
ARTICLE IN PRESS

Engineering Analysis with Boundary Elements ] (]]]]) ]]]– ]]]
Contents lists available at ScienceDirect
Engineering Analysis with Boundary Elements
0955-79

doi:10.1

E-m

Pleas
Boun
journal homepage: www.elsevier.com/locate/enganabound
The method of external excitation for solving Laplace singular
eigenvalue problems
S.Yu. Reutskiy

Science and Technology Center of Magnetism of Technical Objects, The National Academy of Science of Ukraine, Industrialnaya St.,19, 61106 Kharkov, Ukraine
a r t i c l e i n f o

Article history:

Received 22 January 2008

Accepted 30 April 2008

Keywords:

Singular eigenvalue problem

Helmholtz equation

L-shaped domain

Cracked beam

Fourier–Bessel basis functions
97/$ - see front matter & 2008 Elsevier Ltd. A

016/j.enganabound.2008.04.010

ail address: sergiyreutskiy@gmail.com

e cite this article as: Reutskiy SYu. T
d Elem (2008), doi:10.1016/j.engana
a b s t r a c t

In this paper a new numerical technique for Laplace eigenvalue problems in the plane: r2wþ k2w ¼

0; x 2 O � R2; B½w� ¼ 0;x 2 @O is presented. We consider the case when the solution domain has

boundary singularities like a reentrant corner, or an abrupt change in the boundary conditions. The

method is based on mathematically modelling of physical response of a system to excitation over a

range of frequencies. The response amplitudes are then used to determine the resonant frequencies. We

use the local Fourier–Bessel basis functions to describe the behaviour of the solution near the singular

point. The results of the numerical experiments justifying the method are presented. In particular,

the L-shaped domain and the cracked beam eigenvalue problems are considered.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper we continue the development of the meshless
technique first presented in [1–4] for solution of eigenvalue
problems of the type

r2wþ k2w ¼ 0; x 2 O � R2; B½x;w� ¼ 0; x 2 qO. (1)

Here the boundary operator B½. . .� specifies the boundary condi-
tions and is considered to be of the two types: the Dirichlet B½w� ¼

w and Neumann B½w� ¼ qw=qn conditions. The eigenvalue pro-
blem is to find such real k for which there exist non-null functions
w verifying (1). Here our study is focused on the case when
the solution domain O has boundary points like a reentrant
corner, or points with an abrupt change in the boundary
conditions (see Fig. 1). This problem is important as a component
in the design of many engineering devices, for example, in
determining the propagation characteristics of hollow metallic
waveguides.

Problem (1) is a classical problem of mathematical physics [5].
However, apart from a few analytically solvable cases with simple,
regular domains, there is no general solution of this problem.
Therefore, a large number of numerical methods have been
developed for many practical problems.

The boundary methods, in particular, the method of funda-
mental solutions (MFS) [6] are convenient in application to
problem (1). A general approach is as follows. First, using the MFS
approximation, one gets a homogeneous linear system AðkÞq ¼ 0
ll rights reserved.
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with matrix elements depending on the wave number k. To obtain
the non-trivial solution the determinant of this matrix must
be zero:

det½AðkÞ� ¼ 0. (2)

To get the eigenvalues this equation must be investigated
analytically or numerically (see [7,8] for more detailed description
and the references).

However, this method faces great difficulties when applied to
the problems with boundary singularities. To overcome them, the
Trefftz method (TM) [9] and the method of particular solutions
(MPS) [10–12] were developed. These techniques use various
particular solutions of the eigenvalue equation which describe the
local behaviour of the eigenfunction near the singular points. It
can be shown that the convenient sets of particular solutions near
a corner of angle p=a are the functions:

jnðr; yÞ ¼ JnaðkrÞ sinðnayÞ; n ¼ 1;2; . . . ;1, (3)

jnðr; yÞ ¼ JnaðkrÞ cosðnayÞ; n ¼ 0;1; . . . ;1, (4)

jnðr; yÞ ¼ Jðn�1=2ÞaðkrÞ cosððn� 1=2ÞayÞ,

n ¼ 1;2; . . . ;1 (5)

for the three cases of the boundary conditions shown in
Fig. 2. Here ðr; yÞ is the local polar coordinate system with the
origin at the singular point. The advantage of these functions
(Fourier–Bessel functions) is that not only do they satisfy the
governing equation, they also satisfy the boundary conditions
along the adjacent line segments. For more details see the original
papers.
ation for solving Laplace singular eigenvalue problems. Eng Anal
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Fig. 1. The domains with boundary singularities. In the right part of the figure the solid line corresponds to the Dirichlet boundary condition and the dashed line denotes

