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ABSTRACT

In this paper the previously developed scheme of integration by parts to treat the
boundary thermal field is applied to calculate the interior thermal field.  Also, the
scheme is extended further to regularize the strongly singular integral appearing in
the boundary integral equation for interior calculations of the heat fluxes.  Moreover,
the present work develops a semi-analytical integration scheme to regularize the hyper-
singular integral for the interior heat-flux calculations.  All formulations are derived
for elements of arbitrary orders with general interpolation. At the end, the veracity of
the scheme is illustrated by numerical examples.
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I. INTRODUCTION

As a result of extensive applications of anisotro-
pic materials in engineering industries, the problem of
anisotropic heat conduction has drawn substantial re-
search since the early 1960’s.  Although some analyti-
cal works in this regard have been reported over the
years (see e.g. Tauchert and Akoz, 1975, Mulholland
and Gupta, 1977, Chang, 1977), recourse to numerical
tools, such as the finite element method (FEM) and the
boundary element method (BEM), is still necessary for
practical engineering problems.  However, pertinent nu-
merical works for the problem still remain relatively
scarce as compared with those for isotropic media.

Recently, owing to its distinguishing feature, that
only the boundary needs to be discretised, the BEM,
used in the current study, has received much attention
from researchers.  However, difficulty will arise if the
BEM is used to calculate the thermal field of interior
points near the boundary.  The source of this diffi-
culty lies in the nearly singular integrals of the boundary
integral equation (BIE) for calculating the interior ther-
mal field.  As already known, for computing temperature,

the weakly singular integral of singular order ln(r) and
the strongly singular integral with order 1/r, where r
is the distance between the source point and the inte-
gration point, will be involved.  Even more challeng-
ing for interior calculations, computation of heat fluxes
shall involve evaluations of the strongly singular in-
tegral and the hyper-singular integral with order (1/
r2).  When the interior points of interest are close to
the boundary such that the order of the distance r is
much smaller than that of the element under integration,
difficulty will arise in numerically integrating these
integrals.  Over the years, various BEM schemes have
been proposed to overcome the nearly singular problem.
Since there are too many pertinent works to be men-
tioned herein as a thorough literature review, only a
few of them are reviewed as examples.  Cruse and Aithal
(1993) proposed a semi-analytical approach using Taylor
series expansions for the kernels.  Huang and Cruse
(1993) presented another approach taking a coordinate
transformation to relax nearly singular kernels.  Other
approaches include Gaussian integration with fine
subdivisions, kernel cancellation methods (Nakagawa,
1993), the auxiliary surface of “tent” method (Lutz et
al., 1992), and the line integral method (Krishnasamy
et al., 1994, Liu et al., 1993, and Liu, 1998).  Sladek
et al. (2001) proposed a semi-analytical integration
scheme to deal with the logarithmic singularity in
BEM.  By applying the scheme of integration by parts,
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Zou et al. (2003) efficiently treated the nearly singu-
lar integrals for isotropic potential problems.  More
regularization algorithms can be referred to the refer-
ences by Chen et al. (2001) and Kisu and Kawahara
(1988).  For more complete reviews on the role of
hypersingularity, the reader may refer to , for example,
Tanaka, et al. (1994), Chen and Hong (1999).  A
dual integral formulation that has regularized the
singularities for the Laplace potential problem with a
corner was derived by Chen and Hong (1994) using
the contour approach surrounding the singularity.
Very recently, the problem of the boundary layer ef-
fect has also been investigated by Chen et al. (2006a,
2006b), who have derived null-field integral equations
for a medium containing circular cavities.  By intro-
ducing the concept of degenerate kernels, Chen et al.
(2006a) transformed the singular integrals into series
sum when the null-field point was moved to the
boundary.

