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1.

Introduction

Spurious solutions have been known to exist in various tecles for modal analysis of opti-
cal waveguides and resonators. Although more well-knovihércontext of the Finite-Element
Method (FEM) [1,2], spurious solutions also appear whemththod of moments (MoM) is ap-
plied to a surface formulation using local-domain basicfioms, like in the Boundary-Element
Method (BEM) [3], and also using entire-domain basis fumasi [4]. As shown in this paper,
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spurious solutions also appear in methods like the SouradeMTechnique (SMT), which are
based on off-surface integral-equation formulations [5S®&me spurious solutions are the re-
sult of the discretization of a continuous operator [7]. @#h however, can be traced to the
continuous operator itself, which has, owing to its compess, a continuum of eigenfunctions
of arbitrarily small eigenvalue [8]. In this paper we focusroethods based on integral-equation
formulations, such as the MoM and SMT, and show how spurioligiens may be eliminated
by a modification of the matrix singularity measure used teifgine the eigenvalues.

Methods based on surface and off-surface formulationsraong the most successful elec-
tromagnetic modelling techniques. Compared with diffieémethods, the representation of
the fields usually requires fewer unknowns, and curved batiesl and unbounded domains
are easily accommodated. These advantages are largelysacquammce of the basis functions
used to approximate the fields. The basis functions are themgliian fields of sources radi-
ating in a homogeneous domain, located either on the mediadawsies (as in the MoM), or
slightly offset from them (as in the SMT). This choice expddhe tacit assumption that the ma-
terial is piecewise homogeneous to render a very compacbgippation of the fields. Indeed,
in the context of scattering problems, it has been shownttieahumber of unknowns in the
SMT is practically optimal and it approaches the number gfées of freedom of the scattered
fields [9].

Despite the advantages of integral-equation-based metihey are not as popular, in the
context of mode determination, as the FEM and other diffembmethods. The main reason
is probably that in contrast to the latter, mode determamaiin the MoM and the SMT leads
to anonlinear eigenvalue problem. The relevant impedance matrix depeolinearly on the
frequency (and propagation constant, for waveguidespusrthe basis functions must obey
Maxwell's equations for every potential eigen-frequenayd propagation constant). It turns
out then, that the advantages of using Maxwellian fields asbanctions are offset by the cost
of solving the resultant nonlinear eigenvalue problem.

Clearly, if the nonlinear eigenvalue problem could be stlfficiently and reliably, integral-
equation methods would become more useful for modal asalpshumber of works have
addressed this issue. The simplest approaches consisimpflisg the determinant of the
impedance matrix in ever increasing sampling rates to tny eerify that no modes are
missed [10]. The problem with this and similar approachegkwiearch for minima of the
smallest singular value [11] is that modes may be degeneratinost degenerate, and hence,
there is naa priori bound on the required sampling rate. To overcome this pnojheore so-
phisticated methods that rely on the so-caltethogonality in the local limit [12] have been
proposed [12, 13]. The idea is to take advantage of the (rmeHrpgonality of solution vec-
tors that correspond to (nearly) degenerate modes by cmntsty correlating sets of candidate
solution vectors at different frequencies or propagationstants. In [12], the minima of the
smallest singular value are found by keeping track of simguélues that correspond to all
the candidate solution vectors on a given interval of fregyeor propagation constant. Sim-
ilarly, in [13], an eigenvalue-tracking method is used tclk the smallest eigenvalues of the
impedance matrix in the complex eigenvalue plane as theiémey is varied. The eigenmodes
are determined by detecting real-line crossings of the ¢exrgigenvalues. While these meth-
ods are more robust, theirimplementation is somewhat doatpt and the overhead compared
with a simple search cannot be entirely overlooked.

The search algorithm proposed in this paper makes use odthe guasi-orthogonality prin-
ciple, though it does not require continuous tracking of ynaigenvalues. Instead, the algo-
rithm first tries to find the modes by simple (yet adaptive) gtamgy of the reciprocal of the
matrix singularity measure introduced in this paper. Thisction is devoid of the irregulari-
ties caused by spurious solutions and typically resembsssvéooth waveform whose minima
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correspond to the eigenmodes. The adaptive sampling tiigoexploits this to sample the
function sparsely. Only after a reasonably good image iginétl, the finer details are resolved
by use of the orthogonality in the local limit.

Although the algorithm assumes that the modes have realdrexy or propagation constant,
moderately lossy or leaky modes can be found very efficidnglgstimating the correspond-
ing imaginary part and starting a search in the complex pleore this estimate. A dielectric
waveguide solver based on this paper that includes manymgarand a graphical-user inter-
face is freely available for download [14].

The remainder of this paper is organized as follows: In $aj, we discuss the source and
character of the spurious solutions in integral-equatiwsmtilations. The difficulties caused by
these solutions are described in Section 3. In Section 4regept the proposed modification of
the matrix singularity measure and show how it eliminatessgpurious solutions. As explained
in Section 5, once free from spurious solutions, the matrigidarity measure can be sampled
adaptively to determine the modes. Numerical examples ige® gn Section 6, and the last
section is a summary.

2. Spurious solutions of integral equations

Wolff and Schroeder have pointed out two different typespafrious solutions in electromag-
netic modelling schemes. The more well-known type was dised thoroughly in [7]. These
solutions are due to the discretization process; they shkveliscrete approximation of a con-
tinuous operator equation but do not correspond to any sbitstions. In effect, the spurious
solutions solve the equation in a weighted average sensiétlvel error of the solution is evalu-
ated by use of slightly different weighting functions a migtger error is found. In the context
of the SMT, these spurious solutions were also recognizg¢tiSh They can be avoided at a
marginal extra cost by overdetermination, i.e., by usingenseighting functions than basis
functions (about twice as many).