Neumann’s condition. Here ðr; yÞ is the local polar coordinate system with the origin at the singular point.
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Fig. 2. A wedge with interior angle p=a and different boundary conditions along the adjacent line segments: (a) Dirichlet; (b) Neumann; and (c) mixed.
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In the paper presented we use these Fourier–Bessel functions
in the framework of the approach of [1–4]. This technique is based
on the following quite trivial statement. Let weðxÞ be a smooth
enough function defined in the solution domain below named as
the exciting field. If the response field wr is a solution of the
boundary value problem (BVP)

r2wr þ k2wr ¼ �r
2we � k2we, (6)

B½x;wr � ¼ �B½x;we�, (7)

then the sum wðx; kÞ ¼ wr þwe satisfies the initial problem (1). Let
FðkÞ be some norm of the solution w. This function of k has
extremums at the eigenvalues and, under some conditions
described below, can be used for their determining. The growth
of the amplitude of response near the eigenvalue is a sequence of
the degeneracy of the matrix of the linear algebraic system which
approximates the BVP. From this point of view the presented
approach is similar to the one described in [9], where the
degeneracy is measured by the infinitesimal values of the minimal
eigenvalue of the stiffness matrix of the problem.

Generally, no conditions are imposed on weðxÞ. As a result, one
gets the sequence of the inhomogeneous PDEs (6) and (7) with a
non-null right-hand side which can be solved by an appropriate
volume method. For example, the FD method and Kanza’s method
[13,14] were used in [15,16]. However, when the exciting field is
chosen in such a way that the right-hand side of (6) is equal to zero:

r2we þ k2we ¼ 0, (8)

then the response field wr also satisfies the homogeneous
Helmholtz equation

r2wr þ k2wr ¼ 0, (9)
Please cite this article as: Reutskiy SYu. The method of external exc
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which can be solved by a boundary method. Note that we can take
any solution of (8) as the exciting field, e.g. we can take it in the form
of a travelling field or as a field of a point source. On the other hand,
wr depends on this choice because it should satisfy the boundary
condition (7).

The 2D Helmholtz equation has the known fundamental
solutions Fðx� fÞ ¼ Hð1Þ0 ðkjx� fjÞ, where Hð1Þ0 is the Hankel func-
tion. This admits of applying very effective meshless numerical
techniques to solve (6) and (7): the MFS, the boundary knot
method [17], the boundary integral method [18]. When applied to
the non-singular problems these techniques provide a high
accuracy of solutions. To handle with the eigenvalue problems
with boundary singularities, we combine the global approxima-
tion of the solution by the Hankel function and the local
approximation by the Fourier–Bessel functions near the singular
points.

The outline of this paper is as follows: to explain the technique
of regularization we begin by describing the non-singular case in
Section 2. In Section 3, we present the extension of the algorithm
to problems with boundary singularities. Finally, in Section 4, we
give the conclusion.
2. Non-singular problems

2.1. One-dimensional case

To illustrate the method presented in the simplest case, let us
consider the wave equation in homogeneous medium q2

ttu ¼ q2
xxu

with the Dirichlet conditions at the endpoints of the interval ½0;1�,
i.e., uð0; tÞ ¼ uð1; tÞ ¼ 0. Considering the time dependence
uðx; tÞ ¼ e�iktwðxÞ, we get the one-dimensional analog of the
itation for solving Laplace singular eigenvalue problems. Eng Anal
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Helmholtz equation:

d2w

dx2
þ k2w ¼ 0, (10)

with the boundary conditions

wð0Þ ¼ wð1Þ ¼ 0. (11)

