
polygonal unbounded boundary G. A unique reciprocal
decaying local shape function c1ðxÞ is defined by

c1ðx1Þ ¼
x10

x1
. (19)

Global shape functions ch in Eq. (7) are defined again by
Eq. (9). By construction, cðxÞ is continuous over Gh; its
support is unbounded and coincides with Th.
4.2.1. Lebesgue integrals

In view of the reciprocal decay function (19), analytical
integrations performed in [30] do not apply to Eq. (7). The
inner ‘‘integral’’ takes the formZ

Gp

Gppðr; nðxÞ; lðyÞÞchðyÞdy

¼

Z
suppðchÞ

Gppðr; nðxÞ; lðyÞÞchðyÞdy ¼ Fj
ppðxÞ þ F1ppðxÞ

having defined r ¼ x� y and

Fk
ppðxÞ ¼

Z
Tk

Gppðr; nðxÞ; lðyÞÞckðyÞdy; k ¼ j;1. (20)

Integrations performed in [30] apply to integral (20) over
Tj. With reference to the remaining integral, analytical
integrations will be performed with respect to a bounded
domain T� of length 2l�; after having performed the
integrations on T�, integral (20) will be obtained by the
limit

F1ppðxÞ ¼ lim
l�!1

Z
T�

Gppðr; nðxÞ; lðyÞÞc1ðyÞdy. (21)

To this aim, let L � fy1; y2g define a local c.s. with origin
in the midpoint of T�, oriented as in Fig. 5. If y 2 T� then
lðyÞ ¼ ð0; 1Þ, y2 ¼ 0, �l�py1pl� and c1ðyÞ ¼

y10
y10þy1þl�

.

11This path of reasoning gives a rationale to the use of vanishing

displacement fields in approximating the stress distribution in plane strain

unbounded domain problems, which is a rather ‘‘standard procedure’’ in

finite as well as in boundary element simulations.
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Fig. 6. xeTi, but x2 ¼ 0.

Fig. 5. Local coordinate system L.

12Their expressions have been evaluated by means of the commercial

code MATHEMATICA 4.0.

A. Salvadori / Engineering Analysis with Boundary Elements ] (]]]]) ]]]–]]] 7
By the change of variable y1 ¼ x1 � r1, Eq. (20) becomes

F�ppðxÞ ¼

Z x1þl�

x1�l�
GppðrÞ

y10

z1 � r1
dr1

					
r2¼x2

(22)

having set z1 ¼
def

y10 þ x1 þ l�. Integral (22) depends on the
position of the point x with respect to T�. Kernel Gppðx� y;
nðxÞ; lðyÞÞ is singular with respect to y depending on the
position of x with respect to T�. The two items xeT� and
x 2 T� must be accordingly separately discussed.

Easy algebraic manipulations lead from integral (22) to
the following basic integrals:

Z x1þl�

x1�l�

1

r2
1

z1 � r1
dr1,

Z x1þl�

x1�l�

1

r4
rk
1

z1 � r1
dr1; k ¼ 0; 1; 2,

Z x1þl�

x1�l�

1

r6
rk
1

z1 � r1
dr1; k ¼ 0; 1; 2; 3,

where r2 ¼ r21 þ r22. They have been analytically solved
when xeT� (results in Appendix D). Collecting all
common terms, integral (22) reads as follows:

F�ppðxÞ ¼ y10 Lpp log
r2

ðz1 � r1Þ
2
þ App arctan

r1

x2

�

þ
1

r2
Spp þ

1

r4
Hpp

�r1¼x1þl�

r1¼x1�l�
, ð23Þ
Please cite this article as: Salvadori A. Infinite boundary elements

j.enganabound.2007.06.007
where Lpp, App, Spp, and Hpp, are suitable matrices12

collected in Appendix E
As a particular instance of xeTi, consider x2 ¼ 0 (see

Fig. 6). The expression of hypersingular kernel Gpp

simplifies being x2 ¼ 0 and r � l ¼ 0.

Gppðx� y; nðxÞ; lðyÞÞ ¼
G

2p
1

1� n

n2 n1

n1 n2

 !
1

r21
. (24)

Eq. (23) specifies as

F�ppðxÞ ¼ y10

G

2p
1

1� n

n2 n1

n1 n2

 !

�
1

z21
log

r1

r1 � z1
�

1

r1z1

� �r1¼x1þl�

r1¼x1�l�
. ð25Þ

4.2.2. Hadamard’s finite part

Consider

IðeÞ ¼
Z �e

x1�l�

1

r21

1

z1 � r1
dr1 þ

Z x1þl�

e

1

r21

1

z1 � r1
dr1

¼
1

z21
log

r1

r1 � z1
�

1

r1z1

� �r1¼�e

r1¼x1�l�

þ
1

z21
log

r1

r1 � z1
�

1

r1z1

� �r1¼x1þl�

r1¼e

¼
1

z21
log

r1

r1 � z1
�

1

r1z1

� �r1¼x1þl�

r1¼x1�l�

þ
2

ez1
þ

1

2z21
log
ðe� z1Þ

2

ðeþ z1Þ
2
.

