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equation formulations can be hindered by the existence of spurious
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1. Introduction

Spurious solutions have been known to exist in various techniques for modal analysis of opti-
cal waveguides and resonators. Although more well-known inthe context of the Finite-Element
Method (FEM) [1,2], spurious solutions also appear when themethod of moments (MoM) is ap-
plied to a surface formulation using local-domain basis functions, like in the Boundary-Element
Method (BEM) [3], and also using entire-domain basis functions [4]. As shown in this paper,
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spurious solutions also appear in methods like the Source-Model Technique (SMT), which are
based on off-surface integral-equation formulations [5, 6]. Some spurious solutions are the re-
sult of the discretization of a continuous operator [7]. Others, however, can be traced to the
continuous operator itself, which has, owing to its compactness, a continuum of eigenfunctions
of arbitrarily small eigenvalue [8]. In this paper we focus on methods based on integral-equation
formulations, such as the MoM and SMT, and show how spurious solutions may be eliminated
by a modification of the matrix singularity measure used to determine the eigenvalues.

Methods based on surface and off-surface formulations are among the most successful elec-
tromagnetic modelling techniques. Compared with differential methods, the representation of
the fields usually requires fewer unknowns, and curved boundaries and unbounded domains
are easily accommodated. These advantages are largely a consequence of the basis functions
used to approximate the fields. The basis functions are the Maxwellian fields of sources radi-
ating in a homogeneous domain, located either on the media boundaries (as in the MoM), or
slightly offset from them (as in the SMT). This choice exploits the tacit assumption that the ma-
terial is piecewise homogeneous to render a very compact approximation of the fields. Indeed,
in the context of scattering problems, it has been shown thatthe number of unknowns in the
SMT is practically optimal and it approaches the number of degrees of freedom of the scattered
fields [9].

Despite the advantages of integral-equation-based methods they are not as popular, in the
context of mode determination, as the FEM and other differential methods. The main reason
is probably that in contrast to the latter, mode determination in the MoM and the SMT leads
to anonlinear eigenvalue problem. The relevant impedance matrix dependsnonlinearly on the
frequency (and propagation constant, for waveguides), because the basis functions must obey
Maxwell’s equations for every potential eigen-frequency (and propagation constant). It turns
out then, that the advantages of using Maxwellian fields as basis functions are offset by the cost
of solving the resultant nonlinear eigenvalue problem.

Clearly, if the nonlinear eigenvalue problem could be solved efficiently and reliably, integral-
equation methods would become more useful for modal analysis. A number of works have
addressed this issue. The simplest approaches consist of sampling the determinant of the
impedance matrix in ever increasing sampling rates to try and verify that no modes are
missed [10]. The problem with this and similar approaches which search for minima of the
smallest singular value [11] is that modes may be degenerateor almost degenerate, and hence,
there is noa priori bound on the required sampling rate. To overcome this problem, more so-
phisticated methods that rely on the so-calledorthogonality in the local limit [12] have been
proposed [12, 13]. The idea is to take advantage of the (near)orthogonality of solution vec-
tors that correspond to (nearly) degenerate modes by continuously correlating sets of candidate
solution vectors at different frequencies or propagation constants. In [12], the minima of the
smallest singular value are found by keeping track of singular values that correspond to all
the candidate solution vectors on a given interval of frequency or propagation constant. Sim-
ilarly, in [13], an eigenvalue-tracking method is used to track the smallest eigenvalues of the
impedance matrix in the complex eigenvalue plane as the frequency is varied. The eigenmodes
are determined by detecting real-line crossings of the complex eigenvalues. While these meth-
ods are more robust, their implementation is somewhat complicated and the overhead compared
with a simple search cannot be entirely overlooked.

The search algorithm proposed in this paper makes use of the same quasi-orthogonality prin-
ciple, though it does not require continuous tracking of many eigenvalues. Instead, the algo-
rithm first tries to find the modes by simple (yet adaptive) sampling of the reciprocal of the
matrix singularity measure introduced in this paper. This function is devoid of the irregulari-
ties caused by spurious solutions and typically resembles asawtooth waveform whose minima
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correspond to the eigenmodes. The adaptive sampling algorithm exploits this to sample the
function sparsely. Only after a reasonably good image is obtained, the finer details are resolved
by use of the orthogonality in the local limit.

Although the algorithm assumes that the modes have real frequency or propagation constant,
moderately lossy or leaky modes can be found very efficientlyby estimating the correspond-
ing imaginary part and starting a search in the complex planefrom this estimate. A dielectric
waveguide solver based on this paper that includes many examples and a graphical-user inter-
face is freely available for download [14].

The remainder of this paper is organized as follows: In Section 2, we discuss the source and
character of the spurious solutions in integral-equation formulations. The difficulties caused by
these solutions are described in Section 3. In Section 4, we present the proposed modification of
the matrix singularity measure and show how it eliminates the spurious solutions. As explained
in Section 5, once free from spurious solutions, the matrix singularity measure can be sampled
adaptively to determine the modes. Numerical examples are given in Section 6, and the last
section is a summary.

2. Spurious solutions of integral equations

Wolff and Schroeder have pointed out two different types of spurious solutions in electromag-
netic modelling schemes. The more well-known type was discussed thoroughly in [7]. These
solutions are due to the discretization process; they solvethe discrete approximation of a con-
tinuous operator equation but do not correspond to any of itssolutions. In effect, the spurious
solutions solve the equation in a weighted average sense, but if the error of the solution is evalu-
ated by use of slightly different weighting functions a muchlarger error is found. In the context
of the SMT, these spurious solutions were also recognized in[15]. They can be avoided at a
marginal extra cost by overdetermination, i.e., by using more weighting functions than basis
functions (about twice as many).

The other type of spurious solutions was alluded to in [8], where the BEM was used to
analyze coplanar waveguides. In contrast to the previous type of spurious solutions, these do
not appear at discrete frequencies or propagation constants. Instead they form a continuum
of spurious solutions which exist at each and every frequency or propagation constant. These
spurious solutions do correspond to eigenfunctions of the continuous operator.