The other type of spurious solutions was alluded to in [8]emhthe BEM was used to
analyze coplanar waveguides. In contrast to the previgus ¢f spurious solutions, these do
not appear at discrete frequencies or propagation cossthnstead they form a continuum
of spurious solutions which exist at each and every frequen@ropagation constant. These
spurious solutions do correspond to eigenfunctions of dmiicuous operator.

The integral equations that are discretized in the BEM and @k usually Fredholm equa-
tions of the first kind. For example, the integral equationtfte TM modes of a perfectly
conducting cylindrical waveguide oriented along #direction is given by

B YHE? (kolr —r[)dl’ = 0. 1)
C/

Here,HéZ)(-) is the Hankel function of zero order and second kifds the unknown current
distribution, and the radial wave numiderobeys the separation equation

ko = 1/Kg— B2, )

wherekg is the free-space wave number, equadttc. The assumed and suppressed time and
longitudinal variation are eXpwt) and exg— j3z), respectively, and is the speed of light in
vacuum. The radius vectarpoints to the waveguide boundary contoQy,and the equation
must be satisfied at all pointse C. The integration is carried out on the contdlir and the
radius vector that points @ is r’. The integration variablejl’, is a differential line element.

In conventional MoM surface formulations, both contours thie same, s6 = C'. This makes
the integral equation kernel weakly singular. To avoid,tlighe SMT the current distribution
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is placed orC’ which is a slightly dilated version @. A non-trivial solution to Eq. (1) exists
only for specific pairs ofv and for which the integral operator has a zero eigenvalue.
In the context of integral equations, it is well-known thag¢ tompact integral operator,

o(f) :/K(r,r’)f(r’)dl’ ®)

induced by a smooth or weakly-singular symmetric kerket, r’), has an infinite number of
real eigenvalues(A;}, which tend to zero [16, p. 38]. This is a direct consequeri¢ienlow-
pass nature of the kernel function; rapidly varying eigewfions have, consequently, small
eigenvalues. For example, in a circular geometry such aanéigction would be a cylindrical
current sheet, of radiygy, carrying a unit-amplitude, circularly-harmonic curreexp(jng).
The longitudinal electric fieldg,, in the regiono < pp due to this current is given by

Tpok3 5 -

B =~ s koP)H (kopo)e™; p < o, (4)
where J, is the nth order Bessel function ang is the free-space permittivity. Wheam>>
Kopo, the spatial variation of the current is fast on a radial-ekangth scale, anf, can be
approximated by

kZ n.
;R zj-ﬁfif)n (;) e p<pp. (5)
This shows that the field inside ofumit amplitude current sheet can be made arbitrarily small
by using a sufficiently rapidly varying current. Asis increased, the field right on the current
sheet decreases and it also decays more rapidly as the atisempoint moves away from the
current sheet.

When the operatot is discretized, the finite number of basis functioNs|imits the spatial
variation of the solutions. Hence, whéhis small, the error of the spurious solution is large,
and assuming the true solutions have a smaller error thdybwikasily discernable. On the
other hand, abl is increased the error of spurious solutions decreasesagadray hide a true
solution. In the SMT this problem is more severe owing to thedr (2 )" which appears in
Eqg. (5). As the current is displaced from the waveguide baundhis factor strongly reduces
the field there, thus reducing the error of the spurious smiut

Alternative surface formulations, such asilr's [17], which lead to Fredholm equations
of the second kind have also been proposed as a way of avaldzanditioning (which is
due to the spurious solutions). Applications of this appho@ mode determination of optical
waveguides can be found in [18, 19].

3. The effect of the continuum of spurious solutions on modeatermination

Since the first type of spurious solutions can be handle@ eaisily by overdetermination, we
focus now on the second type and show how it renders modentiatgion problematic. The
difficulties caused by the spurious solutions are manifesh én the simplest analysis cases.
This enables us to discuss these difficulties while avoidimdue complications, by determining
the TM modes of a circular perfectly conducting waveguiderdichallenging examples are
given in Section 6. The method of analysis is the SMT, and Widauak at the effect of varying
the number of filamentary sources and their distance fronbdliedary. It is assumed that the
behavior of conventional MoM can be inferred from the bebrwif the SMT in the limit that
the number of sources increases and they approach the videdgpundary.

In the SMT, TM modes are approximated by the fields of an arfa&y electrical current fila-
ments, uniformly distributed on a circle outside the wavdguconcentric with the waveguide.
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The filaments carry a longitudinally varying current, whatspendence on the longitudinal
coordinatez, is exg— jBz) (this dependence is suppressed). We denote the wavegdids ra
by R. The radius of the circle on which the sources are locatedriget tharR by a factora

(a > 1). This geometry is depicted in Fig. 1. The amplitudes of theses are arranged in an

y
L] L]
L] L]
® X XX X °
X X
Xxx XXX
Xx XX
L] x GR L]
X X
X X
X X
. x R x .
X X
X X
X X X
X X
L] X X L]
X X
X X
X X
L] Xx xx L]
Xx XX
X X x x xX X
L] L]
o Testing points
L] L]
Sources

Fig. 1. Sources and testing points for a SMT analysis of a circular wadegu

N-tuple column vector, denoted by They are found by requiring that the longitudinal electric
field, E;, be zero at a set dfl testing points, uniformly distributed on the waveguide thadeary.
This leads to a homogeneous matrix equation

[Z]T =0, (6)

where[Z] is theM x N impedance matrix. To avoid the first type of spurious sohgjanore
testing points than sources should be used. In this examglejsed twice as many testing
points as sources, 3¢ = 2N.

Equation (6) is the discretized version of Eq. (1). It hastrigial solutions if and only if
[Z] is singular, or as is the case in any approximate numeridatisn, close to singular. To
find the modes, a suitable measure of the singularifZpfust be chosen and evaluated at the
relevant values of the radial wave number, A common measure of singularity is the condition
number of[Z]. Other measures that have been used are the closely redatatlest singular
value of[Z] [20], and the determinant dZ] [15], which, however, is not directly applicable
to non-square matrices and is difficult to compute for everdenately large square matrices.
Typically, the singularity measure is sampled on a suffityeime grid ofk,R, yielding a plot
like the one shown in Fig. 2a, or Fig. 2 in [20]. The cut-off vvawmbers, which are at the first
zeros of the Bessel functions, can be clearly seen as pedis ofatrix condition number.