By taking the limit e! 0þ integral IðeÞ becomes

lim
e!0þ

IðeÞ ¼
1

z21
log

r1

r1 � z1
�

1

r1z1

� �r1¼x1þl�

r1¼x1�l�
þ lim

e!0þ

2

ez1
.

By definition of finite part of Hadamard of divergent
integral IðeÞ (see [41, p. 16]), it turns out:

Z
¼

x1þl�

x1�l�

1

r21

1

z1 � r1
dr1

¼
1

z21
log

r1

r1 � z1
�

1

r1 z1

� �r1¼x1þl�

r1¼x1�l�
. ð26Þ

In view of (26), it is then proved that the finite part of
Hadamard of integral (22) when x 2 T1 coincides with
expression (25).
Considering a different approach to boundary integral

equations, the so-called ‘‘limit to the boundary’’ technique
[36], the limit to the boundary process F�ppðzÞ s:t: T1Lz!

x 2 T1 can be performed. By taking x2! 0� and
in 2D elasticity. Eng Anal Bound Elem (2007), doi:10.1016/
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setting13nðxÞ ¼ ð0; 1Þ, it holds:

lim
x2!0�

Lpp ¼
G

4pð1� nÞ
1

z21

1 0

0 1

� �
,

lim
x2!0�

App ¼ 0,

lim
x2!0�

Spp ¼ �
G

2pð1� nÞ
1

r1z1

1 0

0 1

� �
,

lim
x2!0�

Hpp ¼ 0.

Eq. (25) is obtained immediately from (23).
One concludes therefore that when xeT̄ j, the hypersin-

gularities in integral (22) are not triggered off and F�ppðxÞ is
a classical Lebesgue integral. On the contrary, as x 2 Tj

‘‘integral’’ (22) does not exist in a Lebesgue sense but it
assumes the distributional nature of finite part of
Hadamard. In a different approach, the same result is
obtained by limit to the boundary process.

4.2.3. Unbounded domain

Consider limit (21), that is

F1ppðxÞ ¼ lim
l�!1

F�ppðxÞ.

From the definition of local coordinate system L, l� ! 1

implies x1 � l� ! 1, whereas x1 þ l� as well as z1 are
constants that do not depend on l�. Matrices Spp and Hpp

(see Appendix E) permit to prove that

lim
l�!1

1

r2
Spp þ

1

r4
Hpp

� �
r1¼x1�l�

¼ 0.

Moreover, since matrices Lpp, App do not depend on r1, it is
straightforward to show that

lim
l�!1

Lpp log
r2

ðz1 � r1Þ
2

� �
r1¼x1�l�

¼ 0

and that, being x2p0 in L,

lim
l�!1

App arctan
r1

x2

� �
r1¼x1�l�

¼ �
p
2
App.

One concludes therefore that

F1ppðxÞ ¼ y10 Lpp log
r2

ðz1 � r1Þ
2
þ App arctan

r1

x2

��

þ
1

r2
Spp þ

1

r4
Hpp

�r1¼x1þl�

�
p
2
App

)
. ð27Þ

5. Proposal of a constant-logarithmic infinite boundary

element: hypersingular collocation approach

Consider an unbounded domain T1 (T1 ¼
def
½y10;1½ in

Fig. 1), assumed to be a part of a decomposition Gh of a
13A free term comes into play in the limit process if n1a0: for details

onto this point see [42].
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polygonal unbounded boundary G. In order to approx-
imate problem (1) via the hypersingular collocation
approach, consider a matrix of shape functions w1h ðyÞ

defined over T1 as

w1h ðyÞ ¼
def c1ðyÞ 0

0 c2ðyÞ

 !
(28)

thus allowing shape function c1ðyÞ in direction y1 to
be different from c2ðyÞ in direction y2. Let c1ðyÞ repro-
duce the constant asymptotical behavior of Eq. (14a)
and c2ðyÞ reproduce the asymptotical logarithmic behavior
of Eq. (14b), that is assume in a global coordinate
system:

c1ðyÞ ¼ 1; c2ðyÞ ¼ log e
y

y10

� �
, (29)

where e stands for Nepero’s number. Global shape
functions wh in Eq. (7) are defined again as in Eq. (9). By
construction, whðyÞ are continuous over Gh; their support is
unbounded and coincides with Th.
5.1. Constant shape function

Analytical integrations for constant shape functions on
bounded domains have been performed in [30].
By assuming for the unbounded domain the path of
reasoning and notation of Section 4.2.3, it is straightfor-
ward to getZ

T1

Gppðr; nðxÞ; lðyÞÞc1ðyÞdy

¼
G

4p
1

1� n
1

r2
Spp þ

1

r4
Hpp

� �r1¼x1þl�

ð30Þ

with r2 ¼ x2 and

Spp ¼ �2
n2r1 � 3n1r2 r � n;

r � n n2r1 þ n1r2

 !r1¼x1þl�

,

Hpp ¼ 4r22

n2r1 � n1r2 r � n

r � n �n2r1 þ n1r2

 !r1¼x1þl�

.