The integral equations that are discretized in the BEM and SMT are usually Fredholm equa-
tions of the first kind. For example, the integral equation for the TM modes of a perfectly
conducting cylindrical waveguide oriented along thez direction is given by

∫

C′
Jz(r ′)H

(2)
0

(

kρ |r − r ′|
)

dl′ = 0. (1)

Here,H(2)
0 (·) is the Hankel function of zero order and second kind,Jz is the unknown current

distribution, and the radial wave numberkρ obeys the separation equation

kρ =
√

k2
0−β 2, (2)

wherek0 is the free-space wave number, equal toω/c. The assumed and suppressed time and
longitudinal variation are exp( jωt) and exp(− jβ z), respectively, andc is the speed of light in
vacuum. The radius vectorr points to the waveguide boundary contour,C, and the equation
must be satisfied at all pointsr ∈ C. The integration is carried out on the contourC′, and the
radius vector that points toC′ is r ′. The integration variable,dl′, is a differential line element.
In conventional MoM surface formulations, both contours are the same, soC ≡C′. This makes
the integral equation kernel weakly singular. To avoid this, in the SMT the current distribution
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is placed onC′ which is a slightly dilated version ofC. A non-trivial solution to Eq. (1) exists
only for specific pairs ofω andβ for which the integral operator has a zero eigenvalue.

In the context of integral equations, it is well-known that the compact integral operator,

L( f ) =
∫

K(r , r ′) f (r ′)dl′ (3)

induced by a smooth or weakly-singular symmetric kernel,K(r , r ′), has an infinite number of
real eigenvalues,{λ j}, which tend to zero [16, p. 38]. This is a direct consequence of the low-
pass nature of the kernel function; rapidly varying eigenfunctions have, consequently, small
eigenvalues. For example, in a circular geometry such an eigenfunction would be a cylindrical
current sheet, of radiusρ0, carrying a unit-amplitude, circularly-harmonic current, exp( jnφ).
The longitudinal electric field,Ez, in the regionρ ≤ ρ0 due to this current is given by

Ez =−
πρ0k2

ρ

2ωε0
Jn(kρ ρ)H(2)

n (kρ ρ0)e
jnφ ; ρ ≤ ρ0, (4)

whereJn is the nth order Bessel function andε0 is the free-space permittivity. Whenn ≫
kρ ρ0, the spatial variation of the current is fast on a radial-wavelength scale, andEz can be
approximated by

Ez ≈
k2

ρ ρ0

2 jωε0n

(

ρ
ρ0

)n

e jnφ ; ρ ≤ ρ0. (5)

This shows that the field inside of aunit amplitude current sheet can be made arbitrarily small
by using a sufficiently rapidly varying current. Asn is increased, the field right on the current
sheet decreases and it also decays more rapidly as the observation point moves away from the
current sheet.

When the operatorL is discretized, the finite number of basis functions,N, limits the spatial
variation of the solutions. Hence, whenN is small, the error of the spurious solution is large,
and assuming the true solutions have a smaller error they will be easily discernable. On the
other hand, asN is increased the error of spurious solutions decreases and they may hide a true
solution. In the SMT this problem is more severe owing to the factor( ρ

ρ0
)n which appears in

Eq. (5). As the current is displaced from the waveguide boundary, this factor strongly reduces
the field there, thus reducing the error of the spurious solution.

Alternative surface formulations, such as Müller’s [17], which lead to Fredholm equations
of the second kind have also been proposed as a way of avoidingill-conditioning (which is
due to the spurious solutions). Applications of this approach to mode determination of optical
waveguides can be found in [18,19].

3. The effect of the continuum of spurious solutions on mode determination

Since the first type of spurious solutions can be handled quite easily by overdetermination, we
focus now on the second type and show how it renders mode determination problematic. The
difficulties caused by the spurious solutions are manifest even in the simplest analysis cases.
This enables us to discuss these difficulties while avoidingundue complications, by determining
the TM modes of a circular perfectly conducting waveguide. More challenging examples are
given in Section 6. The method of analysis is the SMT, and we will look at the effect of varying
the number of filamentary sources and their distance from theboundary. It is assumed that the
behavior of conventional MoM can be inferred from the behavior of the SMT in the limit that
the number of sources increases and they approach the waveguide boundary.

In the SMT, TM modes are approximated by the fields of an array of N electrical current fila-
ments, uniformly distributed on a circle outside the waveguide, concentric with the waveguide.
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The filaments carry a longitudinally varying current, whosedependence on the longitudinal
coordinatez, is exp(− jβ z) (this dependence is suppressed). We denote the waveguide radius
by R. The radius of the circle on which the sources are located is larger thanR by a factorα
(α > 1). This geometry is depicted in Fig. 1. The amplitudes of the sources are arranged in an

αR 

R 

Testing points 

Sources

x 

y 

Fig. 1. Sources and testing points for a SMT analysis of a circular waveguide.

N-tuple column vector, denoted by~I. They are found by requiring that the longitudinal electric
field, Ez, be zero at a set ofM testing points, uniformly distributed on the waveguide boundary.
This leads to a homogeneous matrix equation

[Z]~I =~0, (6)

where[Z] is theM×N impedance matrix. To avoid the first type of spurious solutions, more
testing points than sources should be used. In this example,we used twice as many testing
points as sources, soM = 2N.

Equation (6) is the discretized version of Eq. (1). It has nontrivial solutions if and only if
[Z] is singular, or as is the case in any approximate numerical solution, close to singular. To
find the modes, a suitable measure of the singularity of[Z] must be chosen and evaluated at the
relevant values of the radial wave number,kρ . A common measure of singularity is the condition
number of[Z]. Other measures that have been used are the closely related,smallest singular
value of [Z] [20], and the determinant of[Z] [15], which, however, is not directly applicable
to non-square matrices and is difficult to compute for even moderately large square matrices.
Typically, the singularity measure is sampled on a sufficiently fine grid of kρ R, yielding a plot
like the one shown in Fig. 2a, or Fig. 2 in [20]. The cut-off wave numbers, which are at the first
zeros of the Bessel functions, can be clearly seen as peaks ofthe matrix condition number.