It is interesting to note that the matrix condition numbeqiste highbetween the peaks.
The high condition number is of course due to the continuurspefrious solutions. In the
discrete version, these solutions consist of sources @&legagnitude and alternating sign, that
generate fields strongly confined to the vicinity of the sear@Because thelt; field is small
on the waveguide boundary, they approximately solve Eqaf] this is reflected by the high
condition number.

The difference between a true mode and a spurious one, ig/tilatboth have vanishingly
small fields on the boundary, the fields of the spurious smidie also vanishingly small within
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Fig. 2. Singularities at the zeros of the Bessel functions. For this gkapt0 anda = 1.5.
A very fine sampling grid of 1500 points was needed to reveal all the kirges.

the boundary. To distinguish between the two, we define a alized error measurdg, as

A — Mms(2ID @

ms([2)1)

where [Z] is an impedance matrix that maps the amplitude vettior the values oE; at a
number of sampling points inside the waveguide. Also in K, the 2-norm, or root-mean-
square value, is denoted by rfns The sampling points can be arranged, for example, on a
uniform grid of reasonable density. When analyzing dielectructures, the sampling points
can be the testing points already distributed on the mediadbaries, since the modal fields are
in general not zero there. This is a convenient choice beddlisan then be obtained directly
from [Z] after sign reversal of some of its entries. To evalddiethe vector that solves Eq. (6)
in the least-squares sense is found by a singular value gesition. The value oAE for I
found at everyk,R of Fig. 2a, is shown in Fig. 2b, and it confirms that although thatrix is
rather singular between the peaks, there are no modes theedlseir normalized error is high.

We now turn to take a closer look at the singularities showRign2. Zooming on the first
of these singularities, we see in Fig. 3, that it is very skarg discontinuous. This behavior
has undesirable consequences. Because of the discoytiigite can be no efficient search
algorithm to find the singularities since there is no indaatthat a point near a singularity
is in fact close, unless it is closer than the discontinuaiges. The only option is to sample
the measure of singularity on a very fine grid. The width of #ivggularity determines the
appropriate sampling resolution, and as shown in Fig. 3widéh depends on the number and
location of the sources. Note that a small change in thesanters is enough to shrink the
singularity considerably. If the sampling grid is kept ctamg while the number of sources is
increased, the singularity may shrink to the point wherallsfbetween grid points and goes
undetected. As it is often essential to verify that the rssare correct by increasing the number
of sources or changing their positions slightly, this latketiability in the detection is a serious
drawback.

The behavior seen in Fig. 3 is easily explained by existeficpuorious solutions. If for a
fixed a, the number of sources is increased, it would be like inéngasin Eq. (5), and if for a
fixedN, a isincreased, it would be like increasipgin Eq. (5). In both cases, the absolute error
of the spurious solution would decrease, contracting thgusarity. To keep the singularities
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Fig. 3. Dependence of the shape of the singularity on (a) the numbeurfes and (b) the
distance from the waveguide boundary. In @)= 1.5, and in (b) N = 30.

wide enough, one should therefore use as few sources adlgoasd they should be placed
as close as possible to the boundary. While this facilitdtesletection of the singularities, the
accuracy of the field approximation is bound to suffer. As hvegin the next section, the need
to balance these conflicting goals is obviated by the praposthod.

In a conventional surface-formulation, discretized by kh@M, the sources are placed on
the boundary, i.eq = 1. Therefore, the singularities in the MoM are wider thanhia SMT
for an equal number of unknowns. Nevertheless, the probldhoecur in the MoM as the
number of basis functions is increased (Usually, a MoM sotuwvill require more unknowns
than an SMT solution [9]). Indeed, the continuum of spurisalsitions was identified in [8] in
the context of the BEM, which can be classified as a surfagadtation.

4. A modified singularity measure

In [8], a Tikhonov regularization was proposed to deal whid ¢ontinuum of spurious solutions.
The penalty function proposed there was proportional tantiren of the second derivative of
the unknown fields at the interfaces between homogeneoimsedhe method proposed here
has the advantage that it does not involve derivatives ofidhds and it also does not require
calibration of the penalty function coefficient.

As explained in Section 3, it is the normalized ert&f, which takes into account field values
inside the waveguide that reliably indicates the existevfca true mode. Hence, instead of
evaluatingAE for the least-squares solution of Eq. (6), it would be betidind the vector that
minimizesAE for a givenk,R. The square of normalized err¢AE)?, is a ratio of two positive
definite quadratic forms known ageneralized Rayleigh quotient. Direct differentiation shows
that the stationary values of a generalized Rayleigh gunbtiee the generalized eigenvalues of
the following generalized eigenvalue problem

2)' (2T = ¢ [2)" (2] ®)

The generalized eigenvectlyi,, which corresponds to the minimum generalized eigenvalue,
Emin, Yields the minimumAE, which is simply\/&min- In €ssence, we have modified the matrix
singularity measure; it can now be defined as the reciprdcieosquare root of the small-
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Fig. 4. Singularities at the zeros of the Bessel functions, calculated wifitdpesed matrix

singularity measure. For this grapgti= 20 anda = 1.5. The sampling grid is the same as
that of Fig. 2, although a much coarser grid could have been used.

est generalized eigenvalue of EqQ. (8). The main advantag@sécheme is thdkan and &min
change continuously when moving from one singularity tortbet, thus allowing reliable de-
tection of the singularities.