5.2. Logarithmic shape function

5.2.1. Hadamard’s finite part

Assume for the unbounded domain the path of reason-
ing and notation of Section 4.2.3. Furthermore, as a
particular instance of xeT1, consider x2 ¼ 0 (see Fig. 6).
The expression of hypersingular kernel Gpp simplifies as in
Eq. (24) and analytical integration can be performed by
splitting in the local reference L

c2ðyÞ ¼ log
e

y10

� �
þ log z1 � r1ð Þ
in 2D elasticity. Eng Anal Bound Elem (2007), doi:10.1016/
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with z1 ¼ x1 þ y10 þ l�. Integrating the constant factor as
in Eq. (30), straightforwardly one getsZ

T1

Gppðr; nðxÞ; lðyÞÞ logðz1 � r1Þdy ¼

z1a0!�
G

4p
1

1� n

n2 n1

n1 n2

 !

r1 logðr
2
1Þ þ y10 logðy

2
10Þ

r1ðr1 þ y10Þ

� �r1¼x1þl�

z1 ¼ 0!�
G

4p
1

1� n

n2 n1

n1 n2

 !

�
2þ logðr21Þ

r1

� �r1¼x1þl�

. ð31Þ

By the same path of reasoning of Section 4.2.2, it can be
proved that the finite part of Hadamard of integral reads as
follows:Z
¼

T1

Gppðr; nðxÞ; lðyÞÞc2ðyÞdy

¼ �
G

4p
1

1� n

n2 n1

n1 n2

 !

�
2 log e

y10


 �
r1

þ
r1 logðr

2
1Þ þ y10 logðy

2
10Þ

r1ðr1 þ y10Þ

2
4

3
5

r1¼x1þl�

.

Table 1

Numerical approximation of stresses at points Að0; 1Þ, Bð1; 1Þ, and Cð1; 10Þ
via collocation BEM

Point Að0; 1Þ Point Bð1; 1Þ Point Cð1; 10Þ

sxx sxy syy sxx sxy syy sxx sxy syy

An. �0.182 0 �0.818 �0.225 0.255 �0.480 �0.00162 0.01224 �0.1240

1 �0.014 � �0.722 �0.091 0.318 �0.311 0.00960 0.00732 �0.0644

2 0.014 � �0.748 �0.103 0.302 �0.269 0.00931 0.00713 �0.0634

4 0.016 � �0.733 �0.104 0.293 �0.256 0.00912 0.00702 �0.0628

8 0.016 � �0.721 �0.103 0.287 �0.252 0.00901 0.00695 �0.0625

16 0.017 � �0.714 �0.103 0.283 �0.250 0.00895 0.00691 �0.0623

32 0.017 – �0.710 �0.102 0.281 �0.248 0.00891 0.00688 �0.0622

64 0.017 � �0.709 �0.102 0.280 �0.247 0.00890 0.00687 �0.0621
5.2.2. Lebesgue integrals approximation

It has not been possible to find out a closed form of
integral (7) for logarithmic shape function c2ðyÞ

when x2a0 in local reference L defined in Section 4.
Accordingly, integral (7) has been approximated as
follows. By the change of variable y1 ¼ x1 � r1 it comes
out:Z

T1

Gppðr; nðxÞ; lðyÞÞc2ðyÞdy

¼

Z x1�y10

�1

Gppðr; nðxÞ; lðyÞÞ log e
x1 � r1

y10

� �
dr1.

If x1 � y1040, the last integral can be split into two
parts:Z 0

�1

Gppðr; nðxÞ; lðyÞÞ log e
x1 � r1

y10

� �
dr1

þ

Z x1�y10

0

Gppðr; nðxÞ; lðyÞÞ log e
x1 � r1

y10

� �
dr1

and by the variable change

r1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22

1

Z2
� 1

� �s
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they become

Z 1

0

ĜppðrðZÞ; nðxÞ; lðyÞÞ log x1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22

1

Z2
� 1

� �s !
e

y10

" #

�
1

jr2j

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p dZ

þ

Z x1�y10

0

Gppðr; nðxÞ; lðyÞÞ log e
x1 � r1

y10

� �
dr1 ð32Þ

having defined by Ĝpp the smooth function:

ĜppðrðZÞ; nðxÞ; lðyÞÞ ¼ ðr � rÞ GppðrðZÞ; nðxÞ; lðyÞÞ.

The latter factor in Eq. (32) shows no singularity and can
be approximated by a usual Gauss quadrature rule. The
former integral shows two weak boundary singularities,
with different nature: at Z ¼ 0 the argument of the
logarithm becomes undefined, whereas at Z ¼ 1 the
argument of the square root at the denominator vanishes.
Both singularities can be efficiently approximated by
means of smoothing transformations, as proposed in [31].

6. A benchmark: plane strain finite strip problem

Consider the problem described in Section 4.1, with a
uniformly distributed load of p ¼ 1 daN/m over a finite
strip of 2m. The assumed material parameters are as
follows: E ¼ 540MPa, n ¼ 0:35. Finite element analysis
(via the commercial code Abaqus [6]) as well as hypersin-
gular collocation boundary element analysis (via a self-
implemented computer code) have been considered;
comparisons have been made in terms of the stress
components at point P ¼ ð0; 1Þ (coordinates in meters).
The relative error in evaluating the components sxx and syy

is plotted with reference to a square region, in order to
show the overall precision of the two techniques.