In this article, the scheme of integration by parts
is applied to treat the weakly singular integral, for
which a general high-order interpolation of any
families, such as the Serendipity, Lagrange, and
Hermite, is considered.  Additionally, for dealing with
strongly singular and hyper-singular integrals, a semi-
analytical integration scheme is proposed.  Success-
ful implementation of the derived formulations is
verified by numerical examples, where comparison
with ANSYS analysis is made.

II. BIE OF THE ANISOTROPIC THERMAL
FIELD AT INTERIOR POINTS

As already well established in the literature, as-
sociated 2D heat conduction in anisotropic media is
governed by the so called Euler’s equation,

KijT’ij = 0,  (i, j = 1, 2), (1)

where T stands for the temperature change; Kij are
the anisotropic coefficients defined in the x1-x2

coordinate system.  The analysis can be significantly
simplified in the case of orthotropy, where the cross-
derivative terms are absent.  As a result, a commonly
adopted approach to numerically treat the fully aniso-
tropic problem is to, first, determine the principal axes
(ζ1, ζ2) by rotating the original Cartesian axes such
that the cross-derivative terms will disappear.  An-
other attractive approach to treat the anisotropic prob-
lem is to employ a coordinate transformation such that
T in the transformed domain is governed by the
standard Laplace’s equation.  In their efforts to for-
mulate an exact transformation of the volume inte-
gral associated with thermal effects into surface
integrals for plane anisotropic thermoelasticity in
BEM, Shiah and Tan (1998) also developed a similar

transformation and applied it to numerically treat the
two-dimensional anisotropic problem in the BEM
field theory.  The main advantage of such a BEM
treatment lies in the fact that the anisotropic field
problem can be easily solved using any readily avail-
able BEM codes for ‘isotropic’ potential theory with
relatively minor program modifications.  The linear
transformation/inverse transformation takes the fol-
lowing form,

[ ^x1 ^x2]T = [F(Kij)][x1 x2]T,

[x1 x2]T = [F –1(Kij)][
^x1 ^x2]T (2)

where [F(Kij)] is the transformation (and [F –1(Kij)]
the inverse transformation) matrix, given by

F =
∆/K11 0

– K12/K11 1
, F– 1 =

K11/ ∆ 0
K12/ ∆ 1

,

∆ = K11K22 – K 2
12 (3)

With this transformation, the anisotropic field is now
governed by the standard Laplace equation.  For
equivalently isotropic field problems, the tempera-
ture change T and its normal gradient q at interior
points are related by

T(P) = q(Q)T *(P, Q)dS(Q)
S

– T(Q)Q*(P, Q)dS(Q)
S

, (4)

where P and Q are the source and field points on the
boundary, respectively; T *(P, Q) and Q*(P, Q) repre-
sent the fundamental solutions for the temperature and
its normal gradient, given by

T *(P, Q) = 1
2πlog1

r , Q*(P, Q) = – 1
2πr

dr
dn

(5)

where r is the distance between the source point P
and the field point Q on the element under integration.
To numerically solve the BIE, the boundary surface
is discretised into a number of segments or elements,
say M elements, with a total of N nodes.  Following
the usual interpolation process for n-order elements,
one may have nodal values of coordinates, temperature,
and temperature gradients expressed in terms of the
local coordinate ξ ∈  [–1, 1] as

xj(ξ) = N (c)(ξ)xj
(c)Σ

c = 1

n
, T(ξ) = N (c)(ξ)T (c)Σ

c = 1

n
,

q(ξ) = N (c)(ξ)q (c)Σ
c = 1

n
(6)
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where N(c), the shape functions of n degrees, has a
general form

N (c)(ξ) = αm
(c)ξ mΣ

m = 0

n
. (7)

Equation (8) is for general interpolations of any
kind of interpolation families.  Substitution of Eqs.
(6), (7), and (8) into Eq. (5) results in a discretised
BIE form,

T(Pa) = qcbΣ
c = 1

n + 1

Σ
b = 1

M – 1
2πlogbrN c(ξ)J(ξ)dξ

– 1

1

+ T cbΣ
c = 1

n + 1

Σ
b = 1

M 1
2πbr

dbr
dn N c(ξ)J(ξ)dξ

– 1

1

,

(8)

where the superscript a represents the a-th global node
of the boundary mesh, b denotes the b-th element,
and c is the c-th node of the element.  In Eq. (8), 