It is interesting to note that the matrix condition number isquite highbetween the peaks.
The high condition number is of course due to the continuum ofspurious solutions. In the
discrete version, these solutions consist of sources of equal magnitude and alternating sign, that
generate fields strongly confined to the vicinity of the sources. Because theirEz field is small
on the waveguide boundary, they approximately solve Eq. (6), and this is reflected by the high
condition number.

The difference between a true mode and a spurious one, is thatwhile both have vanishingly
small fields on the boundary, the fields of the spurious solution are also vanishingly small within
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Fig. 2. Singularities at the zeros of the Bessel functions. For this graph,N = 20 andα = 1.5.
A very fine sampling grid of 1500 points was needed to reveal all the singularities.

the boundary. To distinguish between the two, we define a normalized error measure,∆E, as

∆E =
rms([Z]~I)

rms([Z̃]~I)
, (7)

where[Z̃] is an impedance matrix that maps the amplitude vector~I to the values ofEz at a
number of sampling points inside the waveguide. Also in Eq. (7), the 2-norm, or root-mean-
square value, is denoted by rms(·). The sampling points can be arranged, for example, on a
uniform grid of reasonable density. When analyzing dielectric structures, the sampling points
can be the testing points already distributed on the media boundaries, since the modal fields are
in general not zero there. This is a convenient choice because [Z̃] can then be obtained directly
from [Z] after sign reversal of some of its entries. To evaluate∆E, the vector that solves Eq. (6)
in the least-squares sense is found by a singular value decomposition. The value of∆E for ~I
found at everykρ R of Fig. 2a, is shown in Fig. 2b, and it confirms that although the matrix is
rather singular between the peaks, there are no modes there since their normalized error is high.

We now turn to take a closer look at the singularities shown inFig 2. Zooming on the first
of these singularities, we see in Fig. 3, that it is very sharpand discontinuous. This behavior
has undesirable consequences. Because of the discontinuity, there can be no efficient search
algorithm to find the singularities since there is no indication that a point near a singularity
is in fact close, unless it is closer than the discontinuous edges. The only option is to sample
the measure of singularity on a very fine grid. The width of thesingularity determines the
appropriate sampling resolution, and as shown in Fig. 3, thewidth depends on the number and
location of the sources. Note that a small change in these parameters is enough to shrink the
singularity considerably. If the sampling grid is kept constant while the number of sources is
increased, the singularity may shrink to the point where it falls between grid points and goes
undetected. As it is often essential to verify that the results are correct by increasing the number
of sources or changing their positions slightly, this lack of reliability in the detection is a serious
drawback.

The behavior seen in Fig. 3 is easily explained by existence of spurious solutions. If for a
fixedα, the number of sources is increased, it would be like increasing n in Eq. (5), and if for a
fixedN, α is increased, it would be like increasingρ0 in Eq. (5). In both cases, the absolute error
of the spurious solution would decrease, contracting the singularity. To keep the singularities
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Fig. 3. Dependence of the shape of the singularity on (a) the number of sources and (b) the
distance from the waveguide boundary. In (a),α = 1.5, and in (b),N = 30.

wide enough, one should therefore use as few sources as possible and they should be placed
as close as possible to the boundary. While this facilitates the detection of the singularities, the
accuracy of the field approximation is bound to suffer. As we show in the next section, the need
to balance these conflicting goals is obviated by the proposed method.

In a conventional surface-formulation, discretized by theMoM, the sources are placed on
the boundary, i.e.,α = 1. Therefore, the singularities in the MoM are wider than in the SMT
for an equal number of unknowns. Nevertheless, the problem will occur in the MoM as the
number of basis functions is increased (Usually, a MoM solution will require more unknowns
than an SMT solution [9]). Indeed, the continuum of spurioussolutions was identified in [8] in
the context of the BEM, which can be classified as a surface-formulation.

4. A modified singularity measure

In [8], a Tikhonov regularization was proposed to deal with the continuum of spurious solutions.
The penalty function proposed there was proportional to thenorm of the second derivative of
the unknown fields at the interfaces between homogeneous regions. The method proposed here
has the advantage that it does not involve derivatives of thefields and it also does not require
calibration of the penalty function coefficient.

As explained in Section 3, it is the normalized error,∆E, which takes into account field values
inside the waveguide that reliably indicates the existenceof a true mode. Hence, instead of
evaluating∆E for the least-squares solution of Eq. (6), it would be betterto find the vector that
minimizes∆E for a givenkρ R. The square of normalized error,(∆E)2, is a ratio of two positive
definite quadratic forms known as ageneralized Rayleigh quotient. Direct differentiation shows
that the stationary values of a generalized Rayleigh quotient are the generalized eigenvalues of
the following generalized eigenvalue problem

[Z]†[Z]~I = ξ [Z̃]†[Z̃]~I. (8)

The generalized eigenvector~Imin, which corresponds to the minimum generalized eigenvalue,
ξmin, yields the minimum∆E, which is simply

√

ξmin. In essence, we have modified the matrix
singularity measure; it can now be defined as the reciprocal of the square root of the small-
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Fig. 4. Singularities at the zeros of the Bessel functions, calculated with theproposed matrix
singularity measure. For this graph,N = 20 andα = 1.5. The sampling grid is the same as
that of Fig. 2, although a much coarser grid could have been used.

est generalized eigenvalue of Eq. (8). The main advantage ofthis scheme is that~Imin andξmin

change continuously when moving from one singularity to thenext, thus allowing reliable de-
tection of the singularities.