6.1. Boundary elements analyses

BE analyses have been carried out in three steps. First, a
mesh calibration has been performed within the load-strip,
in the so-called core region [22], making use of no elements
outside it, neither finite nor infinite.
in 2D elasticity. Eng Anal Bound Elem (2007), doi:10.1016/
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Table 2

Numerical approximation at points Að0; 1Þ, Bð1; 1Þ, and Cð1; 10Þ via collocation BEM

G #BE Point Að0; 1Þ Point Bð1; 1Þ Point Cð1; 10Þ

sxx sxy syy sxx sxy syy sxx sxy syy

½�1; 1� 16 0.017 �0.714 �0.103 0.283 �0.250 8:95E� 03 6:91E� 03 �6:23E� 02

½�3; 3� 48 �0.115 �0.825 �0.146 0.269 �0.493 1:48E� 02 1:07E� 02 �8:43E� 02

½�5; 5� 80 �0.150 �0.829 �0.185 0.259 �0.500 1:79E� 02 1:27E� 02 �9:85E� 02

½�10; 10� 160 �0.173 �0.830 �0.210 0.257 �0.501 1:78E� 02 1:37E� 02 �1:18E� 01

½�20; 20� 320 �0.183 �0.830 �0.220 0.257 �0.501 1:03E� 02 1:30E� 02 �1:26E� 01

An. �0.182 �0.818 �0.225 0.255 �0.480 �1:62E� 03 1:22E� 02 �1:24E� 01

Table 3

Numerical approximation of stresses at points Að0; 1Þ, Bð1; 1Þ, and Cð1; 10Þ via collocation BEM

G #BE Point Að0; 1Þ Point Bð1; 1Þ Point Cð1; 10Þ

sxx sxy syy sxx sxy syy sxx sxy syy

½�1; 1� 32 0.017 �0.710 �0.102 0.281 �0.248 0.009 0.007 �0.062

½�5; 5� 96 �0.151 �0.829 �0.185 0.259 �0.503 0.018 0.013 �0.099

½�13; 13� 160 �0.179 �0.830 �0.215 0.256 �0.504 0.015 0.013 �0.123

½�29; 29� 224 �0.187 �0.830 �0.223 0.256 �0.504 0.006 0.013 �0.128

½�61; 61� 288 �0.190 �0.830 �0.226 0.256 �0.504 0.002 0.013 -0.128

An. �0.182 �0.818 �0.225 0.255 �0.480 �1:62E� 03 1:22E� 02 �1:24E� 01

Table 4

Fine mesh

Intervals ½�61;�29� ½�29;�13� ½�13;�5� ½�5;�2� ½�2;�1� ½�1; 1� ½1; 2� ½2; 5� ½5; 13� ½13; 29� ½29; 61�
BEM 32 32 32 24 16 64 16 24 32 32 32

Length 1 1/2 1/4 1/8 1/16 1/32 1/16 1/8 1/4 1/2 1

#1 336 BE

#2 272 BE

#3 208 BE

#4 144 BE

#5 168 BE

Table 5

Numerical approximation of stresses at points Að0; 1Þ, Bð1; 1Þ, and Cð1; 10Þ via collocation BEM

Mesh Point Að0; 1Þ Point Bð1; 1Þ Point Cð1; 10Þ

sxx sxy syy sxx sxy syy sxx sxy syy

#4 �0.146 �0.824 �0.184 0.258 �0.491 0.01774 0.01257 �0.097

#3 �0.174 �0.824 �0.213 0.256 �0.492 0.01523 0.01326 �0.121

#2 �0.182 �0.824 �0.221 0.256 �0.492 0.00623 0.01257 �0.126

#1 �0.185 �0.824 �0.224 0.256 �0.492 0.002 0.012 �0.126

An. �0.182 �0.818 �0.225 0.255 �0.480 �1:62E� 03 1:22E� 02 �1:24E� 01

% err 1.66 0.75 0.36 0.46 2.48 � 1.69 1.43
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Table 1 compares the analytical solution (Eq. (11)) and
the numerical approximation via the standard collocation
BEM on a uniform discretization of the core region made
of 2n linear boundary elements, n ¼ 0; 1; . . . ; 6. It shows
Please cite this article as: Salvadori A. Infinite boundary elements
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that the unbounded boundary outside of the core region
plays a major role in the stress analysis under the load strip,
measured at points Að0; 1Þ, Bð1; 1Þ, and Cð1; 10Þ. In Table 2
the uniformly discretized domain consists of elements of 1