^

J(ξ)
is the Jacobian, given by

J(ξ) = ( mαm
(i)ξ m – 1x1

(i)Σ
m = 1

n

Σ
i = 1

n + 1
)2 + ( mαm

(i)ξ m – 1x2
(i)Σ

m = 1

n

Σ
i = 1

n + 1
)2 . (9)

Apparently, the first and the second integral terms in
Eq. (8) are weakly singular and strongly singular,
respectively.  As derived in the authors’ previous
work (Shiah and Shih, 2005), the thermal BIE can be
regularized using the scheme of integration by parts
and a semi-analytical approach.  The regularized BIE
for the interior temperature field can be written as

T(Pa) =
–bqc

4πΣ
c = 1

n + 1

Σ
b = 1

M
[W(ξ)L(ξ) – L(ξ)Ω (c)(ξ)dξ

– 1

1
]

+ T cb

2πΣ
c = 1

n + 1

Σ
b = 1

M
Hlαm

(c)Σ
m = 0

n

Σ
l = 1

2n
[

Vl
kξ m – k

(m – k)Σ
k = 0

m – 1

+ Vl
mlog(ξ – Vl)] – 1

1
, (10)

where W(ξ), L(ξ), Ω(c)(ξ) are given by

W(ξ) = α t
(c)ξ tJ(ξ)Σ

t = 0

n
(11a)

L(ξ) = ξlog(F2n) + (ξ – Vl)Σ
l = 1

2n
[log(ξ – Vl) – 1]

(11b)

Ω (c)(ξ) = tα t
(c)ξ t – 1J(ξ)Σ

t = 1

n
+ tα t

(c)ξ tJ ′(ξ)Σ
t = 0

n
  (11c)

Hl =
tα t

( j)Σ
t = 1

n
(β 1m

(i) x1
(i)x2

( j) – β 2m
(i) x2

(i)x1
( j))Vl

m + t – 1 – 2nΣ
m = 0

n

Σ
i, j = 1

n + 1

F2n (1 – Vk/Vl + Vkδkl/Vl)Π
k = 1

2n . (11d)

In Eq. (10), Vl are 2n roots of the following
polynomial,

F2n – k
F2n

ξ 2n – kΣ
k = 0

2n
= 0 , (12)

where the coefficients F2n – k are defined by

F2n – k = β l(n – m)
(i) β l(n + m – k)

( j) xl
(i)xl

( j)Σ
i, j = 1

n + 1

Σ
m = 0

k
,

β jm
(i) =

αm
(i)xj

(i) , for m ≠ 0

α0
(i)xj

(i) – xpj , for m = 0
(13)

and  ^xj
(i) refers to the mapped coordinates at the i-th

node of the element.  In Eq. (11c), the explicit form 
 ^

J′

(ξ) is written as

J ′(ξ) =
mk(k – 1)αm

(i)Σ
k = 2

n
αk

( j)xl
(i)xl

( j)ξ m + k – 3Σ
m = 1

n

Σ
i, j = 1

n + 1

J(ξ)
.

(14)

III. REGULARIZATION OF THE BIE FOR
CALCULATING INTERNAL HEAT FLUXES

As one of the goals for interior calculations, the
internal heat fluxes also need to be determined.  By
definition, the heat fluxes in anisotropic media, Qi,
are given by

Qi = KijT, j (15)
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which, in the mapped plane, can be explicitly written as

Qi = Ki1( ∂T
∂x1

∆
K11

– ∂T
∂x2

K12
K11

) + Ki2
∂T
∂x2

. (16)