The problem admits of an analytic solution kn ¼ np.
According to the method presented in the paper, we take the

response field wr as a solution of the BVP:

d2wr

dx2
þ k2wr ¼ �

d2we

dx2
� k2we, (12)

wrð0Þ ¼ �weð0Þ; wrð1Þ ¼ �weð1Þ, (13)

then the sum w ¼ we þwr satisfies the initial BVP (10) and (11).
The right-hand side of (12) can be considered as an external
exciting source. If we take weðxÞ ¼ eikx, then the right-hand side of
(12) is equal to zero. This excitation corresponds to the travelling
wave which propagates along the x-axis from the source placed in
�1. Let us introduce the norm of the solution as

FðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNt

n¼1

jwðxnÞj
2

,
Nt

vuut , (14)

where the points xn are randomly distributed in ½0;1�. Note that
the method is not very sensitive to the number of points xn. But
what is more important, they should be placed in an irregular
way, i.e. where the eigenmode being investigated has non-zero
values. E.g. the mode wn ¼ sinðnpxÞ is equal to zero when x ¼ 1=n.
We also use the dimensionless form of this function:
FdðkÞ ¼ FðkÞ=Fð1Þ. The function FðkÞ characterizes the value of the
response of the system to the excitation with the wave number k.
Varying k, we get the response curve and calculate the eigenvalues
as positions of maxima.

However, this initial form of the method is unfit for our goal.
Indeed, looking for the response field in the form

wr ¼ Ar expðikxÞ þ Br expð�ikxÞ,

we get the linear system for Ar ;Br

Ar þ Br ¼ �weð0Þ ¼ �1,

Ar expðikÞ þ Br expð�ikÞ ¼ �weð1Þ ¼ � expðikÞ. (15)

For kanp the system has the unique solution Ar ¼ �1;Br ¼ 0.
Thus, w ¼ we þwr � 0 and FðkÞ ¼ 0 with the precision error. As a
result, the function FðkÞ is not smooth and does not admit of
finding the maxima with high precision. In Fig. 3 we place the
corresponding graph to illustrate this situation. The function FðkÞ

is computed using Nt ¼ 7 points xn randomly distributed in [0,1].
The two regularizing procedures which give a smooth response

curve were proposed in [1–3]. Applying the first one, we
substitute BVP (12) and (13) as follows:

d2wr

dx2
þ ðk2

þ iekÞwr ¼ 0,

wrð0Þ ¼ �weð0Þ; wrð1Þ ¼ �weð1Þ, (16)

where e40 is a small value. Here we take into account that for
weðxÞ ¼ eikx the right-hand side of (12) is equal to zero. This means
that we shift the spectra of differential operator from the real axis.
Resulting BVP has a unique non-zero solution for all real k.

As a result, we get the following system instead of (15):

Ar þ Br ¼ �1,

Areike þ Bre�ike ¼ �eik; ke ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þ iek

q
(17)

and w ¼ we þwra0. The dimensionless response curves FdðkÞ

depicted in Fig. 4 correspond to e ¼ 10�15 (left) and e ¼ 10�10
Please cite this article as: Reutskiy SYu. The method of external excit
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(right). The value e ¼ 10�15 is too small to regularize the solution.
The response curve FdðkÞ has separate maximums at the positions
of eigenvalues but is not smooth. The value e ¼ 10�10 provides a
smooth curve.

Another regularizing procedure can be described in the
following way. Let us introduce the constant shift Dk between
the wave numbers of the exciting source and the studied mode,
i.e., we take the exciting field weðxÞ ¼ weðx; kþ DkÞ ¼ exp½iðkþ
DkÞx� and get the linear system

Ar þ Br ¼ �1; Areik þ Bre�ik ¼ �eiðkþDkÞ, (18)

which provides w ¼ we þwra0. The solution exists for all k

except the eigenvalues kn when the system becomes degenerate.
However, due to iterative procedure of solution and rounding
errors we never solve the system with the exact kn. We observe
degeneration of the system as a considerable growth of the
solution in a neighbourhood of the eigenvalues.

The response curves corresponding to Dk ¼ 10�15 and 10�10

are absolutely similar to the curves depicted in
Fig. 4 for e ¼ 10�15 and 10�10. The value Dk ¼ 10�15 is too small
to regularize the solution. But the value Dk ¼ 10�10 yields a
smooth curve.