The generalized eigenvalue decomposition can be carried out by a number of methods quite
efficiently, i.e., without a significant increase in the computation time relative to any of the
other common measures of singularity. Since we are only interested in the smallest eigenvalue,
Arnoldi methods are most suitable [21]. They require, however, explicit multiplication of the
matrices[Z] and [Z̃] by their Hermitian conjugates, and this operation is prone to round-off
errors. In the vast majority of cases, however, this method yields excellent results and is used
throughout this paper. A more robust, though slower, alternative would be to use Van Loan’s al-
gorithm for the generalized singular value decomposition (GSVD) [22], since the square root of
the smallest generalized eigenvalue of Eq. (8) is the smallest singular value of the pair

(

[Z], [Z̃]
)

.
To demonstrate the effectiveness of the spurious-free formulation, the plots of Figs. 2 and 3

were recalculated with the sameN andα using the proposed matrix singularity measure. The
results are shown in Figs. 4 and 5, respectively. The slope from which the singularities pro-
truded in Fig. 2 has disappeared in Fig. 4, and the minima of the curve can be found with far less
iterations. This is the subject of the next section. As shownin Fig. 5, the high sensitivity of the
width of the singularity to the location and number of sources has been completely eliminated.

5. Spurious-free mode determination

The first phase of the mode determination scheme consists of adaptive sampling of the sin-
gularity measure. The objective of this phase is to sample the singularity measure,∆E, on a
nonuniform sampling grid which reveals just enough detail for the next phase to detect all the
minima in a prescribed interval of propagation constant or frequency. As the next phase utilizes
the orthogonality in the local limit, closely spaced modes need not be resolved, but otherwise
all the minima should be detected. In the description that follows it will be assumed that a
waveguide is analyzed, and therefore the singularity measure depends both on the frequency,
ω, and on the propagation constant,β . In the analysis of a resonator it would depend, of course,
only on the frequency.
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Fig. 5. The proposed matrix singularity measure. Dependence of the shape of the singularity
on the number of sources (a) and the distance from the waveguide boundary (b). In (a),
α = 1.5, and in (b),N = 30. Note that the range of the abscissa is ten times that of Fig. 3.

5.1. Adaptive sampling algorithm

The adaptive sampling algorithm is based on the observationthat∆E(β ) for a given frequency
ω, resembles a sawtooth waveform. This can be readily observed in Fig. 6a, where∆E(β )
is plotted on a linear scale (as opposed to the logarithmic scale used in the previous figures).
As shown in Fig. 6b, ifβ is kept fixed and the frequency is allowed to vary, a similar result
is obtained for∆E(ω). The sawtooth-like shape is obtained when the proposed singularity
measure is used. Of course, if Fig. 2 were plotted on a linear scale it would still be discontinuous
and completely unsuitable for an efficient search algorithm.
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Fig. 6. Typical sawtooth-like dependence of the singularity measure,∆E, on (a) the nor-
malized propagation constant, or effective index,β/k0, and on (b) the normalized wave
vector,k0R. The structure analyzed is a round step-index fiber. The relative permittivities
are:εrw = 1.82, andεrc = 1.52, for the waveguide and cladding regions, respectively. In (a)
the radiusR is equal to the free-space wavelength,λ0. In (b) the normalized propagation
constant,β/k0, is 1.6.
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The algorithm, shown in Fig. 7, exploits the shape of∆E by assuming that monotonic parts of
the function are approximately straight lines. For a given interval ofβ , the algorithm attempts
to ascertain as quickly as possible whether the function∆E(β ) is monotonic on the interval.
As explained in the next paragraph, this is where the shape of∆E(β ) is utilized. If ∆E(β ) is
indeed monotonic, the algorithm ends with empty output. If,on the other hand, a minimum
or a maximum is detected, its location is determined to higher accuracy by a standard golden
section search [23]. The interval is then subdivided to intervals to the left and to the right of the
extremum found, and the algorithm is called recursively with these subintervals as input. The
output then is a concatenation of this extremum and those found in the two subintervals. At the
end of the recursive process the output is a list of all the extrema encountered.

Algorithm 5.1: FINDEXTREMA(βmin,βmax)

if ∆E(β ) is monotonic on the interval(βmin,βmax)

then return ()

else







Find an extremumβext∈ (βmin,βmax) by golden section search

return (βext,FINDEXTREMA(βmin,βext),FINDEXTREMA(βext,βmax))

Fig. 7. Adaptive search algorithm for finding the extrema of∆E(β ).

Ascertaining whether a function is monotonic on a given interval is of course a difficult
problem in the general case. However, by exploiting the sawtooth form of the function, a simple
and efficient algorithm may be proposed (see Fig. 8). The algorithm begins with three samples:
at the interval endpoints and at its midpoint. It then adds samples as long as the sample series is
monotonic and the number of samples,n, is smaller than a prescribed number,nmax, which can
be determined empirically as will be shown below. The samples are added as follows. Assuming
the function has been sampledn times, a straight line is fit through every three consecutive
samples by linear regression. For each fit, the correlation coefficient,r, is evaluated by

r2 = 1−

3
∑

i=1

[

∆E (βi)−∆E f (βi)
]2

3
∑

i=1
[∆E (βi)−〈∆E (βi)〉]2

(9)

whereβi are the sample points,∆E f (βi) is the value of the fit at these points, and the angle
brackets denote the mean value. A correlation coefficient close to 1 indicates that the three
points are approximately collinear. The algorithm finds thethree consecutive points,βm−1,βm,
and βm+1, which correspond to the smallest value ofr, i.e., the ones for which the straight
line fit is of worst quality. This deviation from a straight line possibly indicates an extremum,
and therefore, the following samples are taken to be(βm−1 + βm)/2 and(βm + βm+1)/2. If
the sample series remains monotonic when the maximum numberof samples is reached, it
is concluded that∆E(β ) is monotonic. If an extremum is encountered during the sampling
process,∆E(β ) is obviously not monotonic.