Apparently, determination of the heat fluxes via the
above equations needs to resort to the computation
of ∂T/∂ ^x1, ∂T/∂^x2 by the following differentiated BIE
form,

dT(Pa)
dxp1

=
qc

2πΣ
c = 1

n + 1

Σ
b = 1

M (x1 – xp1)

(x1 – xp1)2 + (x2 – xp2)2
– 1

1

N (c)(ξ)J(ξ)dξ

– T cb

2πΣ
c = 1

n + 1

Σ
b = 1

M
[(x1 – xp1)2 – (x2 – xp2)2]

dx2

dξ
– 2(x1 – xp1)(x2 – xp2)

dx1

dξ
[(x1 – xp1)2 + (x2 – xp2)2]2

– 1

1

N (c)(ξ)dξ (17a)

dT(Pa)
dxp2

=
qc

2πΣ
c = 1

n + 1

Σ
b = 1

M (x2 – xp2)

(x1 – xp1)2 + (x2 – xp2)2
– 1

1

N (c)(ξ)J(ξ)dξ

– T cb

2πΣ
c = 1

n + 1

Σ
b = 1

M
2(x1 – xp1)(x2 – xp2)

dx2

dξ
+ [(x1 – xp1)2 – (x2 – xp2)2dx1

dξ
[(x1 – xp1)2 + (x2 – xp2)2]2

– 1

1

N (c)(ξ)dξ .  (17b)

It is obvious that the first integral in the above equa-
tions is strongly singular, while the second one is
hyper-singular.  In the same manner as before for the
thermal BIE, the integrals are treated separately by

different schemes.  By use of the interpolation given
in Eqs. (7) and (8), the strongly singular integral in
Eq. (17a) can be rewritten as

(x1 – xp1)

(x1 – xp1)2 + (x2 – xp2)2 N (c)(ξ)J(ξ)dξ
– 1

1

=
β 1m

(i) x1
(i)α j

(c)ξ m + jΣ
m, j = 0

n

Σ
i = 1

n + 1

F2n (ξ – Vl)Π
l = 1

2n J(ξ)dξ

– 1

1

=

– 1

1

β 1n
(i) x1

(i)αn
(c)

F2n
Σ

i = 1

n + 1

+

x1
(i)Σ

i = 1

n + 1 (β 1n
(i)αn – 1

(c) + β 1n – 1
(i) αn

(c))ξ 2n – 1 + β 1m
(i) α j

(c)ξ m + jΣ
m, j = 0

n – 1

– β 1n
(i)αn

(c)Fmξ m/F2nΣ
m = 0

2n – 1

F2n (ξ – Vl)Π
l = 1

2n

J( ξ)dξ . (18)

The first integral term in the last equation of Eq.
(18) has no singularity since its Jacobian shall not

approach zero under the nearly singular condition.
Therefore, it can be directly integrated using any
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numerical  integrat ion scheme such as  Gauss
integration.  However, the problem of nearly singu-
lar integral shall arise for the last integral term in Eq.

(18).  For simplifying the regularization process, its
integrand can be rearranged to have the form,

x1
(i)

(β 1n
(i)αn – 1

(c) + β 1n – 1
(i) αn

(c))ξ 2n – 1 + β 1m
(i) α j

(c)ξ m + jΣ
m, j = 0

n – 1

– β 1n
(i)αn

(c)Fmξ m/F2nΣ
m = 0

2n – 1Σ
i = 1

n + 1

F2n (ξ – Vl)Π
l = 1

2n J(ξ) = (
Gl

(ξ – Vl)
Σ

l = 1

2n
)J(ξ) , (19)

where the constant Gl is given by

Gl =

x1
(i)Σ

i = 1

n + 1 (β 1n
(i)αn – 1

(c) + β 1n – 1
(i) αn

(c))Vl
– 1 + β 1m

(i) α j
(c)Vl

m + j – 2nΣ
m, j = 0

n – 1

– β 1n
(i)αn

(c)FmVl
m – 2n/F2nΣ

m = 0

2n – 1

F2n (1 – Vk /Vl + Vkδkl /Vl)Π
k = 1

2n . (20)