When comparing these two procedures, it should be noted that
they provide approximately the same precision in the calculations
of eigenvalues. However, dealing with a real PDE and using the
e-procedure, we have to perform the calculations with complex
variables. The use of the k-procedure provides calculations with
real variables only.

Having got a smooth response curve, we apply the following
simple algorithm. First, we localize these maxima of FðkÞ on the
intervals ½ai; bi�. Next, we solve the univariate optimization
problem inside each one. In particular, we apply Brent’s method
based on a combination of parabolic interpolation and bisection of
the function near to the extremum (see [20]).

2.2. Two-dimensional case

The same technique can be applied in the 2D case. Solving Eq.
(9), we look for the solution in the form of the linear combination

wrðxÞ ¼
XN

n¼1

qnHð1Þ0 ðkjx� fnjÞ. (19)

Here qn are free parameters of the problem and the source points
fn are placed outside the solution domain. The free parameters are
obtained from the boundary condition (7)

XN

n¼1

qnB½x;Hð1Þ0 ðkjx� fnjÞ� ¼ �B½x;we�. (20)
ation for solving Laplace singular eigenvalue problems. Eng Anal
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Fig. 4. The response curve for the one-dimensional eigenvalue problem in ½0;1�; e-procedure with e ¼ 10�15—left and e ¼ 10�10—right.

Table 1
The relative errors in solution of eigenvalue problem for the circle with the radius

R ¼ 1

# kðexÞ
i

MFS BKM BIM

1 2.404825560 1:1� 10�9 2:7� 10�9 1:2� 10�9

2 3.831705970 2:5� 10�12 3:7� 10�9 1:4� 10�11

3 5.135622307 1:0� 10�9 4:9� 10�9 1:0� 10�9

4 5.520078106 8:4� 10�10 3:2� 10�9 8:7� 10�9

5 6.380161905 1:4� 10�9 1:3� 10�9 1:4� 10�9

6 7.015586677 1:1� 10�9 4:9� 10�9 1:1� 10�9

7 7.588342447 1:6� 10�9 2:1� 10�9 1:6� 10�9

8 8.417244162 2:6� 10�9 9:4� 10�10 2:6� 10�9

9 8.653727935 2:5� 10�9 5:3� 10�9 2:5� 10�9

10 8.771483842 3:0� 10�9 6:5� 10�9 2:9� 10�9

15 11.086370039 1:8� 10�9 3:2� 10�9 1:8� 10�9

20 13.015200730 6:0� 10�10 1:8� 10�9 6:1� 10�9

Dirichlet condition.
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We take the exciting field in the form of the travelling wave

weðx; kÞ ¼ exp½ikðx cos uþ y sin uÞ�, (21)

which satisfies (8) for any angle of incidence u.
To find the unknowns qn we solve the collocation problem

XN

n¼1

qnB½xi;H
ð1Þ
0 ðkjxi � fnjÞ�

¼ �B½xi;weðxiÞ�; xi 2 qO; i ¼ 1; . . . ;Nc . (22)

The collocation points xi are uniformly distributed on the boundary.
The number of the collocation points Nc is taken twice as large as the
number of unknowns N and the resulting overdetermined linear
system is solved by the procedure of the least squares. Then, having
the solution wrðxÞ and consequently wðxÞ ¼ wrðxÞ þweðxÞ, we
introduce the norm FðkÞ like (14). Varying k, we get the response
curve and calculate the eigenvalues as positions of maxima.

To get a smooth response curve we utilize the regularizing
procedures described above. According to the e-procedure one we
substitute (9) by the equation

r2wr þ ðk
2
þ iekÞwr ¼ 0, (23)

where e40 is a small value. So, we replace k with ke ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þ iek

p
in

the left-hand side of (22).
Applying the k-procedure, we take the exciting field we instead

of (21) in the form

weðx; kþ DkÞ ¼ exp½iðkþ DkÞðx cos uþ y sin uÞ�. (24)

The data placed in Table 1 correspond to the following problem:
the solution domain O is the disk with the radius Rc ¼ 1 and the
Dirichlet condition w ¼ 0 is taken on the boundary
qO ¼ fx; yjx2 þ y2 ¼ R2

c g. The problem is solved using three
different solver of the Helmholtz equation in the framework of
the technique presented. They are:
(1)
P
B

The MFS described above.