As illustrated in Fig. 9, the sampling points tend towards regions of high curvature where an
extremum is likely to be found. However, this sampling scheme will have difficulty detecting
both minima of a nearly degenerate mode pair. When the first minimum of the pair is found,
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Algorithm 5.2: ISMONOTONIC(βmin,βmax,nmax)

comment:Begin by adding the endpoints and the midpoint to the sample series.

β0← βmin

β1← (βmin +βmax)/2

β2← βmax

n← 3

comment: In the following,~β is a shorthand for the entire sample series,
{

β j
}n−1

j=0.

comment:Similarly, ~∆E is a shorthand for the error series,
{

∆E(β j)
}n−1

j=0.

while ~∆E is monotonicand n 6 nmax

do







































find the three less collinear points,βm−1,βm, andβm+1

βn← (βm−1 +βm)/2

βn+1← (βm +βm+1)/2

n← n+2

sort~β

if ~∆E is monotonicreturn ( true )

else return ( false)

Fig. 8. Algorithm for attempting to determine whether∆E(β ) is monotonic by sampling it
at mostnmax times.

the algorithm will be called with a new subinterval which includes the undetected mode near
one of its endpoints. If the undetected mode is sufficiently close to the endpoint, the function
will appear to be monotonic on the subinterval and the mode will be missed. This case can also
be seen in Fig. 9, where a mode has been detected at the left endpoint in the previous call to the
search algorithm. The mode just to the right of the left endpoint may go undetected, even after
further subdivision of the intervals because the number of samples required for its detection
could be more thannmax. The probability of this happening may be reduced (at a relatively
small expense) by choosing the first two samples very close tothe endpoints. However, since
minima may be arbitrarily close, a mode may still be missed. Such close modes are resolved
by the next phase of the algorithm. The first phase is summarized in the animation shown in
Fig. 10.

5.2. Resolving degenerate and nearly-degenerate modes

It is well-known that eigenmodes of waveguides and resonators obey certain orthogonality re-
lations. In general, however, it is not true that the solution vectors of Eq. (6) that correspond to
different modes obey an orthogonality relation. In fact, the number of modes is infinite whereas
the number of linearly independent solution vectors is bounded by their length,N. However, the
generalized eigenvectors of Eq. (8) corresponding to different eigenvalues (which are the con-
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Fig. 9. Progress of the sampling scheme used to determine whether∆E(β ) is monotonic.
A high resolution plot of∆E is shown in (a) for the same step-index fiber of Fig. 6, but
with λ0 = 2R. In the first step of the sampling scheme (b), the endpoints and midpoint are
sampled. Since the sample series is monotonic, two new samples are addedat (β0 +β1)/2
and(β1 + β2)/2, as shown in (c). Since the sample series is still monotonic, the three less
collinear consecutive points are found (β3,β4, andβ5) and two points are added in between
them (d). This last refinement reveals a minimum and a maximum.

tinuity condition errors) are orthogonal. So the solution vectors that correspond to degenerate
modes are orthogonal. For a generalized eigenvalue problem,

[A]~x = ξ [B]~x. (10)

where [A] and [B] are Hermitian and positive definite, the generalized eigenvectors~xi are B-
orthogonal [24, p.507], i.e.,

~x†
i [B]~x j = 0, i 6= j. (11)

Similarly, if the modes are nearly degenerate, their solution vectors will be nearly orthogo-
nal [12].

This quasi-orthogonality can be used to resolve degenerateand nearly degenerate modes.
Suppose the previous phase of the algorithm has found one of the minima of two closely spaced
minima. The solution vector at this minima is a by-product ofthe evaluation of the matrix
singularity measure∆E; let this vector be denoted by~I1. Now, instead of[Z]†[Z] in Eq. (8),
substitute the matrix[A] given by

[A] = [Z]†[Z]+ξ0
[B]~I1~I

†
1 [B]†

~I†
1 [B]†~I1

, (12)
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Fig. 10. An animation summarizing the sampling algorithm (AVI, 3.7MB), for the same
step-index fiber shown in Fig. 9. The current search interval is marked by the dotted lines.
The rate of the animation is much slower than the actual computation.

where the matrix[B] is given by[Z̃]†[Z̃]. So constructed, the matrix pair([A], [B]) has the same
eigenvectors as the original generalized eigenvalue problem, Eq. (6). The eigenvalues are also
the same except forξ1, the eigenvalue of~I1, which is nowξ1 + ξ0 instead. By settingξ0 to a
high enough value (say,ξ0 = 1), the minimum which corresponds toξ1 can be removed from
the ∆E(β ) function which is defined as the smallest generalized eigenvalue at a givenβ . An
important feature of this process is that it does not create any spurious minima. When the modes
are only nearly-degenerate, the eigenvectors and eigenvalues of all the modes will be in general
altered by the proposed substitution. Nevertheless, as canbe seen in Fig. 11, this alteration is
negligible when the modes are close enough.
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Original ∆E(β)

After removal of second minimum

Fig. 11. The resolution of two close modes in the step-index fiber of Fig. 9.Assuming
the sampling process missed the first minimum but found the second minimum, the neigh-
borhood of the second minimum can be searched again, this time with the matrix [A] of
Eq. (12). The first minimum can then be easily detected.

The input of the second phase of the algorithm is the list of extrema found in the previous
phase. The second phase has to check each minimum found for a nearby mode that was missed.
To this end, the sampling algorithm could be run again for each interval defined by two adjacent
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maxima (or a maximum and an endpoint), with the minimum between them removed. While
this is probably the most robust possibility, a faster alternative is to remove the minimum and
then check the value of∆E(β ) at the point of the removed minimum. If the value is small
enough, it indicates that there is in fact another minimum nearby and that another search is
warranted.