8
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Table 6

Benchmark on the characteristic length x1

Point Að0; 1Þ Point Bð1; 1Þ Point Cð1; 10Þ

sxx sxy syy sxx sxy syy sxx sxy syy

Mesh #4 �0.146 �0.824 �0.184 0.258 �0.491 0.01774 0.01257 �0.097

x1 13 �0.165 �0.824 �0.205 0.256 �0.491 0.01781 0.01344 �0.113

29 �0.177 �0.824 �0.216 0.256 �0.492 0.01082 0.01284 �0.125

61 �0.184 �0.824 �0.223 0.256 �0.492 0.00036 0.01213 �0.131

100 �0.187 �0.825 �0.227 0.256 �0.492 �0.0066 0.01179 �0.134

1000 �0.194 �0.825 �0.234 0.256 �0.492 �0.0281 0.01102 �0.140
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Fig. 7. Displacement field along the boundary.
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length. The first row coincides with sixth row in Table 1,
that is merely the core region has been discretized; the
second row refers to a discretization of 48 boundary
elements, that is the interval ½�3; 3� along the x-axis has
been discretized, and so on. Table 2 shows, as expected,
that uniform meshes are not the best choice for this class of
problems. In order to obtain good approximations in the
vicinity of the load strip, fine meshes are required in the
core region. On the other hand, in the far field, coarse
meshes permit to enlarge the discretized domain without
loss of accuracy in the region where stresses are higher.
This is clearly stated in Table 3 in which 32 boundary
elements of different lengths are considered in intervals
½�61;�29�, ½�29;�13�, ½�13;�5�, ½�5;�1�, ½�1; 1� and
their positive counterparts. More accurate results have
been obtained from the last analysis (G ¼ ½�61; 61�) by
refining the mesh around and inside the core region. Five
meshes are described in Table 4: meshes #1 to #4 have the
same discretization in the overlapping region and differ as
Please cite this article as: Salvadori A. Infinite boundary elements
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to the extension of the modeled surface. Mesh #5 differs
from mesh #4 by a finer discretization around the two
nodes where a jump in the distributed load comes into play.
Results obtained with meshes #1 to #4 are collected in
Table 5: relative error pertains to mesh #1.
As a second step in boundary elements numerical

analysis, infinite polynomial BE have been used in mesh
#4, that, as seen in Table 4, is defined on interval ½�5; 5� by
144 boundary elements. Polynomial decaying infinite
elements are characterized by the unknown length x1,
which optimal value might be identified by the obtained
accuracy: this is the goal of Table 6. It is remarkable that at
x1 ¼ 61 results show a comparable accuracy with results
obtained with mesh #1. Accordingly, the polynomial
decaying element reveals effective since it is ‘‘accuracy
equivalent’’ to 96 boundary elements. Notwithstanding, the
accuracy decreases as expected when x1 becomes too high,
since the shape function (8) fails to simulate the right
solution behavior. As a consequence, an optimal length for
in 2D elasticity. Eng Anal Bound Elem (2007), doi:10.1016/
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Fig. 8. Absolute error on the stress field in the core region by using the polynomial infinite boundary element on mesh #4.
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Fig. 9. Absolute error on the stress field in the core region by using the const log infinite boundary element on mesh #5 (color levels as in Fig. 8).
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x1 must be selected, which depends on the problem. Such
a parameter seems to be hardly identifiable for any
problem: polynomial decaying boundary elements seems
therefore to be unsuitable.

Further numerical analyses have been performed with
reciprocal decaying as well as with const/log infinite
boundary elements. A comparison in terms of the
displacement field on the boundary for meshes #1 and #4
by making use of all proposed infinite elements 14 is plotted
14x1 ¼ 61 for polynomial infinite elements.
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in Fig. 7: only the const–log element captures well the exact
behavior of horizontal displacements, which is not vanish-
ing at infinity. On the contrary, all elements reproduce
quite similarly the vertical displacement field along the
boundary of the core region.
Fig. 8 shows the absolute error in stress within the core

region due to mesh #4 with polynomial decaying infinite
elements when x1 ¼ 61. The absolute error manifests a
peak around the discontinuity of the external load: this
evidence lead to refine the discretization around these
points (mesh #5), in order to decrease the error peak.
in 2D elasticity. Eng Anal Bound Elem (2007), doi:10.1016/

dx.doi.org/10.1016/j.enganabound.2007.06.007
dx.doi.org/10.1016/j.enganabound.2007.06.007


