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This paper is a sequel of the author’s previous work [Chen (2004)]. It deals with some
basic linear electro-elastic fracture problems for an arbitrary-shaped planar crack in a
three-dimensional infinite transversely isotropic piezoelectric material subjected to shear
loading that is antisymmetric with respect to the crack. The finite-part integral concept
is used to derive hypersingular integral equations for the crack from available solutions of
the point force and charge for an infinite transversely isotropic piezoelectric solid. Closed-
type solutions for the full electro-elastic fields, for the stress and electric displacement
K-fields and the energy release rate G are obtained. In particular, under uniform shear
loading, exact expressions for an elliptical crack are derived with introducing the ellip-
soidal coordinates. Finally, numerical examples for some typical crack problems are also
demonstrated in table and graphic forms.

Keywords: Transverse isotropy; piezoelectric material; arbitrary-shaped planar crack;
hypersingular integral equation; shear loading.

1. Introduction

With the increasing applications of piezoelectric materials as actuating and sensing
devices in active control systems, much attention has been paid to electroelastic
interaction by more and more researchers. Piezoelectric ceramic are ones kinds of
transversely isotropic materials that have perfect piezoelectricity and its application
is more extensive. Because of their intrinsic natural brittle property, when subjected
to severe loading, these materials can fail prematurely as a result of the propagation
of flaws or defects induced during the manufacturing process and by the in-service
electromechanical loading. Hence, it is important to understand and be able to
analyze the fracture characteristics of piezoelectric materials so that reliable service
life predictions of the pertinent devices can be conducted.

In the last decade, considerable works on cracks in piezoelectric materials
are devoted to two-dimensional (2D) problems [Zhang et al. (2002); Qin (2001)].
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Suo et al. [1992] used the extended Stroh’s formulism to investigate the interface
crack problems of piezoelectric ceramics. Pak [1992] used the method of distributed
locations and electric dipoles to calculate the electroelastic fields for anti-plane and
plane strain in infinite piezoelectric materials subjected to far-field electromechan-
ical loadings. Park and Sun [1995] invoked the impermeable crack assumption and
presented the full field closed-form solutions for all the three modes of fracture
for an infinite piezoelectric medium. Zhang and Meguid [1997] analyzed a circular
arc-crack in piezoelectric materials.

As for three-dimensional (3D) aspect of crack problems in piezoelectric mate-
rials, there are comparatively few works except those of specially shaped cracks
[Wang (1992, 1994); Wang and Huang (1995); Kokan et al. (1996); Zhao et al.
(1997); Chen and Shioya (1999, 2000); Chen et al. (2000)]. Shang et al. [2003] and
the author [Chen (2003a,b; 2004)] have addressed the non-elliptical crack problems
in three-dimensional piezoelectric structures. However, to the author’s best knowl-
edge, there is no any research work discussing arbitrary-shaped piezoelectric crack
problems subjected to shear loading except those of penny-shaped cracks [Chen and
Shioya (2000); Karapetian et al. (2000)].

It is noted that, one powerful method for 3D crack problems is to utilize
Somigliana identity to reduce these problems to finite-part integral equations
[Ioakimididis (1982)], as hypersingular integral equations. Thereafter, this method
has been generalized into solving general crack problems in isotropic materials [Chen
et al. (2002a,b)], bimaterials [Chen et al. (1999)], transversely isotropic materials
[Chen (2004a)] as well as piezoelectric materials [Chen (2003a,b; 2004b)].