To determine whether another search is warranted the following criterion is used. The value
of ∆E(β ) with the minimum removed is checked against the values of∆E(β ) at the maxima on
both sides of the minimum, with the minimum present. If it is smaller than the smallest of these
values, another search between the two maxima is conducted.After the new minimum is found
the criterion is tested again, this time with both minima removed. This process continues until it
is concluded that there are no more minima in between the two maxima, and the search moves
on to the next minimum found in the previous phase. The above criterion will be always correct
when the modes are degenerate. As the modes move further apart, it may become incorrect
and a mode could be missed. The probability of this happeningis controlled by the resolution
of the previous phase, which is determined by the parameternmax. By varying this parameter
in numerous study-cases we have found, empirically, thatnmax = 7 leads to no modes being
missed. However, the time complexity scales slower than linearly with nmax, so, for added
robustness,nmax can be increased while incurring only a small increase in computation time.

5.3. Finding moderately lossy modes in the complex plane

It has been assumed until now that the modes are lossless and hence the minima are on the real
β axis. For moderately lossy (or leaky) modes, the minima willbe found in the complex plane,
near the real axis. Usually, only the modes with the smallestlosses are of interest, and these
are very close to the real axis. The determination of these small losses can be quite challenging
as the imaginary part ofβ , βi, can be several orders of magnitude smaller than the real part,
βr. When this is the case, the effect of the losses is to blunt the minima of ∆E(βr) when it is
evaluated on the real line. It is then possible to estimateβi from the shape of the blunted curve.
Furthermore, this estimate can be used as the starting pointfor standard quasi-Newton methods
(we used the MATLAB implementation of Broyden’s algorithm [25]) which can converge very
rapidly to the complex minimum given a good first estimate.

In the previous phases of the algorithm, and especially in the golden section searches, the
function∆E(βr) is sampled many times in the neighborhood of a minimum. Thesesamples can
be used to estimateβi. In analogy to the lossless case, it is assumed that∆E(β ) depends linearly
on the distance from the minimum point,β0, i.e.,

∆E(β )≈ a|β −β0|. (13)

When evaluated on the realβ axis,[∆E(βr)]
2 is given by,

[∆E(βr)]
2≈ a2[(βr−β0r)

2 +β 2
0i], (14)

Whereβ0 = β0r + jβ0i. This is a second degree polynomial inβr with coefficientspi, i.e.,

[∆E(βr)]
2≈ p2β 2

r + p1βr + p0. (15)

The polynomial which best fits the non-uniformly sampled data is easily obtained by the solv-
ing the corresponding Vandermonde matrix equation [26, p.119–124]. By comparing the coef-
ficients in Eq. (13) and Eq. (15), the following estimate forβ0 can be obtained:

β0≈−p1/(2p2)− j
√

p0/p2− [p1/(2p2)]2. (16)
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Fig. 12. The normalized error,∆E(β ), near a minimum in the complexβ plane. Contours
of equal∆E are plotted at the bottom. The contours are equally spaced in∆E.

An example of the use of this method is shown in Fig. 12. As shown in the figure, the estimate
is very close to the real minimum, and a search starting from the estimate should converge
quickly. The constant∆E contours plotted in the bottom part of the figure are equally spaced
in ∆E. Their nearly equal spacing in the complexβ plane, as can be observed in the figure,
indicates that Eq. (13) is a good approximation. To find degenerate modes in the complex plane,
a minimum found can be eliminated, and the quasi-Newton method can be started again from
the same estimate. It should then converge to a nearby minimum, if present.

6. Numerical results

To demonstrate the various aspects of the proposed algorithm, a few optical waveguide analysis
examples are given in this section. Some of the results shownhave been obtained previously by
other methods; these are used to validate the code. New data,however, is also presented.

6.1. Two touching cylinders

The geometry analyzed consists of two touching dielectric cylinders of unequal radiiR1 and
R2, surrounded by an air cladding, as shown in the inset of Fig. 13. This geometry has been
analyzed previously in [27] by a Rayleigh formulation, and our results are validated against the
six digit results for the effective index given there. We also give the dispersion curves (shown
in Fig. 13) of the first modes of the two touching cylinders, which were not shown in [27]. The
x coordinate of the figure is the normalized frequency,V , given by,

V =
k0R1

π
√

εrw− εrc, (17)
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Fig. 13. Dispersion curves of the two touching cylinders analyzed in [27]. The material
parameters are:εrc = 1.4572, andεrw = 1.4572/0.9, and the ratio of radii,R1/R2, is 1.3.

whereεrc is the relative permittivity of the cladding medium, andεrw is the relative permittivity
of the two dielectric waveguides. In Fig. 13, the birefringence of the fundamental mode pair,
given by,

∆β = nx−ny, (18)

is also shown. Here,nx andny are the effective indices of thex- andy-polarized modes. Simi-
larly to an elliptical waveguide, the birefringence of the fundamental mode pair tends to zero at
the high and low normalized frequency limits [28].

The convergence of the effective index with the number of sources used is shown in Table 1.
To find hybrid modes, both electric and magnetic current filaments are used [15], and an equal

N β/k0 ∆E

10 1.459668 7.0×10−2

20 1.461927 3.0×10−2

30 1.462487 7.7×10−3

40 1.463286 1.8×10−3

50 1.463290 7.7×10−4

60 1.463292 3.0×10−4

70 1.463292 1.2×10−4

Ref. [27] 1.463292

Table 1. Convergence of the effective index. The normalized frequency,V , is 3.5. All the
rest of the parameters are given in the caption of Fig. 13.

number of each type are placed inside and outside of each homogeneous region. In Table 1, and
in all the tables and figures that follow, we useN to denote the number of sources of each type
and on each side of a material boundary, so the total number ofsources is actually 4N. We find
that our solver converges to the same value given in [27].
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The real part of thez component of the complex Poynting vector, Re(Sz), for the two lowest
mode pairs, is shown in Fig. 14. As can be readily observed, the light concentrates in one of the
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Fig. 14. Real part of thez component of the complex Poynting vector, Re(Sz), for thex-
polarized mode of the first (i.e. fundamental) mode pair (a), and for the x-polarized mode
of second mode pair. For they-polarized modes, the plots are almost identical to thex-
polarized plots shown. The parameters are as in Fig. 13, and the effective indices of the
modes shown arenx = 1.5155 andny = 1.5044, forV = 3.5. The plots have been normal-
ized to unit total power in the cross-section shown.

two cylinders, and penetrates quite moderately into the other cylinder. This is a consequence
of the unequal radii, and it would result in only moderate coupling between the two cylinders,
even though they are touching.