Applying the scheme of integration by parts, one may
obtain

(
Gl

(ξ – Vl)
)Σ

l = 1

2n
J(ξ)dξ

– 1

1

= Gl(J(ξ)log(ξ – Vl) – 1

1Σ
l = 1

2n
– J ′(ξ)log(ξ – Vl)dξ)

– 1

1
,

 (21)

where the singularity order has been reduced to be
weakly singular.  To fully remove the singularity, the
weakly singular integral in Eq. (21) has to be inte-
grated by parts again to give

(
Gl

(ξ – Vl)
)Σ

l = 1

2n
J(ξ)dξ

– 1

1

= Gl {[J(ξ) – J ′(ξ)(ξ – Vl)]log(ξ – Vl)Σ
l = 1

2n

+ J ′(ξ)(ξ – Vl)} – 1

1
+ J ′′(ξ)(ξ – Vl)

– 1

1

⋅ [log(ξ – Vl) – 1]dξ , (22)

where 
^

J′′ (ξ) represents the differentiated Jacobian of
the second order, explicitly given by

J ′′(ξ) =
s t(t – 1)(s + t – 3)α s

(i)α t
( j)xl

(i)xl
( j)ξ s + t – 4Σ

t = 2

n

Σ
s = 1

n

Σ
i, j = 1

n + 1

J(ξ)

–
m k(k – 1)αm

(i)αk
( j)xl

(i)xl
( j)ξ m + k – 3J ′(ξ)Σ

k = 2

n

Σ
m = 1

n

Σ
i, j = 1

n + 1

J2(ξ)
, (23)

where s, t must satisfy s + t ≥ 4.  With its singularity
order reduced, Eq. (22) can now be evaluated using a
regular numerical integration scheme to give accu-
rate results.  The strongly singular integral appearing
in Eq. (17b) can be treated in the same way as de-
scribed above.  The derived formulae can be applied

by simply replacing ^x1
(i) by ^x2

(i) and β (i)
1m by β (i)

2m in the
numerator of Eq. (18) and in the subsequent derivations.

Next, the goal is to regularize the hyper-singular
integrals in Eqs. (17a) and (17b).  By interpolating all
spatial coordinates using Eq. (8), the hyper-singular
integral in Eq. (17a) can be written as
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[(x1 – xp1)2 – (x2 – xp2)2]
dx2
dξ – 2(x1 – xp1)(x2 – xp2)

dx1
dξ

[(x1 – xp1)2 + (x2 – xp2)2]2

– 1

1

N (c)(ξ)dξ =
f1(ξ)

F2n
2 (ξ – Vw)2Π

w = 1

2n dξ

– 1

1

, (24)

where f1(ξ) represents

f1(ξ) = t α t
(k)α s

(c)Σ
t = 1

n

Σ
l, m, s = 0

n

Σ
i, j, k = 1

n + 1
⋅

β 1l
(i)β 1m

( j) x1
(i)x1

( j)x2
(k)

– β 2l
(i)β 2m

( j) x2
(i)x2

( j)x2
(k)

– 2β 1l
(i)β 2m

( j) x1
(i)x2

( j)x1
(k)

ξ s + m + l + t – 1 . (25)

Obviously, the denominator is a polynomial function
of ξ with degrees 4n, and the polynomial in the

numerator has degrees 4n-1.  The integrand can be
further processed to give

[(x1 – xp1)2 – (x2 – xp2)2]
dx2
dξ – 2(x1 – xp1)(x2 – xp2)

dx1
dξ

[(x1 – xp1)2 + (x2 – xp2)2]2 N (c)(ξ)dξ

– 1

1

=
Cw1

(ξ – Vw) +
Cw2

(ξ – Vw)2 dξΣ
w = 1

2n
,

– 1

1

(26)

where the constants Cw1, Cw2 are given by

Cw1 =
f1′(Vw) – 2 f1(Vw)Vw

– (4n + 1) (1 – Vk/Vw + Vkδkw/Vw)– 1Σ
k = 1

2n

F2n
2 (1 – Vk /Vw + Vkδkw /Vw)2Π

k = 1

2n
(27a)