The purpose of this paper is to make more systematic theoretical and numer-
ical studies of a three-dimensional arbitrary-shaped planar crack embedded in
an infinite transversely isotropic piezoelectric solid under shear loading by the
use of the aforementioned method. To this end, the recently derived by Ding
et al. [(2004)] point-force and point-charge fundamental solutions for a transversely
isotropic piezoelectric solid and the sense of the finite-part integral introduced
by Hadamard [1923] are employed. 2D hypersingular equations with unknown
displacements satisfying the boundary conditions are obtained for the arbitrary-
shaped planar crack. It will be shown that the equations have the same struc-
tures as the ones for elasticity. The only difference is the definition of the involved
material constants, which has no effect on the form of the solutions. Thus, the
theoretical results and the numerical method presented by the author [Chen
et al. (2002b)] can be utilized to analyze the problem. In particular, for uni-
form shear loading, exact solutions are firstly perfectly obtained in terms of
the singular behavior near the crack front edge and with introducing the ellip-
soidal coordinates. In the special case of the penny-shaped crack, the exact solu-
tions are reduced to those existing in the literatures [Kokan et al. (1996); Chen
and Shioya (2000); Karapetian et al. (2000)]. Some numerical examples for typ-
ical crack problems are given to demonstrate the versatilities of the present
method.
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2. Electroelastic Fields due to Crack Disturbances

A fixed rectangular cartesian coordinate system (x, y, z) is used. We consider an
infinite transversely isotropic piezoelectric solid containing an arbitrary-shaped pla-
nar crack. Suppose, that the whole space is occupied with an electro-elastic media
with elastic constants cijkl , piezoelectric constants eijk and dielectric permittivi-
ties ∈ij . The planar crack is assumed to lie in the plane of symmetry, i.e. in x-y
and the polling direction be along with z (see Fig. 1). Note that the displacement
and potential jumps on the crack surfaces ui(ξ, η) = u+

i (ξ, η) − u−
i (ξ, η) (i = x, y, z,

similarly hereinafter without declaration) and φ(ξ, η) = φ+(ξ, η) − φ−(ξ, η), thus in
terms of the point-force and point-charge fundamental solutions for a transversely
isotropic piezoelectric solid [Ding et al. (2004)] and the sense of the finite-part integral
[Hadamard (1923)], the stress and electric displacement fields at a point P(x, y, z)
in the space region due to the impermeable crack disturbances can be written as

σxz(x, y, z) =
1
4π

{∫
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Fig. 1. (a) Configuration of a planar crack in an infinite piezoelectrics and (b) a local intrinsic
coordinate system.
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where i = 1, 2, 3; χ0, χi, ω01, ωi1, ϑi1, ϑi2, ηi, and µi are constants related to the
elastic constants, piezoelectric constants and dielectric permittivities and they are
respectively given by the author [Chen (2003)]; r0 =

√
(x − ξ)2 + (y − η)2 + s2

0z
2,

ri =
√

(x − ξ)2 + (y − η)2 + s2
i z

2; s2
0 = c66/c44 and s2

i are the roots of the following
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characteristic equation:

as6 − bs4 + cs2 − d = 0, (5)

in which

a=c44(e2
33 + c33 ∈33), b = c33m3+ ∈33[c2

44 − (c13 + c44)2] + e33(2m4 − c11e33),

c = c44m3+ ∈11[c11c33 − (c13 + c44)2] + e15(2m4 − c44e15),

d = c11(e2
15 + c44 ∈11),

(6)

m1 =∈11 (c13 + c44) + e15(e15 + e31), m2 =∈33 (c13 + c44) + e33(e15 + e31),

m3 = c11 ∈33 + c44 ∈11 + (e15 + e31)2,
m4 = c11e33 + c44e15 − (c13 + c44)(e15 + e31).

(7)

3. Hypersingular Integral Equations and Natures of Their
Solutions

In terms of the concept of finite-part integrals [Hadamard (1923)] and the boundary
conditions on the upper crack surfaces, the problems for an arbitrary-shaped 3D
planar crack in piezoelectricity under shear loading can be reduced to the solution
of the following 2D hypersingular integral equations:
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where x, y ∈ S+;
∫
=

S+ means finite-part integral of Hadamard [1923] and r =√
(x − ξ)2 + (y − η)2. It can be seen from Eqs. (8) and (9) that the displacement
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jumps ui(ξ, η) are decoupled with the electric potential jumps φ(ξ, η) under shear
loading. The natures of the unknown displacement jumps ui(ξ, η) near the front
smooth periphery ∂S+ of the planar crack, in terms of the author’s work [Chen
(2003); Chen et al. (1999)], can be expressed as

ui(ξ, η) = Ci(Q)ξλi , (10)

Here, the repeated indices are not summed; Ci(Q) are real constants concerning
with the position of the point Q, and λi are unknown singularities that take the
values within range 0 < λi < 1.