6.2. An almost-circular dielectric waveguide

The next example demonstrates the reliability of the methodin finding numerous modes. An
elliptical waveguide with an aspect ratio of 1.05 was chosenas a challenging example, as it is
expected to have pairs of very closely spaced modes. The modes of the waveguide were found
for three normalized frequenciesV = 1,2,3. In this case, the normalized frequency is again
given by Eq. (17), withR1 the semiminor axis of the ellipse. The number of modes found at
each normalized frequency as a function of the number of sources is shown in Fig. 15(a). As

10 20 30 40
0

10

20

30

40

50

N
(a)

N
o
.

m
o
d
es

fo
u
n
d

10 20 30 40
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

N
(b)

∆
E

10 20 30 40
0

1

2

3

4

5

N
(c)

T
[s

ec
]

V=1

V=2

V=3

V=1

V=2

V=3

V=1

V=2

V=3

Fig. 15. Solver performance as function of the number of sources used. The number of
modes found is shown in (a), the average error in continuity conditions per mode,∆E, in
(b), and the average computation time per mode on a 3.2 GHz Intel PC,T , in (c). For the
elliptical waveguide analyzed,εrw = 2, andεrc = 1.

can be readily observed in the figure, the number of modes found increases at first and then
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saturates. Clearly, the saturation indicates that there are enough sources to simulate the field of
the highest mode (i.e the mode with fastest spatial variation).

To verify the that no modes are missed owing to possible deficiencies of the sampling al-
gorithm (as opposed to insufficient number of sources), symmetry considerations [6, 29] were
used, as follows. In an elliptical waveguide, modes can be classified into four different classes
according to their symmetry. Since nearly-degenerate modes belong to different symmetry
classes, it is easier to find the total number of modes by searching for each class separately.
The total number of modes found in this way matched those found without exploiting sym-
metry. To verify the results further, the propagation constants found were compared with those
of a circular dielectric waveguide, for which the characteristic equation (the solution of which
yields the propagation constants) is well-known [30, p. 296]. This test also showed that the total
number of modes found was correct, when enough sources were used. The interested reader is
referred to the Appendix for the propagation constants of all the modes found.

The error in continuity conditions was averaged over all themodes found at a given frequency
and number of sources. The average error,∆E, is shown in Fig. 15(b). An exponential decrease
of the average error with the number of basis functions, typical of integral equation methods,
can be readily observed. Higher order modes require in general more sources owing to their
faster spatial variation. This explains why the average error increases with frequency, for a
given number of sources, or conversely, why higher frequencies require more sources to attain
a prescribed average error.

In Fig. 15(c), the computation time per mode is shown for the three normalized frequencies
studied. The three plots fall practically one on top of the other, even though, as the frequency
increases, the average density of the modes increases, and their minimum separation decreases
(for V = 1 it is 1.9×10−3, for V = 2, it is 1.8×10−5, and forV = 3, it is 4×10−8). This is
an appealing feature of the sampling algorithm. It implies that, for a given number of sources,
the computation time would grow only linearly with the number of modes found, regardless of
their average density and minimum spacing.

As usual in methods based on integral equations, the memory requirements are quite modest.
Practically all the memory allocated is used up by the impedance matrix. For the calculations
of Fig. 15, the number of testing points used was greater thanthe number of sources by a
factor of 1.5, and each complex entry of the matrix required 16 bytes of storage. Therefore, the
memory required, in kilobytes, is 0.375N2, which is 600 KBytes for the largest matrix used in
the calculations of Fig. 15.

6.3. Circular and elliptical plasmonic nano-wire

The following example demonstrates complex eigenvalue determination. Plasmonic nano-wires
have attracted considerable interest recently, owing to their unique wave-guiding (and light
scattering) properties [31–33]. These lossy waveguides are made of a noble metal, such as
silver, which is usually modelled by assuming a plasma-likefrequency dependent permittivity.
In some works (see [34] for example), a simple Drude model is assumed, whereas in others
the permittivity is interpolated from measured values. We follow the latter practice and use the
measured data given by Johnson and Christy [35].

The characteristic equation for a lossy circular nano-wireis the same as that of a lossless
one, with a complex permittivity substituted for the real permittivity. The search for the effective
indices, however, must be carried out in the complex plane, and the square root branch in Eq. (2)
should be chosen according to the desired behavior at infinity. If, as in the following examples,
proper modes are sought, the radial wave number outside the waveguide should have negative
real and imaginary parts. For a circular silver nano-wire, the convergence of the effective index
to the value obtained from numerical solution of the characteristic equation is shown in Table 2.
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The initial estimate of the imaginary part,β0i/k0, based on a few samples of∆E on the real line

N βr/k0 βi/k0 β0i/k0 Time [sec]

5 1.2541335 0.0066253 0.2746202 1

10 1.2188215 0.0054484 0.0468567 2

15 1.2180724 0.0055741 0.0073826 5

20 1.2180544 0.0055804 0.0056145 10

25 1.2180543 0.0055801 0.0055802 18

Exact 1.2180543 0.0055801

Table 2. Convergence of the effective index and the estimate of the imaginary part,β0i/k0,
of the TM0 mode of circular silver nano-wire. The free-space wavelength is 633nm, the
radius of the wire is 50nm, and the relative permittivity of the wire (interpolated from [35])
is:−18.3187697− j0.5037517.

also appears to converge to the exact value. It worth noting that when the number of sources is
small, the estimate can err by a few orders of magnitude. However, the results improve greatly
after the complex plane is searched, starting from this estimate. The reason for this is that when
too few sources are used, the minimum of∆E on the real line is blunted more by the numerical
error than by the distance of the true minimum from the real line. Thus, using enough sources
is important for ensuring rapid convergence to the minimum closest to the real line, especially
if many minima are present.