The generalized eigenvalue decomposition can be carriglyoanumber of methods quite
efficiently, i.e., without a significant increase in the cargiion time relative to any of the
other common measures of singularity. Since we are onlyasted in the smallest eigenvalue,
Arnoldi methods are most suitable [21]. They require, haveexplicit multiplication of the
matrices|Z] and [Z] by their Hermitian conjugates, and this operation is praneotnd-off
errors. In the vast majority of cases, however, this methielily excellent results and is used
throughout this paper. A more robust, though slower, adtétra would be to use Van Loan’s al-
gorithm for the generalized singular value decompositi®8YD) [22], since the square root of
the smallest generalized eigenvalue of Eq. (8) is the sstaiiegular value of the pa(fz], [Z]).

To demonstrate the effectiveness of the spurious-freedtation, the plots of Figs. 2 and 3
were recalculated with the samhkeanda using the proposed matrix singularity measure. The
results are shown in Figs. 4 and 5, respectively. The slapa fvhich the singularities pro-
truded in Fig. 2 has disappeared in Fig. 4, and the minimasoftinve can be found with far less
iterations. This is the subject of the next section. As shiwFrig. 5, the high sensitivity of the
width of the singularity to the location and number of sosrbas been completely eliminated.

5. Spurious-free mode determination

The first phase of the mode determination scheme consistdagitise sampling of the sin-
gularity measure. The objective of this phase is to sampmesthgularity measuré\E, on a
nonuniform sampling grid which reveals just enough detailthe next phase to detect all the
minima in a prescribed interval of propagation constanteqdiency. As the next phase utilizes
the orthogonality in the local limit, closely spaced modeschnot be resolved, but otherwise
all the minima should be detected. In the description thldovis it will be assumed that a
waveguide is analyzed, and therefore the singularity nreadepends both on the frequency,
w, and on the propagation constaBit,n the analysis of a resonator it would depend, of course,
only on the frequency.
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(a)
Fig. 5. The proposed matrix singularity measure. Dependence ofdipe sifithe singularity

on the number of sources (a) and the distance from the waveguideldgufb). In (a),
a =15, and in (b)N = 30. Note that the range of the abscissa is ten times that of Fig. 3.

5.1. Adaptive sampling algorithm

The adaptive sampling algorithm is based on the observttstE (3) for a given frequency
w, resembles a sawtooth waveform. This can be readily obdenv&ig. 6a, whereAE(3)

is plotted on a linear scale (as opposed to the logarithn@itesssed in the previous figures).
As shown in Fig. 6b, if8 is kept fixed and the frequency is allowed to vary, a similaute
is obtained forAE(w). The sawtooth-like shape is obtained when the proposedilsirity
measure is used. Of course, if Fig. 2 were plotted on a liresde $ would still be discontinuous
and completely unsuitable for an efficient search algorithm

0.1 0.1
0.08 0.08
K ) 0.06
A 0.06 p
0.0 0.04
0.02 0.02
1.55 1.6 1.65 6 7 8
B/ko koR
(a) (b)

Fig. 6. Typical sawtooth-like dependence of the singularity meadiepn (a) the nor-
malized propagation constant, or effective indgxko, and on (b) the normalized wave
vector,kgR. The structure analyzed is a round step-index fiber. The relativeitigities
are:gw = 1.82, ande;c = 1.52, for the waveguide and cladding regions, respectively. In (a)
the radiusR is equal to the free-space wavelengip, In (b) the normalized propagation
constantf3 /K, is 1.6.

#84481 - $15.00 USD  Received 25 Jun 2007; revised 26 Aug 2007; accepted 26 Aug 2007; published 18 Oct 2007
(C) 2007 OSA 29 October 2007 / Vol. 15, No. 22/ OPTICS EXPRESS 14440



The algorithm, shown in Fig. 7, exploits the shap&Bfby assuming that monotonic parts of
the function are approximately straight lines. For a givaerival of 3, the algorithm attempts
to ascertain as quickly as possible whether the funaB3) is monotonic on the interval.
As explained in the next paragraph, this is where the shapd=08) is utilized. If AE(B) is
indeed monotonic, the algorithm ends with empty outputoif,the other hand, a minimum
or a maximum is detected, its location is determined to higloeuracy by a standard golden
section search [23]. The interval is then subdivided toriratks to the left and to the right of the
extremum found, and the algorithm is called recursivehhwilitese subintervals as input. The
output then is a concatenation of this extremum and thoseffouthe two subintervals. At the
end of the recursive process the output is a list of all theeexa encountered.

Algorithm 5.1: FINDEXTREMA (Bmin, Bmax)

if AE(B) is monotonic on the intervadfmin, Bmax)
then return ()
Find an extremunBex: € (Bmin, Bmax) by golden section search

else
return (Bext, FINDEXTREMA (Bmin, Bext), FIND EXTREMA (Bext, Bmax))

Fig. 7. Adaptive search algorithm for finding the extrema@&{3).

Ascertaining whether a function is monotonic on a givenrivakis of course a difficult
problem in the general case. However, by exploiting the satlitform of the function, a simple
and efficient algorithm may be proposed (see Fig. 8). Theritfgo begins with three samples:
at the interval endpoints and at its midpoint. It then addspdes as long as the sample series is
monotonic and the number of samplasis smaller than a prescribed numh®fay, Which can
be determined empirically as will be shown below. The samate added as follows. Assuming
the function has been sampledimes, a straight line is fit through every three consecutive
samples by linear regression. For each fit, the correlatefficient,r, is evaluated by

[AE (Bi) — AE; (Bi)}z

—_
N
I
=
I
=

©)

[AE (B) — (AE (B)))?

'[‘Mw [ M w

wheref3; are the sample point&E; () is the value of the fit at these points, and the angle
brackets denote the mean value. A correlation coefficievgecto 1 indicates that the three
points are approximately collinear. The algorithm findsttivee consecutive pointBy_1, Bm,
and Bm+1, which correspond to the smallest valuerofi.e., the ones for which the straight
line fit is of worst quality. This deviation from a straighté possibly indicates an extremum,
and therefore, the following samples are taken ta(8& 1 + Bm)/2 and (Bm+ Bmi1)/2. If
the sample series remains monotonic when the maximum nuaftsamples is reached, it
is concluded thaE(f3) is monotonic. If an extremum is encountered during the semgpl
processAE(B) is obviously not monotonic.