Cw2 =

t α t
(k)α s

(c)Σ
t = 1

n

Σ
l, m, s = 0

n

Σ
i, j, k = 1

n + 1
β 1l

(i)β 1m
( j) x1

(i)x1
( j)x2

(k)

– β 2l
(i)β 2m

( j) x2
(i)x2

( j)x2
(k)

– 2β 1l
(i)β 2m

( j) x1
(i)x2

( j)x1
(k)

Vw
s + m + l + t – 4n – 1

F2n
2 (1 – Vk /Vw + Vkδkl /Vw)2Π

k = 1

2n . (27b)

In Eq. (27a), the general form of f1′ (ξ ), denoting differentiation of f1(ξ), is written as

f1′(ξ) = t(s + m + l + t – 1)α t
(k)α s

(c)Σ
t = 1

n

Σ
l, m, s = 0

n

Σ
i, j, k = 1

n + 1
⋅

β 1l
(i)β 1m

( j) x1
(i)x1

( j)x2
(k)

– β 2l
(i)β 2m

( j) x2
(i)x2

( j)x2
(k)

– 2β 1l
(i)β 2m

( j) x1
(i)x2

( j)x1
(k)

ξ s + m + l + t – 2 (28)

In the sequel, Eq. (26) can be analytically integrated to give
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[(x1 – xp1)2 – (x2 – xp2)2]
dx2
dξ – 2(x1 – xp1)(x2 – xp2)

dx1
dξ

[(x1 – xp1)2 + (x2 – xp2)2]2 N (c)(ξ)dξ

– 1

1

=
Cw1

(ξ – Vw) +
Cw2

(ξ – Vw)2 dξΣ
w = 1

2n

– 1

1

= Cw1log(ξ – Vw) –
Cw2

(ξ – Vw)
– 1

1

Σ
w = 1

2n
(29)

In a similar manner, the hyper-singular integral in
Eq. (17b) can be treated likewise.  Following the

foregoing processes, one may rewrite the hyper-sin-
gular integral as

2(x1 – xp1)(x2 – xp2)
dx2
dξ + [(x1 – xp1)2 – (x2 – xp2)2]

dx1
dξ

[(x1 – xp1)2 + (x2 – xp2)2]2 N (c)(ξ)dξ

– 1

1

=
f2(ξ)

F2n
2 (ξ – Vw)2Π

w = 1

2n dξ

– 1

1

=
Dw1

(ξ – Vw) +
Dw2

(ξ – Vw)2Σ
w = 1

2n
dξ

– 1

1

, (30)

where the function f2(ξ) is given by

f2(ξ) = t α t
(k)α s

(c)Σ
t = 1

n

Σ
l, m, s = 0

n

Σ
i, j, k = 1

n + 1
⋅

β 1l
(i)β 1m

( j) x1
(i)x1

( j)x1
(k)

– β 2l
(i)β 2m

( j) x2
(i)x2

( j)x1
(k)

2β 1l
(i)β 2m

( j) x1
(i)x2

( j)x2
(k)

ξ s + m + l + t – 1 (31)

and the constants Dw1, Dw2 are given by

Dw1 =
f2′(Vw) – 2 f2(Vw)Vw

– (4n + 1) (1 – Vk /Vw + Vkδkw /Vw)– 1Σ
k = 1

2n

F2n
2 (1 – Vk /Vw + Vkδkw /Vw)2Π

k = 1

2n (32a)

Dw2 =

t α t
(k)α s

(c)Σ
t = 1

n

Σ
l, m, s = 0

n

Σ
i, j, k = 1

n + 1
β 1l

(i)β 1m
( j) x1

(i)x1
( j)x1

(k)

– β 2l
(i)β 2m

( j) x2
(i)x2

( j)x1
(k)