Inserting Eq. (10) into Eqs. (8) and (9) and using 2D dominant analysis of
hypersingular integrals, one has

λx = λy = λz = 1/2. (11)

4. Singular Stress Fields Under Shear Loading

According to Eqs. (10) and (11) as well as calculating the dominant-parts of inte-
grals in Eqs. (1)–(4) at a point P(−ρ cos θ, y, ρ sin θ) ahead of the periphery of the
planar crack [see Fig. 1(b)], we can get the singular stress displacement fields under
shear loading. When the point P approaches the point Q, with the two-dimensional
dominant analysis, the following relationships are obtained:
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lim
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in which
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√
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From Eqs. (1), (2), and (12)–(20), the singular stress fields under shear loading
can be expressed as

σxz(ρ, θ) =
3∑

i=1

χiωi1Cx(Q)
4
√
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2
−
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2
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σyz(ρ, θ) =
χ0ω01Cy(Q)

4
√
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2
. (24)

Equations (23) and (24) are strictly obtained from 3D linear theory of piezoelec-
tricity. It can be seen that the angular distribution functions for the stress fields
ahead of the planar crack front edge are very simple and compact. From Eq. (23),
we also see that the electric field has an effect on the stress σxz(ρ, θ) ahead of the
crack front edge.

5. Fracture Parameters for Shearing Crack Problems

5.1. Stress intensity factors

Analogous to the definitions of stress intensity factors for three-dimensional elastic-
ity, we define the stress intensity factors near the point Q on the smooth periphery
∂S+ of the three-dimensional planar crack [see Fig. 1(b)] as follows:

KII(Q) = lim
ρ→0

√
2rσxz(ρ, θ)

∣∣∣
θ=0

, KIII(Q) = lim
ρ→0

√
2rσyz(ρ, θ)
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. (25)

Therefore the stress intensity factors can be given as
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ξ→0

[∑3
i=1 χiωi1

2
√

2
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ξ

]
, KIII(Q) = lim
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2
√

2
uy(ξ, 0)√

ξ

]
. (26)

Equation (26) is almost identical to that of linear elastic fracture mechanics [Chen
et al. (2002)] but material constants.
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5.2. The local energy release rate

As shown in Fig. 1(b), supposed that the planar crack S has extended an infinites-
imal crack area S∗

ε (it along with its neighboring region Sε is mutually complemen-
tary to be a small circle with a radius ε) along the crack plane through the point Q,
by way of virtual work, the total local energy release rate G(Q) due to the crack
increment is readily computed from the work done by the released stresses

G(Q) = lim
S∗

ε→0

1
2S∗

ε

∫
S∗

ε

[σxz(ξ, η)u∗
x(ξ, η) + σyz(ξ, η)u∗

y(ξ, η)]dξ dη (27)

where σxz(ξ, η) and σyz(ξ, η) are the stress components ahead of the planar crack
front edge when the increment S∗

ε of the crack is zero, and they can be calculated
from Eqs. (23) and (24); u∗

x(ξ, η) and u∗
y(ξ, η) are the displacement jumps when the

crack has increased an infinitesimal area of S∗
ε , and they can be determined from

Eq. (26). Substitution of Eqs. (23), (24) and (26) into (27), G(Q) is rewritten as

G(Q) = lim
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1
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ε
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ε

(
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i
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+
2K2

III(Q)
iχ0ω01

) √
ε + ξ√

ξ
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Using the definition of Beta function, we have

G(Q) =
πK2

II(Q)
2
∑3

i=1 χiωi1

+
πK2

III(Q)
2χ0ω01

. (29)

Equation (29) is rigorously obtained from the three-dimensional theory of
piezoelectrics.