The dispersion with semimajor axis,a, of the TM0 mode of an elliptical nano-wire made of
silver is shown in Fig. 16, for various aspect-ratios. In thecircular case, very good agreement
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Fig. 16. Real (a) and imaginary (b) parts of the effective index of the TM0 mode of circular
and elliptical nano-wires made of silver. The free-space wavelength and permittivity are as
in Table 2.

is obtained with the solution of the characteristic equation. The behavior of the complex prop-
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agation constant is typical of symmetrical Surface PlasmonPolariton (SPP) modes [36,37]. As
the cross-sectional area of the nano-wire is decreased, thepower flow density in thez direction
concentrates in the metal and this is accompanied by more rapid dissipation and slower phase
velocity.

7. A micro-structured optical fiber

Micro-structured optical fibers usually have quite complexcross-sections. To easily distribute
the sources and testing points, it is most convenient to havean analytical parametric represen-
tation of the material boundaries. It is then easy to distribute the sources on contracted and
dilated versions of the boundaries. The required parametric representation may be obtained, for
example, by fitting spline curves to the material boundariesobtained a from thresholded SEM
image. This approach was used in [38], where further detailsabout it can be found.

The fiber analyzed in this example was proposed for gas sensing applications in [39]. The
geometry of the fiber, superimposed on the calculated Re(Sz) of the fundamental mode, is
shown in Fig. 17. A parameter of interest in the design of the gas sensor is the fraction of power
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Fig. 17. Real part of thez-component of the complex Poynting vector, Re(Sz), for the x
polarized mode of the first (i.e. fundamental) mode pair (β/k0 = 1.1179,V = 0.38). The
plots have been normalized to unit total power in the cross-section shown.

propagating in the air holes. In Fig. 18 the results obtainedwith the SMT for this fraction are
shown to be in very good agreement with those obtained in [39]by the FEM. As can be readily
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Fig. 18. Fraction of the power carried in air as function of core diameter,at λ = 1.55µm.
The range of core diameters follows [39].
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observed, for small core diameters, the fraction of power inair can reach 50%.
The dispersion curves and birefringence of the fundamentalmode pair are shown in Fig. 19.

The two modes are roughly polarized in thex andy directions, and the birefringence is again
given by Eq. (18). It is interesting to note that, in contrastto the two-touching cylinders, the
birefringence does not vanish in the low frequency limit. This occurs also in micro-structured
fibers with elliptical veins [28]. As explained in [28], in contrast to a waveguide surrounded by
air, the cladding of the micro-structured fiber is itself birefringent, and therefore, even though
the field extends into the cladding in the low frequency limit, the birefringence does not vanish.

A common practice (and one we adopted) when analyzing micro-structured fibers, is to as-
sume that the dielectric extends to infinity. This assumption implies that the modes are nec-
essarily leaky, and their confinement losses can be determined by searching the complexβ
plane [40]. However, since the fiber has a solid core, the fundamental core mode is guided
by total internal reflection. It is thus evanescent in air, and consequently, in a real fiber, any
transverse radiation would be reflected back at the outer interface between the fiber and the sur-
rounding air [6]. Confinement losses were therefore not calculated. On the other hand, the air
jacket was not modelled either as its effect on the real part of the effective index is anticipated
to be negligible away from cut-off.
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Fig. 19. Dispersion curves of the fundamental mode pair (plot on top ofeach other), and
their difference, the birefringence. The range ofV parallels the range of core diameters in
Fig. 18.

8. Summary

We have expanded on the nature of spurious solutions in integral equation formulations, and
described a simple method for their elimination. An adaptive sampling algorithm that takes
advantage of the resulting form of the matrix singularity measure has been presented. Meth-
ods for resolving degenerate and nearly degenerate modes and for determining complex-valued
eigenvalues have also been described. The various techniques have been combined in an effi-
cient SMT-based waveguide solver, which has been demonstrated and characterized by a few
numerical examples.
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Appendix

The effective indices of the modes of the almost-circular elliptical waveguide of Section 6.2 are
given in this appendix.

Mode β/k0

1 1.28044536

2 1.27844665

3 1.11630744

4 1.08161112

5 1.06528023

6 1.06335567

Table 3. Effective indices atV = 1.

Mode β/k0 Mode β/k0

1 1.37408327 12 1.18839178

2 1.37368081 13 1.13055864

3 1.31858151 14 1.12957045

4 1.31069351 15 1.10262569

5 1.30900016 16 1.10260786

6 1.30369506 17 1.08002675

7 1.23551804 18 1.06404139

8 1.23051275 19 1.05426579

9 1.22052083 20 1.04860997

10 1.22029957 21 1.00701462

11 1.19460821 22 1.00691423

Table 4. Effective indices atV = 2.

Mode β/k0 Mode β/k0 Mode β/k0 Mode β/k0

1 1.0389628 13 1.1334321 25 1.2207089 37 1.3249207

2 1.0403708 14 1.1334321 26 1.2207769 38 1.3250405

3 1.0403713 15 1.1432248 27 1.2362120 39 1.3267532

4 1.0453029 16 1.1512948 28 1.2428575 40 1.3288946

5 1.0554622 17 1.1515289 29 1.2468148 41 1.3627171

6 1.0626084 18 1.1515362 30 1.2543368 42 1.3648812

7 1.0706366 19 1.1644971 31 1.2736272 43 1.3658426

8 1.0706373 20 1.1659863 32 1.2736376 44 1.3681903

9 1.0712788 21 1.1715513 33 1.2790593 45 1.3950665

10 1.0715944 22 1.1800930 34 1.2795410 46 1.3952048

11 1.0875107 23 1.2103325 35 1.3086810

12 1.0905844 24 1.2103332 36 1.3113530

Table 5. Effective indices atV = 3.
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