– 2β 1l
(i)β 2m

( j) x1
(i)x2

( j)x2
(k)

Vw
s + m + l + t – 4n – 1

F2n
2 (1 – Vk /Vw + Vkδkl /Vw)2Π

k = 1

2n . (32b)

Sequentially, Eq. (30) can be analytically integrated
to give (33) To this end, the singularity of all singu-
lar integrals has been fully removed.  As a result, the

regularized BIE of temperature gradients can be ex-
pressed as
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dT(Pa)
dxp1

= qcb

2πΣ
c = 1

n + 1

Σ
b = 1

M

β 1n
(i) x1

(i)αn
(c)

F2n
J(ξ)dξΣ

i = 1

n + 1

– 1

1

+ GlΣ
l = 1

2n {[J(ξ) – J ′(ξ)(ξ – Vl)]log(ξ – Vl) + J ′(ξ)(ξ – Vl)} – 1

1

+ J ′′(ξ)(ξ – Vl)[log(ξ – Vl) – 1]dξ
– 1

1

– T cb

2πΣ
c = 1

n + 1

Σ
b = 1

M
Cw1log(ξ – Vw) –

Cw2
(ξ – Vw)

– 1

1

Σ
w = 1

2n
(34a)

dT(Pa)
dxp2

= qcb

2πΣ
c = 1

n + 1

Σ
b = 1

M

β 2n
(i) x2

(i)αn
(c)

F2n
J(ξ)dξΣ

i = 1

n + 1

– 1

1

+ KlΣ
l = 1

2n {[J(ξ) – J ′(ξ)(ξ – Vl)]log(ξ – Vl) + J ′(ξ)(ξ – Vl)} – 1

1

+ J ′′(ξ)(ξ – Vl)[log(ξ – Vl) – 1]dξ
– 1

1

– T cb

2πΣ
c = 1

n + 1

Σ
b = 1

M
Dw1log(ξ – Vw) –

Dw2
(ξ – Vw)

– 1

1

Σ
w = 1

2n

(34b)

In Eq. (34b), the constant Kl is given by

Kl =

x2
(i)

(β 2n
(i)αn – 1

(c) + β 2n – 1
(i) αn

(c))Vl
– 1 + β 2m

(i) α j
(c)Vl

m + j – 2nΣ
m, j = 0

n – 1

– β 2n
(i)αn

(c)FmVl
m – 2n/F2nΣ

m = 0

2n – 1Σ
i = 1

n + 1

F2n (1 – Vk /Vl + Vkδkl /Vl)Π
k = 1

2n . (35)

Having calculated the temperature gradients in the
mapped plane, one may readily obtain the heat fluxes
defined in the physical plane using Eq. (16).  In what
follows, the veracity of the derived formulae will be
demonstrated by two numerical examples.

IV. NUMERICAL EXAMPLES

All formulae derived have been implemented in
an existing computer program based on quadratic
isoparametric elements (n = 2) using Lagrange

interpolation.  For demonstration of the proposed
scheme, the first problem considered is a square glass/
epoxy plate with dimensions as shown in Fig. 1.  The
conductivity coefficients of the material with aster-
isk denoting the properties in the principal axes are

K*
11/K*

22 = 3.46/0.35. (36)

To account for the case with fully anisotropic
properties, the principal axes are rotated with an angle
θ = 60°.  For the boundary conditions, the top and
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bottom surface are prescribed with temperature
change 100°C and 0°C, respectively, while the other
two opposite sides are thermally insulated.  As shown
in Fig. 1, the temperature and its gradients in both
directions x1, x2 are calculated using the derived BIEs
for the interior points of interest, marked by cross
signs.  For verifying the BEM results, the problem is
also investigated by ANSYS, commercial software
based upon the finite element method.  Also shown
in Fig. 1 is the BEM mesh discretisation used for the
present analysis, where a total of 20 quadratic ele-
ments are used.  For the FEM analysis in ANSYS,
the FEM discretisation needs relatively fine meshes
in order to get data at corresponding points near the
boundary.  Although an adaptive discretisation with
fewer meshes may be developed to meet such a
requirement, a less straightforward scheme shall be