As illustrated in Fig. 9, the sampling points tend towardgaas of high curvature where an
extremum is likely to be found. However, this sampling schewill have difficulty detecting
both minima of a nearly degenerate mode pair. When the firsinmim of the pair is found,
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Algorithm 5.2: 1SMONOTONIBrmin, Bmax, Nmax)

comment: Begin by adding the endpoints and the midpoint to the sangrles

Bo < Bmin

B1 < (Bmin + Bmax) /2

B2 < Bmax

n«—3

comment: In the following, B is a shorthand for the entire sample serm,}';;é.
comment: Similarly, AE is a shorthand for the error seriéﬂE(Bj)}?;é
while AE is monotonicand n < Nmax

find the three less collinear point&y_1, Bm, andBm+1

Bn + (Bm-1+Bm)/2

do ¢ Bni1  (Bm+Bmi1)/2

n«—n+2

sortf3

if AE is monotonicreturn ( true )

else return ( false)

Fig. 8. Algorithm for attempting to determine wheth& () is monotonic by sampling it
at mostmax times.

the algorithm will be called with a new subinterval which lindes the undetected mode near
one of its endpoints. If the undetected mode is sufficienthge to the endpoint, the function
will appear to be monotonic on the subinterval and the modld@imissed. This case can also
be seenin Fig. 9, where a mode has been detected at the Iptiienith the previous call to the
search algorithm. The mode just to the right of the left eflpmay go undetected, even after
further subdivision of the intervals because the numberaaffdes required for its detection
could be more thamyax. The probability of this happening may be reduced (at a iveligt
small expense) by choosing the first two samples very closieet@ndpoints. However, since
minima may be arbitrarily close, a mode may still be missadt:hSclose modes are resolved
by the next phase of the algorithm. The first phase is sumexhiiz the animation shown in
Fig. 10.

5.2. Resolving degenerate and nearly-degenerate modes

It is well-known that eigenmodes of waveguides and resogaatioey certain orthogonality re-
lations. In general, however, it is not true that the solutiectors of Eq. (6) that correspond to
different modes obey an orthogonality relation. In fact, tumber of modes is infinite whereas
the number of linearly independent solution vectors is loeaiby their lengthN. However, the
generalized eigenvectors of Eq. (8) corresponding to r@iffeeigenvalues (which are the con-
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Fig. 9. Progress of the sampling scheme used to determine whe{gr is monotonic.

A high resolution plot ofAE is shown in (a) for the same step-index fiber of Fig. 6, but
with Ag = 2R. In the first step of the sampling scheme (b), the endpoints and midpeint a
sampled. Since the sample series is monotonic, two new samples aresa(Bed 51)/2
and(B1+ B2)/2, as shown in (c). Since the sample series is still monotonic, the three less
collinear consecutive points are fourfgs(34, andf3s) and two points are added in between
them (d). This last refinement reveals a minimum and a maximum.

tinuity condition errors) are orthogonal. So the soluti@ttors that correspond to degenerate
modes are orthogonal. For a generalized eigenvalue problem

A% = E[BIX (10)

where [A] and [B] are Hermitian and positive definite, the gelized eigenvectorg are B-
orthogonal [24, p.507], i.e.,

X [BX; =0, i#]. (11)
Similarly, if the modes are nearly degenerate, their sotutiectors will be nearly orthogo-
nal [12].

This quasi-orthogonality can be used to resolve degenaratenearly degenerate modes.
Suppose the previous phase of the algorithm has found ohe afinima of two closely spaced
minima. The solution vector at this minima is a by-producttted evaluation of the matrix
singularity measurdE; let this vector be denoted Hy. Now, instead ofZ][Z] in Eq. (8),
substitute the matrikA] given by

EIHEN

BT 2

(A= [Z]"[Z] + &
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Fig. 10. An animation summarizing the sampling algorithm (AVI, 3.7MBY);, tlte same
step-index fiber shown in Fig. 9. The current search interval is nddnigehe dotted lines.
The rate of the animation is much slower than the actual computation.

where the matriXB] is given by[Z]T[Z]. So constructed, the matrix pdi#\], [B]) has the same
eigenvectors as the original generalized eigenvalue enobEq. (6). The eigenvalues are also
the same except faf;, the eigenvalue ofy, which is nowé&; + & instead. By settingp to a
high enough value (sayy = 1), the minimum which corresponds & can be removed from
the AE(3) function which is defined as the smallest generalized emarvat a giver3. An
important feature of this process is that it does not createspurious minima. When the modes
are only nearly-degenerate, the eigenvectors and eiges/af all the modes will be in general
altered by the proposed substitution. Nevertheless, abeaeen in Fig. 11, this alteration is
negligible when the modes are close enough.

0.1p
\\ Original AE(3)
0.08 \\ = = = After removal of second minimum
0.06-
Sy
<

0.04-

0.02

152 153 1.54

1.55 1.56 1.57 1.58
B/ko

Fig. 11. The resolution of two close modes in the step-index fiber of FigsS8uming
the sampling process missed the first minimum but found the second nmmitha neigh-
borhood of the second minimum can be searched again, this time with thie i#étof

Eqg. (12). The first minimum can then be easily detected.

The input of the second phase of the algorithm is the list ¢feexa found in the previous
phase. The second phase has to check each minimum founddarlayimode that was missed.
To this end, the sampling algorithm could be run again foheaierval defined by two adjacent
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maxima (or a maximum and an endpoint), with the minimum betwiaem removed. While
this is probably the most robust possibility, a faster alidive is to remove the minimum and
then check the value &&E(f3) at the point of the removed minimum. If the value is small
enough, it indicates that there is in fact another minimurarie and that another search is
warranted.

