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Abstract

In this paper, recent development of the dual BEM in acoustic problem is presented. The role of hypersingular integral equation in

the dual BEM for the problems with a degenerate boundary is examined. First, the dual integral formulation is proposed. Based on the

formulation, we develop four methods ± the complex-valued dual BEM, the real-part dual BEM, the real-valued dual MRM, and the

complete complex-valued MRM. For the real-part dual BEM and the real-valued dual MRM, the spurious eigenvalues occur and can

be ®ltered out by using residual technique or singular value decomposition method. It is also found that the complete MRM with

in®nite terms of series is equivalent to the complex-valued dual BEM if the constant potential in the zeroth-order fundamental solution

is chosen to be an appropriate complex value. The dual formulation can be applied to solve acoustic problems with degenerate

boundaries. An illustrative example for acoustic eigenfrequencies of a cavity with an incomplete partition is shown to verify the validity

of the four methods. The results are compared with those of FEM and experiment. Good agreement is made. Ó 2000 Elsevier Science

S.A. All rights reserved.

Keywords: Dual integral formulation; Dual boundary element method; Acoustic problem; Degenerate boundary; Multiple reciprocity

method

1. Introduction

The boundary element method (BEM), sometimes referred to as the boundary integral equation method,
is now establishing a position as a natural alternative to the FEM in many ®elds of engineering. The dual
boundary element method, or so-called the dual boundary integral equation method developed by Chen
and Hong [1], is particularly suited for problems with a degenerate boundary. Mathematically speaking, the
hypersingular integral equation was ®rst formulated by Hadamard [2] to treat the cylindrical wave equation
by spherical means of descent. In the meantime, Mangler derived the same mathematical form in solving
the thin airfoil problem [1]. In fact, the original idea came from the applications of the continuous and
discontinuous properties of the single and double layer potentials and their derivations when the ®eld point
approaching the boundary in the dual integral equations. These properties are classical results and the so-
called `dual integral equations' appeared in many literatures (they are known as Calderon projection),
although they may have interpretations by modern mathematical tools. The improper integral was then
de®ned by Tuck [4] as the `Hadamard principal value'. In aerodynamics, it was termed the `Mangler's
principal value' [3,5]. Such a divergent integral naturally arises in the dual formulation especially for
problems with a degenerate boundary, e.g., crack problems in elasticity [6±11], heat ¯ow through a ba�e
[12], Darcy ¯ow around a cuto� wall [13,14] the aerodynamic problem of a thin airfoil [5] and acoustic

www.elsevier.com/locate/cma
Comput. Methods Appl. Mech. Engrg. 188 (2000) 833±845

q Part of this manuscript was presented in the Keynote Lecture of the Fourth World Congress on Computational Mechanics, Buenos

Aires, Argentina, 1998.
* Fax: +886-2-462-2192.

E-mail address: b0209@ntou66.ntou.edu.tw (J.T. Chen).

0045-7825/00/$ - see front matter Ó 2000 Elsevier Science S.A. All rights reserved.