involved to reduce the mesh loading.  Simply for the
purpose of verification, a simple discretisation with
constant intervals is applied.  Fig. 2 shows the FEM
domain discretisation used in the current analysis by
ANSYS, where a total amount of 1600 PLANE42 el-
ements are applied.  For comparisons, the computa-
tions of the thermal field are carried using the present
regularized BIE (RBIE) and also the conventional BIE
(CBIE).  The computed T, dT/dx1, and dT/dx2 are nor-
malized and plotted in Figs. 3, 4, and 5, respectively.
From Fig. 3, it is seen that the errors caused by the
CBIE for those points near the boundary are not so
obvious.  This is because the singularity orders of the
temperature BIE are not so strong as those in the BIE
for temperature gradients.  In Figs. 4 and 5, the data
of CBIE for points near the top surface are not shown
since they are off-scale with large errors.  As seen
from these figures, the results of RBIE agree very well

Fig. 1  Mesh discretisation and the interior points of a square plate

Fig. 2  FEM discretisation for the interior calculations by ANSYS
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Fig. 3 Normalized temperature, T/∆T, at the interior points of
interest
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Fig. 4  Normalized temperature gradient, dT/dx1 . L/∆T, at the
interior points of interest
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with the analyses by ANSYS, while the CBIE fails to
give satisfactory values at points near the boundary.
From the results, it was observed that different sen-
sitivities of the boundary fluxes in the normal and
tangent directions strongly depend on the orientation
of the principal axes.  The sensitivities for isotropic
media were observed by Igarashi and Honma (1993).

Another problem considered is a doubly con-
nected glass/epoxy plate as shown in Fig. 6.  As pre-
scribed for the previous problem, all outside surfaces
have the same boundary conditions.  Additionally, the
inside hole is thermally insulated.  The principal axes
are assumed to have a rotation angle θ = 45°.  For the
BEM modeling, the domain is discretised into 32 qua-
dratic isoparametric elements using the Lagrange
interpolation.  The same problem is also analyzed using

ANSYS, where a total of 1600 PLANE42 elements
are applied as shown in Fig. 7.  For the interior cal-
culations at points near the boundary, relatively re-
fined meshes are used for the FEM discretisation.
Fig. 8 shows the distribution of the normalized tem-
perature at the interior points.  The normalized tem-
perature gradients, dT/dx1 . L/∆T and dT/dx2 . L/∆T,
calculated using the RBIE, CBIE, and ANSYS for these
interior points are plotted in Fig. 9 and Fig. 10,
respectively.  By observing these figures, it is appar-
ent that the RBIE yields values in excellent agree-
ment with those obtained by ANSYS, while CBIE fails
to give satisfactory results.

V. CONCLUDING REMARKS

The present work deals with the interior BEM
calculation of the anisotropic thermal fields at points
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Fig. 5 Normalized temperature gradient, dT/dx2 . L/∆T, at the in-
terior points of interest

Fig. 6 The BEM meshes used for a doubly connected region and
the interior points

Fig. 7 The domain discretisation used for the FEM analysis for
the second example
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Fig. 8 Normalized temperature at the interior points for the sec-
ond example
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near the boundary.  For calculation of the interior ther-
mal field, the boundary integrals become strongly sin-
gular for the temperature kernel and hyper-singular
for the temperature gradients.  The singularities are
removed by the scheme of integration by parts for
the integrals of the temperature kernel and by a semi-
analytical approach for those associated with tempera-
ture gradients.  The integral equations, derived for
generally high order elements, are tested and work
perfectly no matter how closely the source point ap-
proaches the integration element.  The successful
implementation of the proposed scheme is illustrated
by numerical examples, where results are verified by
ANSYS analyses.
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