To determine whether another search is warranted the fivitperiterion is used. The value
of AE(3) with the minimum removed is checked against the valugsif3) at the maxima on
both sides of the minimum, with the minimum present. If itnsadler than the smallest of these
values, another search between the two maxima is conduiftied the new minimum is found
the criterion is tested again, this time with both minima osed. This process continues until it
is concluded that there are no more minima in between the tasdma, and the search moves
on to the next minimum found in the previous phase. The aboterion will be always correct
when the modes are degenerate. As the modes move furthey iapaay become incorrect
and a mode could be missed. The probability of this happeisingntrolled by the resolution
of the previous phase, which is determined by the paranmgigr By varying this parameter
in numerous study-cases we have found, empirically, thak = 7 leads to no modes being
missed. However, the time complexity scales slower thagality with nnay, So, for added
robustnessimax can be increased while incurring only a small increase inmdation time.

5.3.  Finding moderately lossy modes in the complex plane

It has been assumed until now that the modes are lossles®and the minima are on the real
B axis. For moderately lossy (or leaky) modes, the minimalvélfound in the complex plane,
near the real axis. Usually, only the modes with the smaltesstes are of interest, and these
are very close to the real axis. The determination of thesdl $msses can be quite challenging
as the imaginary part g8, 3, can be several orders of magnitude smaller than the regl par
Br. When this is the case, the effect of the losses is to blunt themwa of AE(S3;) when it is
evaluated on the real line. It is then possible to estinafeom the shape of the blunted curve.
Furthermore, this estimate can be used as the startingfpostaindard quasi-Newton methods
(we used the MTLAB implementation of Broyden’s algorithm [25]) which can cerge very
rapidly to the complex minimum given a good first estimate.

In the previous phases of the algorithm, and especially engtbiden section searches, the
functionAE(S;) is sampled many times in the neighborhood of a minimum. Thas®les can
be used to estimaf®. In analogy to the lossless case, it is assumed¥BgB ) depends linearly
on the distance from the minimum poif, i.e.,

AE(B) ~ a|B — Pol- (13)
When evaluated on the relaxis, [AE(f3)]? is given by,
[BE(B)]? ~ a[(B — Por)® + 5. (14)
Wherefo = Bor + jBoi- This is a second degree polynomial@nwith coefficientsp;, i.e.,
[AE(B:)]? ~ p2B? + p1B: + Po. (15)

The polynomial which best fits the non-uniformly sampledadateasily obtained by the solv-
ing the corresponding Vandermonde matrix equation [26L$-124]. By comparing the coef-
ficients in Eq. (13) and Eq. (15), the following estimate fBgrcan be obtained:

Bo~ —p1/(2p2) — i/ Po/ P2 [p1/(2p2) 2 (16)
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Fig. 12. The normalized errabE(f3), near a minimum in the complgX plane. Contours
of equalAE are plotted at the bottom. The contours are equally spac&H.in

An example of the use of this method is shown in Fig. 12. As shiovthe figure, the estimate
is very close to the real minimum, and a search starting frieenetstimate should converge
quickly. The constanAE contours plotted in the bottom part of the figure are equalbced

in AE. Their nearly equal spacing in the complBxplane, as can be observed in the figure,
indicates that Eq. (13) is a good approximation. To find degatie modes in the complex plane,
a minimum found can be eliminated, and the quasi-Newton aaetian be started again from
the same estimate. It should then converge to a nearby minjrifipresent.

6. Numerical results

To demonstrate the various aspects of the proposed algn@tfew optical waveguide analysis
examples are given in this section. Some of the results shewe been obtained previously by
other methods; these are used to validate the code. Newhdatayer, is also presented.

6.1. Two touching cylinders

The geometry analyzed consists of two touching dielecyimders of unequal radiR; and
R, surrounded by an air cladding, as shown in the inset of FBg.This geometry has been
analyzed previously in [27] by a Rayleigh formulation, anol gesults are validated against the
six digit results for the effective index given there. Weoadgve the dispersion curves (shown
in Fig. 13) of the first modes of the two touching cylindersjetlhwere not shown in [27]. The
x coordinate of the figure is the normalized frequentygiven by,

_ R

Vv - VEw— Erc, (17)
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Fig. 13. Dispersion curves of the two touching cylinders analyzed in [Pfi¢ material
parameters are;c = 1.457%, andey, = 1.4572/0.9, and the ratio of radiiR; /Ry, is 1.3.

whereg is the relative permittivity of the cladding medium, agd is the relative permittivity
of the two dielectric waveguides. In Fig. 13, the birefringe of the fundamental mode pair,
given by,

AB =ny—ny, (18)

is also shown. Herey andny are the effective indices of the andy-polarized modes. Simi-
larly to an elliptical waveguide, the birefringence of tieflamental mode pair tends to zero at
the high and low normalized frequency limits [28].

The convergence of the effective index with the number ofsesiused is shown in Table 1.
To find hybrid modes, both electric and magnetic current fats are used [15], and an equal

N B/ko AE

10 1.459668 70x 102
20 1.461927 30x10°7?
30 1.402487 77x10°°
40 1.46386 18x10°°
50 1.463B0 77x10*
60 1.463292 3.0x 104
70 1.463292 1.2x10°*

Ref. [27] 1.463292

Table 1. Convergence of the effective index. The normalized fregu¥, is 3.5. All the
rest of the parameters are given in the caption of Fig. 13.

number of each type are placed inside and outside of eachdemeous region. In Table 1, and
in all the tables and figures that follow, we Usdo denote the number of sources of each type
and on each side of a material boundary, so the total numtsus€es is actuallyM. We find
that our solver converges to the same value given in [27].
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The real part of the component of the complex Poynting vector,(Bg, for the two lowest
mode pairs, is shown in Fig. 14. As can be readily observedjght concentrates in one of the

1
0.4

~<
~
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-1

-1 0 1 2 3
x/A x/A
(a) (b)

Fig. 14. Real part of the component of the complex Poynting vector,(Bg, for the x-
polarized mode of the first (i.e. fundamental) mode pair (a), and ®x-pholarized mode
of second mode pair. For thepolarized modes, the plots are almost identical toxhe
polarized plots shown. The parameters are as in Fig. 13, and the effaudices of the
modes shown amgy, = 1.5155 andyy = 1.5044, forV = 3.5. The plots have been normal-
ized to unit total power in the cross-section shown.

two cylinders, and penetrates quite moderately into therathlinder. This is a consequence

of the unequal radii, and it would result in only moderatepling between the two cylinders,
even though they are touching.