6. Exact Solutions for Elliptical Cracks

6.1. The displacement jumps

In the case of elliptical cracks subjected to uniform shear loading, we can obtain
exact solutions of hypersingular integral Eqs. (8) and (9). We were not aware of
any published research on the exact solutions of elliptical cracks in piezoelectrics
under uniform shear loading. To this end, the hypersingular integral Eqs. (8) and (9)
should be modified in form.

As shown in Fig. 2(a), analogous to the method used in Chen [2004], consider
the following limit operation:
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∫
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, (30)
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Fig. 2. (a) Configuration of problem proof and (b) configuration of stress intensity factor determi-
nation.

in which
∫
− is the Cauchy integral of principal value; Sσ is a small circle with

a radius σ centered at Y(x, y); ρ is the distance between the point Y(x, y) and
Y0(x0, y0), i.e. ρ =

∣∣∣Y − Y0

∣∣∣ < σ. By the use of the concept of finite-part integrals,
Eq. (30) is rewritten as
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In terms of the definitions of finite-part integrals and Cauchy integrals, one has
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Thus, Eq. (30) is simplified as
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= −py(x, y). (37)

What follows, we will discuss the solutions of Eqs. (36) and (37). From Eqs. (10)
and (11), the displacement jumps across the crack surfaces under uniform shear
loading can be expressed as

ux(ξ, η) = Ax

√
1 − (ξ/a)2 − (η/b)2, uy(ξ, η) = Ay

√
1 − (ξ/a)2 − (η/b)2, (38)

where Ax and Ay are constants to be determined. Substituting (38) into (36) and
(37), we have

1
4π

{
Axχ0ω01∆

∫
S+

√
1 − (ξ/a)2 − (η/b)2

r
dξ dη

−Ax

(
χ0ω01 −

3∑
i=1

χiωi1

)
∂2

∂x2

∫
S+

√
1 − (ξ/a)2 − (η/b)2

r
dξ dη

−Ay

(
χ0ω01 −

3∑
i=1

χiωi1

)
∂2

∂x∂y

∫
S+

√
1 − (ξ/a)2 − (η/b)2

r
dξ dη

}

= −px(x, y), (39)

1
4π

{
Ayχ0ω01∆

∫
S+

√
1 − (ξ/a)2 − (η/b)2

r
dξ dη

−Ay

(
χ0ω01 −

3∑
i=1

χiωi1

)
∂2

∂y2

∫
S+

√
1 − (ξ/a)2 − (η/b)2

r
dξ dη

−Ax

(
χ0ω01 −

3∑
i=1

χiωi1

)
∂2

∂x∂y

∫
S+

√
1 − (ξ/a)2 − (η/b)2

r
dξ dη

}

= −py(x, y). (40)
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According to Eshelby [1946], one has∫
S+

√
1 − (ξ/a)2 − (η/b)2

r
dξ dη =

πab

2

∫ ∞

0

{
1 − x2

a2 + s
− y2

b2 + s

}
ds√
Q(s)

, (41)

in which s is the integral variable, and Q(s) = (a2 + s)(b2 + s)s. If setting s = t2,
the closed-type solution of Eq. (41) is obtained as [Gradshteyn and Ryzhik (1969)]∫

S+

√
1 − (ξ/a)2 − (η/b)2

r
dξ dη

= πb

[
K(k) − x2

a2

K(k) − E(k)
k2

− y2

a2

E(k) − (1 − k2)K(k)
(1 − k2)k2

]
(42)

where k2 = 1− (b/a)2; K(k) and E(k) are the complete elliptic integrals of the first
kind and that of the second kind, respectively.

From Eqs. (39), (40), and (42), we have

Ax =
2bk2

B(k)
px0, Ay =

2bk2

C(k)
py0, (43)

here px0 and py0 are respectively uniform shear loadings along the x- and y-axis,
and

B(k)=

(
χ0ω01 − k′2

3∑
i=1

χiωi1

)
E(k) +

(
3∑

i=1

χiωi1−χ0ω01

)
k′2K(k),

C(k)=

(
3∑

i=1

χiωi1 − k′2χ0ω01

)
E(k) +

(
χ0ω01−

3∑
i=1

χiωi1

)
k′2K(k),

k′ = b/a ≤ 1.