(2)
 The boundary knot method (BKM) [17]. According to this

technique the approximate solution is looked for in the form:

wrðxÞ ¼
XN

n¼1

qnJ0ðkjx� fnjÞ,

cf. (19). Here the basis functions J0ðkjx� fjÞ are non-singular
and the source points fn can be placed on the boundary qO or
even inside the solution domain O. The rest part of the
algorithm is the same as the one considered above for the MFS.
(3)
 The null-field boundary integral equation method [18,19]. It is
based on the integral formulationZ

qO
Tðs;xÞwrðsÞdlðsÞ �

Z
qO

Uðs;xÞ
qwr

qn
ðsÞdlðsÞ

¼
0; x 2 R2

nO;

2pwrðxÞ; x 2 O;

8<
: (25)
lease cite this article as: Reutskiy SYu. The method of external exc
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where Uðs;xÞ and Tðs;xÞ are well-known Green’s function and its
normal derivative, respectively:

Uðs;xÞ ¼ �
1

2
ipHð1Þ0 ðkrÞ; Tðs;xÞ ¼ �

1

2
ipkHð1Þ1 ðkrÞ

yini

r
, (26)

where Hð1Þn is the nth-order Hankel function of the first kind,
r ¼ jx� sj, yi ¼ si � xi, and ni is the ith component of the outer
normal vector at the boundary point s. For the Dirichlet problem
we find the unknown normal derivative qw=qn as a solution of the
integral equationZ

qO
Uðs;xÞ

qwr

qn
ðsÞdlðsÞ

¼

Z
qO

Tðs;xÞwrðsÞdlðsÞ ¼ �
Z
qO

Tðs;xÞweðsÞdlðsÞ; x 2 G, (27)

where the auxiliary contour G contains the solution domain O and
does not intersect its boundary qO. So, the integrals are not
singular. Having got the boundary value of the normal derivative
qwr=qnðsÞ, we obtain the solution wrðxÞ in the interior of O

wrðxÞ ¼
1

2p

Z
qO

Tðs;xÞwrðsÞdlðsÞ �
1

2p

Z
qO

Uðs;xÞ
qwr

qn
ðsÞdlðsÞ. (28)

Note that when writing (27), we use the top part of (25) because
here x 2 R2

nO. And to write (28) we use the bottom part of (25) for
x which are inside O. Solving (27) we replace wrðsÞ by its known
boundary value wrðsÞ ¼ �weðsÞ from (7). In the case of Neumann’s
boundary condition we solve the equationZ

qO
Tðs;xÞwrðsÞdlðsÞ

¼

Z
qO

Uðs;xÞ
qwr

qn
ðsÞdlðsÞ ¼ �

Z
qO

Uðs;xÞ
qwe

qn
ðsÞdlðsÞ; x 2 G,

(29)
itation for solving Laplace singular eigenvalue problems. Eng Anal
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where qwr=qnðsÞ in the right-hand side is replaced by its known
boundary value qwr=qnðsÞ ¼ �qwe=qnðsÞ. Having the boundary
value wrðsÞ, we use the same formula (28) to get the solution wrðxÞ
in the interior of O. Then, having the solution wrðxÞ and
consequently wðxÞ ¼ wrðxÞ þweðxÞ, we introduce the norm FðkÞ

like (14). Varying k; we get the response curve and calculate the
eigenvalues as positions of maxima.

All the integrals in (27)–(29) are approximated by the finite
sums using an appropriate quadrature rule. The description of this
technique with more details can be found in [18,19] and in the
literature presented here.