6.2. Analmost-circular dielectric waveguide

The next example demonstrates the reliability of the methdihding numerous modes. An
elliptical waveguide with an aspect ratio of 1.05 was chasea challenging example, as it is
expected to have pairs of very closely spaced modes. Theswidiee waveguide were found
for three normalized frequenci® = 1,2, 3. In this case, the normalized frequency is again
given by Eq. (17), withR; the semiminor axis of the ellipse. The number of modes found a
each normalized frequency as a function of the number ofcesus shown in Fig. 15(a). As
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Fig. 15. Solver performance as function of the number of sources. tghe number of
modes found is shown in (a), the average error in continuity conditionmpéde,AE, in

(b), and the average computation time per mode on a 3.2 GHz Intel A@,(c). For the
elliptical waveguide analyzed;, = 2, andgc = 1.

can be readily observed in the figure, the number of modesdfinareases at first and then
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saturates. Clearly, the saturation indicates that theremough sources to simulate the field of
the highest mode (i.e the mode with fastest spatial varigtio

To verify the that no modes are missed owing to possible @efiies of the sampling al-
gorithm (as opposed to insufficient number of sources), sgtnntonsiderations [6, 29] were
used, as follows. In an elliptical waveguide, modes can assified into four different classes
according to their symmetry. Since nearly-degenerate sx@#dong to different symmetry
classes, it is easier to find the total number of modes by Baydor each class separately.
The total number of modes found in this way matched thosedmuithout exploiting sym-
metry. To verify the results further, the propagation cantt found were compared with those
of a circular dielectric waveguide, for which the charaistiz equation (the solution of which
yields the propagation constants) is well-known [30, p.]29his test also showed that the total
number of modes found was correct, when enough sources wede The interested reader is
referred to the Appendix for the propagation constantsldhalmodes found.

The error in continuity conditions was averaged over alhtioeles found at a given frequency
and number of sources. The average e, is shown in Fig. 15(b). An exponential decrease
of the average error with the number of basis functions calpdf integral equation methods,
can be readily observed. Higher order modes require in géngsre sources owing to their
faster spatial variation. This explains why the averagerdrcreases with frequency, for a
given number of sources, or conversely, why higher freq@smequire more sources to attain
a prescribed average error.

In Fig. 15(c), the computation time per mode is shown for tireeé normalized frequencies
studied. The three plots fall practically one on top of theeot even though, as the frequency
increases, the average density of the modes increase$)@nthinimum separation decreases
(forV =11itis 19x 1073 forV =2, itis 18 x 10>, and forV = 3, itis 4x 1078). This is
an appealing feature of the sampling algorithm. It impliesttfor a given number of sources,
the computation time would grow only linearly with the numbémodes found, regardless of
their average density and minimum spacing.

As usual in methods based on integral equations, the meraquyrements are quite modest.
Practically all the memory allocated is used up by the impedanatrix. For the calculations
of Fig. 15, the number of testing points used was greater thamumber of sources by a
factor of 1.5, and each complex entry of the matrix requir@dbyltes of storage. Therefore, the
memory required, in kilobytes, is®5N?, which is 600 KBytes for the largest matrix used in
the calculations of Fig. 15.

6.3. Circular and elliptical plasmonic nano-wire

The following example demonstrates complex eigenvaluerdehation. Plasmonic nano-wires
have attracted considerable interest recently, owing & tlmique wave-guiding (and light
scattering) properties [31-33]. These lossy waveguidesrade of a noble metal, such as
silver, which is usually modelled by assuming a plasmadflikguency dependent permittivity.
In some works (see [34] for example), a simple Drude modets&imed, whereas in others
the permittivity is interpolated from measured values. 0l the latter practice and use the
measured data given by Johnson and Christy [35].

The characteristic equation for a lossy circular nano-wérthe same as that of a lossless
one, with a complex permittivity substituted for the reairptivity. The search for the effective
indices, however, must be carried out in the complex plametlze square root branch in Eq. (2)
should be chosen according to the desired behavior at infifjias in the following examples,
proper modes are sought, the radial wave number outsideateguide should have negative
real and imaginary parts. For a circular silver nano-wine,¢onvergence of the effective index
to the value obtained from numerical solution of the chanastic equation is shown in Table 2.
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The initial estimate of the imaginary paf;i /ko, based on a few samples®E on the real line

N Br/ko Bi/ko Boi/ko  Time [sec]

5 1.2541335 0.0066253 0.2746202 1
10 1.218215 0.00%4484 0.0468567 2
15 1.2180'24 0.005541 0.0073826 5
20 1.218054 0.00558@ 0.00%145 10

25 1.2180543 0.0055801 0.00558B0 18
Exact 1.2180543 0.0055801

Table 2. Convergence of the effective index and the estimate of the ierggart,Sp; /Ko,

of the TMy mode of circular silver nano-wire. The free-space wavelength isr638he
radius of the wire is 5m, and the relative permittivity of the wire (interpolated from [35])
is: —18.3187697- j0.5037517.

also appears to converge to the exact value. It worth notiagwhen the number of sources is
small, the estimate can err by a few orders of magnitude. Mervéhe results improve greatly
after the complex plane is searched, starting from thisnedé. The reason for this is that when
too few sources are used, the minimum& on the real line is blunted more by the numerical
error than by the distance of the true minimum from the rewsd.liThus, using enough sources
is important for ensuring rapid convergence to the minimlosest to the real line, especially
if many minima are present.