Substitution of (43) into (38) yields

ux(ξ, η) =
2bk2

B(k)
px0

√
1 − (ξ/a)2 − (η/b)2,

uy(ξ, η) =
2bk2

C(k)
py0

√
1 − (ξ/a)2 − (η/b)2.

(44)

We have not been aware of any reports similar to Eq. (44) in the literature for a
piezoelectric elliptical crack.

6.2. The stress intensity factors

As shown in Fig. 2(b), we introduce a local triple orthogonal intrinsic coordinate
system: (τ, n, z) at a point Q along the smooth periphery ∂S of the planar crack,
then the expressions for the stress intensity factors in Eq. (26) are rewritten as

KII(Q) = lim
ξn→0

[∑3
i=1 χiωi1

2
√

2
un(ξn, 0)√

ξn

]
,

KIII(Q) = lim
ξn→0

[
χ0ω01

2
√

2
uτ (ξn, 0)√

ξn

]
.

(45)
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Using Eqs. (44) and (45) as well as the following relationship of coordinate
transformation:

un(ξ, η) = ux(ξ, η) cos θ + uy(ξ, η) sin θ

uτ (ξ, η) = −ux(ξ, η) sin θ + uy(ξ, η) cos θ

tan θ =
b sinϕ

a cosϕ
and ξn =

ab(1 − ρ)√
a2 sin2 ϕ + b2 cos2 ϕ

,

we have

KII(Q) =
3∑

i=1

χiωi1

[
bpx0

B(k)
cosϕ +

apy0

C(k)
sin ϕ

]
k2

√
b

a

/
K̄(Q), (46)

KIII(Q) = χ0ω01

[
bpy0

C(k)
cosϕ − apx0

B(k)
sinϕ

]
k2

√
b

a

/
K̄(Q), (47)

where K̄(Q) = (a2 sin2 ϕ + b2 cos2 ϕ)1/4. To the author’s best knowledge, exact
derivations of Eqs. (46) and (47) for a piezolectric elliptical crack subjected to
uniform pressures are firstly perfectly obtained by the present author. In the case
of penny-shaped cracks, E(k) = K(k) = π/2 and Eqs. (46) and (47) are reduced to

KII(Q) =
4
√

a

π

∑3
i=1 χiωi1(∑3

i=1 χiωi1 + χ0ω01

)(px0 cosϕ + py0 sinϕ), (48)

KIII(Q) =
4
√

a

π

χ0ω01(∑3
i=1 χiωi1 + χ0ω01

)(py0 cosϕ − px0 sinϕ). (49)

The above results of Eqs. (48) and (49) can be combined into those obtained by
Chen and Shioya [2000] and Karapetian et al. [2000].

7. Numerical Results and Discussion

In this section, using the previous numerical procedure suggested by the author
(Chen [2003b]), several numerical examples are considered based on the hypersin-
gular integral Eqs. (8) and (9). These numerical results for elliptical crack problems
will be compared with the exact solutions (46)–(49).

For convenience, it is assumed that the crack is loaded with a uniform shear
loading px(x, y) = q and py(x, y) = py0(= 0) in all examples. The piezoelectric
material PZT-4 is used for all computations. The electroelastic material constants
are

c11 = 139.0, c12 = 74.3, c13 = 77.8, c33 = 113.0, c44 = 25.6 GPa

e15 = 13.44, e31 = −6.98, e33 = 13.84 C/m2,

∈11= 60.0 × 10−10, ∈33= 54.7 × 10−10 C/Vm.
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Table 1. Comparisons of numerical dimensionaless stress intensity factors YII and YIII with exact
solutions for a penny shaped crack.