ARTICLE IN PRESS

Table 7

Numerical approximation via collocation BEM

Mesh 1 element Að0; 1Þ Bð1; 1Þ

sxx sxy syy sxx sxy syy

#5 None �0.142 �0.819 �0.183 0.256 �0.481

#5 Reciprocal �0.165 �0.819 �0.208 0.256 �0.482

#5 Const/log �0.182 �0.820 �0.225 0.256 �0.482

An. �0.182 �0.818 �0.225 0.255 �0.480

Cð1; 10Þ Dð10; 1Þ

Mesh 1 element sxx sxy syy sxx sxy syy

#5 None 0.017 0.01213 �0.095 0.0130 0.00481 0.0180

#5 Reciprocal 0.0135 0.0131 �0.114 0.0127 0.00408 0.0207

#5 Const/log �0.0017 0.0124 �0.124 �0.127 0.00129 �0.000273

An. �0.00162 0.0122 �0.124 �0.126 0.00127 �0.000129

Table 8

Comparison in terms of accuracy at P ¼ ð0; 1Þ

Analysis sxx (daN/m2) % error syy (daN/m2) % error

Analytical �0.18169 – �0.81831 –

FEM

#1 �0.0691 �0.095 �0.095 �0.0691 55 �0.8050 �0.8406 �0.8406 �0.8050 0.55

#2 �0.1181 �0.1424 �0.1424 �0.1181 28 �0.8013 �0.8366 �0.8366 �0.8013 0.08

#3 �0.1417 �0.1150 �0.1150 �0.1417 29 �0.8374 �0.8010 �0.8010 �0.8374 0.11

#4 �0.1584 �0.1321 �0.1321 �0.1584 20 �0.8368 �0.8005 �0.8005 �0.8368 0.04

#5 �0.1632 �0.1905 �0.1905 �0.1632 3 �0.7998 �0.8366 �0.8366 �0.7998 0.01

Fig. 10. Absolute error on the stress field in the core region (color levels as in Fig. 8).
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Fig. 9 represents the absolute error in stress within the core
region due to mesh #5 with const/log decaying infinite
elements.
Please cite this article as: Salvadori A. Infinite boundary elements
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Comparisons in terms of accuracy are shown in Table 7
that again refers to mesh #5. The reciprocal decaying
boundary element reveals to be not much accurate in
in 2D elasticity. Eng Anal Bound Elem (2007), doi:10.1016/
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evaluating the sxx component of the stress tensor. This
evidence might be related to the incorrect behavior of the
approximated solution in the far field with respect to
the problem solution (14a), clearly shown in Fig. 7a. On the
contrary, using a const/log element which reproduces
the correct asymptotical behavior gives rise to extremely
good approximations in the whole core region. This
conclusion is worth noting because the use of such an
element seems to be quite unusual.

6.2. Finite elements analyses

Five meshes have been considered. Four of them
introduce artificial boundaries, as usual in a finite domain
technique. In the last analysis infinite elements have been
used. In analysis #1 a 10m side square region has been
discretized in a uniform way with four nodes square finite
elements of side length 0.1m. Null vertical displacements
have been imposed along the lowest side (at y ¼ 10m),
whereas a zero horizontal displacement has been imposed
where the lowest side crosses the vertical symmetry axis.
The vertical boundaries are assumed as traction free. In
analysis #2 the same geometry is taken, though along the
two vertical sides horizontal displacements are set equal to
zero.

Analysis #3 makes use of the same finite elements
of analysis #1, but the square region side length is
doubled, keeping constant the element size. Constraints
are taken as in analysis #1. Analysis #4 is based on the
same geometry of analysis #3 but is constrained as in
analysis #2.

In analysis #5 the half-plane discretization is made by
adopting the same mesh of analysis #1 and suitably adding
a set of 300 infinite elements of type CINPE4, implemented
in Abaqus. These elements, according to [6], refer to the
work by [18]. They belong to the mapped kind and are
characterized by a decaying function of the type 1=r2,
where r is the distance from a ‘‘pole’’, whose choice is not
always straightforward.

FE and BE discretizations are only partially comparable:
both BE and FE analysis #5 discretize a 10m surface
and use infinite elements to extend it, but while FE
discretization is uniform (all the square elements have sides
10 cm long), BE discretization is graded and the loaded
surface is discretized by elements 3 cm long (meshes #1
to #4).

6.3. Comparisons

A comparison between FEM analyses and the analytical
solution in terms of accuracy of the stress tensor
approximation at point P ¼ ð0; 1Þ is performed in Table
8. In the FEM analysis point P is common to four
elements. Stress components are evaluated at P by
extrapolation on each element and are represented in
columns 2 and 4. The percentage error in columns 3 and 5
refers to the mean value.
Please cite this article as: Salvadori A. Infinite boundary elements
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Figs. 8 and 9 show the error contours related to sxx (left)
and syy (right), obtained by BE analysis, when, respec-
tively, polynomial infinite boundary elements and con-
st–log infinite boundary elements are used. Fig. 10 refers to
FE results in the discretized region when infinite elements
are present at the boundary (mesh #5). The high level of
accuracy obtained by using a const–log infinite boundary
element is evident.
7. Conclusions and further developments

In the present note, infinite boundary elements have been
formulated for static 2D problems and tested with a
standard example whose analytical solution is known.
Within the framework of hypersingular boundary

integral equations, a polynomial decaying, a reciprocal
decaying, and a constant–logarithmic infinite boundary
elements have been considered. The polynomial decaying
formulation furnishes good results and memory saving
with respect to a truncated mesh provided that a
numerical parameter is suitably chosen. This drawback
can be overcome by the other two formulations.
A rationale is given for the use of reciprocal decaying
shape functions, by comparing the 2D analytical solution
for a strip load with the 3D Boussinesque’s solution for a
rectangular load when one side of the rectangle tends to
infinity.
The const–log infinite boundary element proves to be

effective in enhancing the accuracy of the stress field,
without incrementing the computational cost of the
analysis.
Further attention deserves the symmetric Galerkin

formulation of the problem: a further publication will be
devoted to this topic.
Appendix A. Fundamental solutions

Point load on an elastic half-plane: The fundamental
solution of Flamant and Boussinesque for displacements
reads as follows—see also [37]:

Fuðx� x; yÞ ¼
1þ n
pE

�

y
�xþ x

ðx� xÞ2 þ y2
þ ð�1þ 2nÞ arctan

�xþ x

y

� �

1�
ðx� xÞ2

ðx� xÞ2 þ y2
þ ð1� nÞ logðb2Þ � ð1� nÞ logððx� xÞ2 þ y2Þ

2
66664

3
77775.