The dispersion with semimajor axia, of the TMy mode of an elliptical nano-wire made of
silver is shown in Fig. 16, for various aspect-ratios. In tireular case, very good agreement
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Fig. 16. Real (a) and imaginary (b) parts of the effective index of tiig Mode of circular
and elliptical nano-wires made of silver. The free-space wavelengtipemittivity are as
in Table 2.

is obtained with the solution of the characteristic equatithe behavior of the complex prop-
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agation constant is typical of symmetrical Surface PlasPalariton (SPP) modes [36,37]. As
the cross-sectional area of the nano-wire is decreasegpther flow density in the direction
concentrates in the metal and this is accompanied by more dé&sipation and slower phase
velocity.

7. A micro-structured optical fiber

Micro-structured optical fibers usually have quite compiesss-sections. To easily distribute
the sources and testing points, it is most convenient to aamalytical parametric represen-
tation of the material boundaries. It is then easy to distdélthe sources on contracted and
dilated versions of the boundaries. The required parac&piresentation may be obtained, for
example, by fitting spline curves to the material boundasl&sined a from thresholded SEM
image. This approach was used in [38], where further dedhitsit it can be found.
The fiber analyzed in this example was proposed for gas gpagiplications in [39]. The

geometry of the fiber, superimposed on the calculate@SRRef the fundamental mode, is
shown in Fig. 17. A parameter of interest in the design of gmegensor is the fraction of power

Fig. 17. Real part of the-component of the complex Poynting vector,(Bg, for the x
polarized mode of the first (i.e. fundamental) mode pgifko = 1.1179,V = 0.38). The
plots have been normalized to unit total power in the cross-section shown.

propagating in the air holes. In Fig. 18 the results obtaingld the SMT for this fraction are
shown to be in very good agreement with those obtained indg%e FEM. As can be readily

——SMT
—FEM, Ref. [37]|]
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Fig. 18. Fraction of the power carried in air as function of core diamateér,= 1.55um.
The range of core diameters follows [39].
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observed, for small core diameters, the fraction of poweirican reach 50%.

The dispersion curves and birefringence of the fundamembale pair are shown in Fig. 19.
The two modes are roughly polarized in thandy directions, and the birefringence is again
given by Eq. (18). It is interesting to note that, in contrasthe two-touching cylinders, the
birefringence does not vanish in the low frequency limitisTéccurs also in micro-structured
fibers with elliptical veins [28]. As explained in [28], in otrast to a waveguide surrounded by
air, the cladding of the micro-structured fiber is itselfdiimgent, and therefore, even though
the field extends into the cladding in the low frequency ljifie birefringence does not vanish.

A common practice (and one we adopted) when analyzing nsitt@tured fibers, is to as-
sume that the dielectric extends to infinity. This assunmptioplies that the modes are nec-
essarily leaky, and their confinement losses can be detechiiy searching the complgx
plane [40]. However, since the fiber has a solid core, the dovehtal core mode is guided
by total internal reflection. It is thus evanescent in aid @onsequently, in a real fiber, any
transverse radiation would be reflected back at the outerfate between the fiber and the sur-
rounding air [6]. Confinement losses were therefore notuwtaled. On the other hand, the air
jacket was not modelled either as its effect on the real gaheoeffective index is anticipated
to be negligible away from cut-off.
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Fig. 19. Dispersion curves of the fundamental mode pair (plot on t@ach other), and
their difference, the birefringence. The rangé/gparallels the range of core diameters in
Fig. 18.

8. Summary

We have expanded on the nature of spurious solutions inradteguation formulations, and
described a simple method for their elimination. An adapgampling algorithm that takes
advantage of the resulting form of the matrix singularityasiere has been presented. Meth-
ods for resolving degenerate and nearly degenerate modédsratetermining complex-valued
eigenvalues have also been described. The various te@migave been combined in an effi-
cient SMT-based waveguide solver, which has been demoedtaad characterized by a few
numerical examples.
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Appendix

The effective indices of the modes of the almost-circullptital waveguide of Section 6.2 are
given in this appendix.

Mode B/ko Mode B/ko

1 1.37408327 12  1.18839178
2 1.37368081 13  1.13055864
Mode B/ko
3 1.31858151 14  1.12957045
1 1.28044536
4 131069351 15  1.10262569
2 1.27844665
5  1.30900016 16  1.10260786
3 1.11630744
6  1.30369506 17  1.08002675
4  1.08161112
7 1.23551804 18  1.06404139
5  1.06528023
8  1.23051275 19  1.05426579
6  1.06335567
9  1.22052083 20  1.04860997
Table 3. Effective indices af = 1. 10  1.22029957 21  1.00701462
11 1.19460821 22  1.00691423

Table 4. Effective indices af = 2.

Mode  B/ko Mode  B/ko Mode  B/ko Mode  B/ko

1 1.0389628 13 1.1334321 25 1.2207089 37 1.3249207
2 1.0403708 14 1.1334321 26 1.2207769 38 1.3250405
3 1.0403713 15 1.1432248 27 1.2362120 39 1.3267532
4 1.0453029 16 1.1512948 28 1.2428575 40 1.3288946
5 1.0554622 17 1.1515289 29 1.2468148 41 1.3627171
6 1.0626084 18 1.1515362 30 1.2543368 42 1.3648812
7 1.0706366 19 1.1644971 31 1.2736272 43 1.3658426
8 1.0706373 20 1.1659863 32 1.2736376 44 1.3681903
9 1.0712788 21 1.1715513 33 1.2790593 45 1.3950665
10 1.0715944 22 1.1800930 34 1.2795410 46 1.3952048
11 1.0875107 23 1.2103325 35 1.3086810

12 1.0905844 24 1.2103332 36 1.3113530

Table 5. Effective indices af = 3.
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