ϕ 0 22.5 45 67.5 90

YII

Numerical results 0.76975 0.71115 0.54429 0.29457 0.0000
Equation (48) 0.76975 0.71115 0.54429 0.29457 0.0000

YIII

Numerical results 0.0000 −0.19268 −0.35602 −0.46517 −0.50349
Equation (49) 0.0000 −0.19268 −0.35602 −0.46517 −0.50349

7.1. Penny-shaped crack

Under uniform shear loading, the exact solutions for a penny-shaped crack in an
infinite piezoelectric ceramics material have been derived by the author in the pro-
ceeding section [see Eqs. (48) and (49)]. They can be rewritten as

KII(Q) =
4
√

a

π

∑3
i=1 χiωi1(∑3

i=1 χiωi1 + χ0ω01

)(px0 cosϕ + py0 sin ϕ)

= YII(χ0ω01, χiωi1, a, ϕ)q
√

a, (50)

KIII(Q) =
4
√

a

π

χ0ω01(∑3
i=1 χiωi1 + χ0ω01

)(py0 cosϕ − px0 sin ϕ)

= YIII(χ0ω01, χiωi1, a, ϕ)q
√

a. (51)

Table 1 lists the present numerical results and the exact solutions. It can be seen
that both are identical to the fifth significant digit.

7.2. Elliptical crack

The exact solution of an elliptical crack embedded in an infinite piezoelectric media
subjected to uniform shear loading is shown in Eqs. (46) and (47). The expressions
of stress intensity factors take the form

KII(Q) =
3∑

i=1

χiωi1

[
bpx0

B(k)
cosϕ +

apy0

C(k)
sin ϕ

]
k2

√
b

a

/
K̄(Q)

= YII(χ0ω01, χiωi1, a, b, ϕ)q
√

b (52)

KIII(Q) = χ0ω01

[
bpy0

C(k)
cosϕ − apx0

B(k)
sin ϕ

]
k2

√
b

a

/
K̄(Q)

= YIII(χ0ω01, χiωi1, a, b, ϕ)q
√

b (53)

Table 2 gives comparisons of present numerical stress intensity factors for an
elliptical crack with an aspect ratio a/b = 2 with theoretical solutions. It is shown
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Table 2. Comparisons of numerical dimensionaless stress intensity factors YII and YIII with exact
solutions for an ellipitical crack.

ϕ 0 22.5 45 67.5 90

YII

Numerical results 0.78466 0.66185 0.44125 0.21860 0.0000
Equation (46) 0.78466 0.66184 0.44125 0.21859 0.0000

YIII

Numerical results 0.0000 −0.35866 −0.57725 −0.69039 −0.72585
Equation (47) 0.0000 −0.35864 −0.57724 −0.69038 −0.72584

(a) (b)

Fig. 3. (a) Displacement jumps ux along x-axis and (b) displacement jumps uy along x-axis.

that the present numerical results yield a good convergence to the fifth significant
figure compared with the exact solutions.

7.3. Rectangular crack

The hypersingular integral Eqs. (8) and (9) are analyzed for a rectangular crack.
Since no exact solutions are available for this crack configuration, only numerical
analysis is performed with an aspect ratio of a/b = 1 as an example. Figures 3(a) and
3(b) plot the displacement jumps ux on the crack surfaces under uniform loading
along x-axis and the displacement jumps uy along y-axis, respectively.

8. Conclusion

In this paper, starting from the fundamental solution of a point force and electric
charge for three-dimensional transversely isotropic piezoelectric solid, we have per-
formed rigorous theoretical analyses of some basic problems of fracture mechanics by
using the hypersingular integral equation method and obtained a system of hyper-
singular integral Eqs. (8) and (9) for solving arbitrarily shaped planar crack prob-
lems under shear loading. Exact solutions are presented for a piezoelectric elliptical
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crack subjected to uniform shear loading. Modes II and III stress intensity factors
also derived in an exact manner. These solutions are undoubtedly helpful for us to
study 3D piezoelectric crack problems and complements of 3D fracture mechanics
of piezoelectrics. In the final discussion of the present paper, as examples of appli-
cations, we have also given numerical results for elliptical cracks and rectangular
cracks under uniform shear loading and compared with theoretical solutions.
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