The calculations presented in Table 1 correspond to the
following parameters: MFS utilizes N ¼ 40 sources placed on
the circle with the radius Ra ¼ 5; the BKM is applied with the
same number of the sources placed on the boundary qO; using
BIM, we take N ¼ 40 unknown values of the normal derivative
qw=qn. Other examples showed a high precision in calculations of
the eigenvalues for the non-singular boundary conditions are
presented in papers listed above.
3. Singular problems

To extend the technique described in the previous section onto
the case of the boundary singularities we use the MFS as a solver
of BVP for wr and look for the response field in the form

wrðxÞ ¼
XN

n¼1

qnHð1Þ0 ðkjx� fnjÞ þ
XM
j¼1

pjjjðr; yÞ, (30)

where ðr; yÞ is the local polar coordinate system with the origin at
the singular point and the functions jjðr; yÞ correspond to the kind
of the singularity. Only the singular functions (3)–(5) are
considered in this paper.

We find the unknowns qn; pj as a solution of the collocation
problem

B½wrðxiÞ� ¼
XN

n¼1

qnB½Hð1Þ0 ðkjxi � fnjÞ� þ
XM
j¼1

pjB½jjðri; yiÞ�

¼ � B½weðxiÞ�; xi 2 qO. (31)

The collocation points xi are uniformly distributed on the
boundary. The number of the collocation points is taken twice
as large as the number of unknowns N þM and the resulting
linear system is solved by the procedure of the least squares. Then,
having the solution wrðxÞ and consequently wðxÞ ¼ wrðxÞ þweðxÞ,
we introduce the norm FðkÞ like (14). Varying k, we get the
response curve and calculate the eigenvalues as positions of
maxima.

Example 1. Let us consider the eigenvalue problem for L-shaped
domain with the Dirichlet boundary conditions. The response field
Table 2
The L-shaped domain

i N=M ¼ 40=15 N=M ¼ 60=20 N=M ¼ 80=20

1 9.639726 9.639723840 9.639723841

2 15.197253 15.19725193 15.197251927

3 19.739209 19.73920880 19.739208803

4 29.521481 29.52148112 29.521481113

5 31.912648 31.91263592 31.912635960

6 41.474483 41.47450984 41.474509891

7 44.948476 44.94848776 44.948487781

8 49.348022 49.34802200 49.348022007

9 56.709605 56.70960993 56.709609889

10 65.376529 65.37653575 65.376535711

Dirichlet condition. Convergence with the growth of the number of free parameters. Th

Please cite this article as: Reutskiy SYu. The method of external excit
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is looked for in the form:

wrðxÞ ¼
XN

n¼1

qnHð1Þ0 ðkjx� fnjÞ þ
XM
j¼1

pjJ2j=3ðkrÞ sinð2jy=3Þ, (32)

with the singular functions satisfying the boundary conditions
jjðr;0Þ ¼ jjðr;3p=2Þ ¼ 0. The data, placed in Table 2, are obtained
using the k-procedure with Dk ¼ 10�6. The exciting field (21) is
taken with the angle u ¼ p=4: The MFS source points are placed on
the circle with the radius Rs ¼ 3. The data in the last column of the
table are taken from [12]. To compare these data with our result
we place the squares k2

i in the table. It looks like the data
corresponding to N ¼ 120;M ¼ 20 give the eigenvalues with the
10 true digits.

Example 2. To solve the Neumann problem we use the
expansion:

wrðxÞ ¼
XN

n¼1

qnHð1Þ0 ðkjx� fnjÞ þ
XM
j¼0

pjJ2j=3ðkrÞ cosð2jy=3Þ, (33)

with the singular functions satisfying the boundary conditions
qjj=qnðr;0Þ ¼ qjj=qnðr;3p=2Þ ¼ 0. Thus, only the last term is
modified. In Table 3 we test a convergence of the eigenvalues.
The results are compared with the results of Shu and Chew [21]
obtained by the global method of generalized differential
quadrature (GDQ). Note that the L-shaped domain considered in
[21] is smaller than the one depicted in Fig. 1. The similarity
coefficient 0:635 is taken into account in the data presented in
the table.