ð33Þ

The fundamental solution of Flamant and Boussinesque
for stresses reads as follows—see also [3]-:

Fsðx� x; yÞ ¼
�2y

pððx� xÞ2 þ y2Þ
2

�
ðx� xÞ2 ð�xþ xÞy

ð�xþ xÞy y2

" #
. ð34Þ
in 2D elasticity. Eng Anal Bound Elem (2007), doi:10.1016/
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Point load on an elastic half-space: By defining

r ¼
def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xÞ2 þ ðw� yÞ2 þ z2

q
, the fundamental solution

of Boussinesque for displacements reads as follows—
see also [3]:

Buðx� x; y� w; zÞ ¼
k
2r

2ð1� nÞ þ
z2

r2

� �
. (35)

Appendix B. Mathematica subroutines

3D analysis:
Variable definition

r ¼ Sqrt ½ðx� xpÞ^2þ ðy� ypÞ^2þ zp^2�;

Uz ¼ chi 1=rð2ð1� vÞ þ zp^2=r^2Þ;
Integration on the load surface

fx ¼ Simplify½Integrate½Uz; fx;�1;1g��;
uz ¼ FullSimplify½Integrate½fx; fy;�b=2;b=2g�;
Trig�4True�;
Projection on the y ¼ 0 plane

uzb ¼ FullSimplify[uz/.yp�4 0, Trig �4 True]

Expansion around infinity

uzb00 ¼ FullSimplify½Series½uzb; fb; Infinity;0g��
2D analysis:
Variable definition

Uy ¼ 2chið�ðx� xpÞ^2ðx� xpÞ^2þ zp^2þ ð�1þ vÞ

Log½ðx� xpÞ^2þ zp^2� � 2ð�1þ vÞ Log½b� þ 1Þ

Integration on the load strip

uy ¼ FullSimplify½Integrate½Uy; fx;�1;1g��
Comparisons:
FullSimplify½uzb00� uy;Trig�4True�
Appendix C. Green’s functions for linear elasticity

Define with r ¼ x� y and r ¼ krk. Moreover, let nðxÞ

denote the outward normal at the boundary G at x.
Analogously, let lðy denote the outward normal at the
boundary G at y. Green’s function Gpp for linear elasticity
reads as follows:

Gppðr; nðxÞ; lðyÞÞ

¼
G

p
1

r2
SYMðr	 nÞ

r � l

r2
þ SYMðr	 lÞ

r � n

r2

� �

þ
Gn

pð1� nÞ
1

r2
r	 r

r2
ðl � nÞ �

4

n
ðr � nÞðr � lÞ

r2

� ��

þ
ðr � nÞðr � lÞ

r2
þ
ð1� 2nÞ

2n
ðl � nÞ

� �
Iþ SYMðl	 nÞ

�
.

For the 2D plane stress case, one needs to substitute n with
n� ¼ n

1þn.
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Appendix D. Basic Lebesgue integrals

The following identities, that can be easily proved when
x2a0, are the keynote of the inner integration:Z x1þl�

x1�l�

1

r2
1

z1 � r1
dr1

					
r2¼x2

¼
z1 arctan

r1
x2


 �
x2 x2

2 þ z21
�  þ log

r2
1
þx2

2

ðr1�z1Þ
2


 �
2ðx2

2 þ z21Þ

2
4

3
5

r1¼x1þl�

r1¼x1�l�

,

Z x1þl�

x1�l�

1

r4
1

z1 � r1
dr1

					
r2¼x2

¼
�x2

2 þ r1z1

2x2
2ðr

2
1 þ x2

2Þðx
2
2 þ z21Þ

þ
ð3x2

2z1 þ z13Þ arctan r1
x2


 �
2x3

2ðx
2
2 þ z21Þ

2

2
4

þ
log

r2
1
þx2

2

ðr1�z1Þ
2


 �
2ðx2

2 þ z21Þ
2

3
5

r1¼x1þl�

r1¼x1�l�

,

Z x1þl�

x1�l�

1

r4
r1

z1 � r1
dr1

					
r2¼x2

¼
�r1 � z1

2ðr21 þ x2
2Þðx

2
2 þ z21Þ

þ
ð�x2

2 þ z21Þ arctan
r1
x2


 �
2x2ðx

2
2 þ z21Þ

2

2
4

þ
z1 log

r2
1
þx2

2

ðr1�z1Þ
2


 �
2ðx2

2 þ z21Þ
2

3
5

r1¼x1þl�

r1¼x1�l�

,

Z x1þl�

x1�l�

1

r4
r21

z1 � r1
dr1

					
r2¼x2

¼
x2
2 � r1z1

2ðr21 þ x2
2Þðx

2
2 þ z21Þ

þ
ð�ðx2

2z1Þ þ z31Þ arctan
r1
x2


 �
2x2ðx

2
2 þ z21Þ

2

2
4

þ
z21 log

r2
1
þx2

2

ðr1�z1Þ
2


 �
2ðx2

2 þ z21Þ
2

3
5

r1¼x1þl�

r1¼x1�l�

,

Z x1þl�

x1�l�

1

r6
1

z1 � r1
dr1

					
r2¼x2

¼
�x2

2 þ r1z1

4x2
2ðr

2
1 þ x2

2Þ
2
ðx2

2 þ z21Þ
þ
�4x4

2 þ 7r1x2
2z1 þ 3r1z31

8x4
2ðr

2
1 þ x2

2Þðx
2
2 þ z21Þ

2

2
4

þ
ð15x4

2z1 þ 10x2
2z

3
1 þ 3z51Þ arctan

r1
x2
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8x5

2ðx
2
2 þ z21Þ

3

þ
log

r2
1
þx2

2

ðr1�z1Þ
2
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2ðx2

2 þ z21Þ
3

3
5

r1¼x1þl�

r1¼x1�l�

,
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Z x1þl�

x1�l�

1

r6
r1

z1 � r1
dr1

					
r2¼x2

¼
�r1 � z1

4ðr21 þ x2
2Þ

2
ðx2

2 þ z21Þ
þ
�3r1x2

2 � 4x2
2z1 þ r1z

2
1

8x2
2ðr

2
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2Þðx
2
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2

2
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þ
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2
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2
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2
ðx2
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þ
�3r1x2

2z1 � 4x2
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2
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8x2
2ðr

2
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þ
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¼
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2z1
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2Þ

2
ðx2
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þ
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þ
ð�x4

2 � 6x2
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1 þ 3z41Þ arctan

r1
x2


 �
8x2ðx
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Appendix E. Tables

In this appendix, tables Lpp, App, Spp, Hpp are collected.

klog ¼
G

4pð�1þ nÞðx2
2 þ z21Þ

3
,

Lpp½1; 1� ¼ klogð�n2x4
2 � 2n1x3

2z1 þ 6n2x
2
2z21 þ 6n1x2z

3
1 � n2z41Þ,

Lpp½1; 2� ¼ klogð�n1x4
2 þ 6n2x3

2z1 þ 6n1x2
2z21 � 2n2x2z31 � n1z41Þ

¼ Lpp½2; 1�,

Lpp½2; 2� ¼ klogð3n2x4
2 þ 6n1x3

2z1 � 6n2x
2
2z21 � 2n1x2z

3
1 � n2z41Þ,
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karc ¼
G

pð�1þ nÞðx2
2 þ z21Þ

3
,

App½1; 1� ¼ karcð�2n2x3
2z1 � 3n1x

2
2z21 þ 2n2x2z31 þ n1z

4
1Þ,

App½1; 2� ¼ karcð�n2x
4
2 � 2n1x3

2z1 þ 3n2x
2
2z21 þ 2n1x2z31Þ

¼ App½2; 1�,

App½2; 2� ¼ karcð�n1x4
2 þ 4n2x3

2z1 þ 3n1x2
2z

2
1Þ,

kS ¼ kH ¼
G

2pð�1þ nÞðx2
2 þ z21Þ

2
,

Spp½1; 1� ¼ kSðx
2
2ð�3n2r1 þ n1x2Þz1 � 4x2ðn1r1 þ n2x2Þz

2
1

� ð�n2r1 þ 3n1x2Þz
3
1Þ,

Spp½1; 2� ¼ kSð�2n2r1x
3
2 � 3x2

2ðn1r1 þ n2x2Þz1

� 2x2ð�n2r1 þ 2n1x2Þz
2
1 þ ðn1r1 þ n2x2Þz

3
1Þ

¼ Spp½2; 1�,

Spp½2; 2� ¼ kSð�2x3
2ðn1r1 þ n2x2Þ � x2

2ð�5n2r1 þ 3n1x2Þz1

þ 2x2ðn1r1 þ n2x2Þz
2
1 þ ðn2r1 þ n1x2Þz

3
1Þ,

Hpp½1; 1� ¼ kH ð2x5
2ðn1r1 þ n2x2Þ þ 2x4

2ð�n2r1 þ n1x2Þz1

þ 2x3
2ðn1r1 þ n2x2Þz

2
1 þ 2x2

2ð�n2r1 þ n1x2Þz
3
1Þ,

Hpp½1; 2� ¼ kH ð2x5
2ð�n2r1 þ n1x2Þ � 2x4

2ðn1r1 þ n2x2Þz1

� 2x3
2ð�n2r1 þ n1x2Þz

2
1 � 2x2

2ðn1r1 þ n2x2Þz
3
1Þ

¼ Hpp½2; 1�,

Hpp½2; 2� ¼ kH ð�2x5
2ðn1r1 þ n2x2Þ � 2x4

2ð�n2r1 þ n1x2Þz1

� 2x3
2ðn1r1 þ n2x2Þz

2
1 � 2x2

2ð�n2r1 þ n1x2Þz
3
1Þ,
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