Example 3. The eigenvalue problem for a cracked beam (Fig. 1,
right) is the example of problems with an abrupt change in the
boundary conditions. The problem is considered in detail in [9].
We look for the MFS solution in the form:

wrðxÞ ¼
XN

n¼1

qnHð1Þ0 ðkjx� fnjÞ þ
XM
j¼1

pjJj�1=2ðkrÞ cosððj� 1=2ÞyÞ, (34)

with the singular functions corresponding to the boundary
conditions qjj=qnðr;0Þ ¼ jjðr;pÞ ¼ 0. Some results of the calcula-
tions are presented in Table 4. Using the package Mathematica,
the first two eigenvalues were calculated in [9] with 13 significant
digits. They are shown in the last column of the table. One can see
that the method presented gives the eigenvalues of the problem
with 10 true digits.

4. Conclusion

In this paper, a numerical technique is proposed to solve
eigenvalue problems in domains with boundary singularities. This
is a mathematical model of the physical measurements when the
resonant frequencies of a system are determined by the amplitude
N=M ¼ 100=20 N=M ¼ 120=20 B&T

9.639723842 9.639723841 9.6397238

15.197251926 15.197251926 15.197252

19.739208802 19.739208802 19.739209

29.521481114 29.521481113 29.521481

31.912635951 31.912635961 31.912636

41.474509893 41.474509894 41.474510

44.948487782 4.948487781 –

49.348022006 49.348022006 –

56.709609885 56.709609884 –

65.376535708 65.376535709 –

e value of k2 is shown.
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Table 4
The eigenvalues of the cracked beam

i N=M ¼ 50=15 N=M ¼ 60=10 N=M ¼ 75=10 N=M ¼ 80=10 [9]

1 2.0116970 2.01169717 2.011697117 2.011697117 2.011697117212

2 3.2931526 3.29315261 3.293152635 3.293152635 3.293152635104

3 4.0798642 4.07986416 4.079864129 4.079864128 –

4 4.8863146 4.88631468 4.886314665 4.886314665 –

5 5.2893785 5.28937862 5.289378620 5.289378620 –

6 6.1326889 6.13268898 6.132689008 6.132689010 –

7 6.4719151 6.47191515 6.471915149 6.471915149 –

8 6.8246202 6.82462027 6.824620261 6.824620261 –

9 7.3939713 7.39397129 7.393971287 7.393971287 –

10 7.9781250 7.97812500 7.978125002 7.978125001 –

Table 3
The L-shaped domain

i N=M ¼ 40=10 N=M ¼ 40=15 N=M ¼ 60=10 N=M ¼ 80=10 N=M ¼ 100=10 Shu and Chen

1 1.475623 1.475623 1.475622 1.475621813 1.475621793 1.47455

2 3.534032 3.534032 3.534031 3.534031369 3.534031369 3.53409

3 9.869604 9.869604 9.869604 9.869604401 9.869604401 9.86964

4 11.389478 11.389478 11.389479 11.389479388 11.389479386 11.38951

5 12.572380 12.572383 12.572388 12.572386842 12.572386864 12.56893

6 19.739209 19.739209 19.739209 19.739208802 19.739208802 19.73940

7 21.424745 21.424742 21.424734 21.424732805 21.424734381 21.41668

8 23.344379 23.344378 23.344372 23.344372031 23.344372008 23.34424

9 28.490787 28.490807 28.490812 28.490823385 28.490814353 28.48205

10 35.878650 35.878648 35.878631 35.878631521 35.878631920

Neumann condition. Convergence with the growth of the number of free parameters. The value of k2 is shown.
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of response to some excitation. Varying the wave number k, we
get the eigenvalues as positions of maxima of some the norm
function FðkÞ. The growth of the amplitude of response near the
eigenvalue is a sequence of the degeneracy of the collocation
matrix (31). From this point of view the approach presented is
similar to the one described in [9], where the degeneracy is
measured by the infinitesimal values of the minimal eigenvalue of
the stiffness matrix of the problem. This technique is convenient
for determining some first eigenvalues of the system which are
often of the most interest from the point of view of engineering
applications.

The version of the technique [1–4] presented in the paper is
based on the use of the local singular functions together with the
global basis function. The analysis of L-shaped domain and the
cracked beam eigenvalue problems has shown that the method
provides a very high precision in determining eigenvalues with a
moderate number of free parameters. The method is presented in
the framework of the MFS but any boundary or volume method
can be used as the Helmholtz solver.
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