PII: S 0 0 4 5 - 7 8 2 5 ( 9 9 ) 0 0 3 6 4 - 3



waves impinging on a screen [15,16,27,32,33]. The dual formulation also plays an important role in some
other problems, e.g., the corner problem [17], adaptive BEM [18], and the exterior problem [19]. A general
application of the hypersingular integral equation in mechanics was discussed in [20], and a review paper on
recent development of dual BEM was presented in [21]. Combining the conventional integral equation, e.g.,
the Green's Identity or Somigliana Identity, with the hypersingular integral equation, we call the two
equations `dual integral equations' due to the symmetry and transpose symmetry properties of the kernels
[1,22,23]. From the above point of view, the de®nition of the dual integral equations is quite di�erent from
the conventional one used in crack elastodynamics by Buecker [24]. The dual equations in the present paper
are independent with respect to each other for the undetermined coe�cients of the complementary solution.
However, the dual integral equations de®ned by Buecker resulted from the same equation but by collo-
cating di�erent points. The present formulation totally has four kernel functions, which make possible a
uni®ed theory encompassing di�erent schemes, various derivations and interpretations. For elasticity, a
detailed derivation can be found in [6]. The singularity order of hypersingularity for the kernel in the
normal derivative of the double layer potential is stronger than that of the Cauchy type kernel by one. The
paradox of the divergent (nonintegrable) kernel is introduced due to the illegal change of the integral and
trace operators from the point of view of the dual integral formulation [1]. In order to ensure a ®nite value,
the Leibnitz's rule should be considered as the derivative of CPV so that the boundary term 2=� can be
included to compensate for the minus in®nity. Many researchers have paid attention to regularization
techniques [25] for hypersingularity and nearly hypersingular integrals. Therefore, the value for the ®nite
part can be determined by means of regularization techniques. Based on the theory of dual integral
equations, the dual boundary element method can be implemented [10,11]. The dual integral representation
for the Laplace equation was proposed in [22] and a general program, BEPO2D, was developed [1]. In the
same way, the acoustic problem with a degenerate boundary also requires the dual integral formulation. A
large number of papers have focused on the nonphysical solution for the exterior problem of the Helmholtz
equation by using BEM. Burton and Miller [28] ®rst combined the dual integral equations to deal with
®ctitious eigenvalues. Furthermore, the conventional multiple reciprocity method (MRM) also encounters
spurious eigenvalues for the interior problem of the Helmholtz equation [29]. Based on the dual MRM, the
spurious eigenvalues have been successfully ®ltered out in one-dimensional [26] and two-dimensional
problems [27]. Both cases, the exterior problem by BEM and the interior problem by MRM, have the
problems of nonuniqueness for solution. However, for the interior problem with a degenerate boundary,
the conventional BEM also results in a singular system, and the problem of nonuniqueness also occurs.
Terai [15] and Wu et al. [16] solved the three-dimensional acoustic problem with a screen by using the dual
integral formulation. Based on the complex-valued dual formulation, a general program, DUALHAK, was
developed to solve the acoustic frequencies and modes for a cavity with an incomplete partition in [32,33].

In this paper, the dual integral equations are constructed for acoustic problems with degenerate
boundaries. Based on the dual formulations, four methods, the complex-valued dual BEM, the real-valued
dual MRM, the real-part dual BEM and the complete complex-valued MRM, are proposed. An illustrative
example for the acoustic eigenfrequencies of a cavity with an incomplete partition will be demonstrated to
show the validity of the four methods. Results are compared with those of FEM by Petyt [34,35] and
ABAQUS. Also, the experimental data by Petyt [34,35] are available.

2. Dual integral formulation for an acoustic problem with a degenerate boundary

Consider an acoustic problem which has the following governing equation:

r2/�x� � k2/�x� � 0; x 2 D; �1�

where D is the domain of interest, x is the domain point, / is the acoustic pressure and k is the wave number
de®ned by the angular frequency divided by the sound speed. The homogeneous boundary conditions are
shown as follows:

/�x� � 0; x 2 B1; �2�
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o/�x�
onx

� 0; x 2 B2; �3�

where B1 is the essential boundary in which the acoustic pressure is prescribed, B2 is the natural boundary
where the normal derivative of the acoustic pressure in the nx direction is speci®ed, and B1 and B2 construct
the whole boundary of the domain D.

The ®rst equation of the dual boundary integral equations for the domain point can be derived from
Green's third identity:

2p/�x� �
Z

B
T �s; x�/�s�dB�s� ÿ

Z
B

U�s; x� o/�s�
ons

dB�s�; x 2 D; �4�

where T �s; x� is de®ned by

T �s; x� � oU�s; x�
ons

; �5�

in which ns represents the outnormal direction at point s on the boundary and U�s; x� is the fundamental
solution which satis®es

r2U�x; s� � k2U�x; s� � 2pd�xÿ s�; x 2 D; �6�

where d�xÿ s� is the Dirac delta function. After taking the normal derivative with respect to Eq. (4), the
second equation of the dual boundary integral equations for the domain point can be derived:

2p
o/�x�
onx

�
Z

B
M�s; x�/�s�dB�s� ÿ

Z
B

L�s; x� o/�s�
ons

dB�s�; x 2 D; �7�

where

L�s; x� � oU�s; x�
onx

; �8�

M�s; x� � o2U�s; x�
onxons

; �9�

in which nx represents the outnormal direction at point x. The explicit forms of the four kernel functions
will be elaborated later on. By moving the ®eld point x in Eqs. (4) and (7) to the smooth boundary, the dual
boundary integral equations for the boundary point can be obtained as follows:

p/�x� � CPV

Z
B

T �s; x�/�s�dB�s� ÿRPV

Z
B

U�s; x� o/�s�
ons

dB�s�; x 2 B; �10�

p
o/�x�
onx

� HPV

Z
B

M�s; x�/�s�dB�s� ÿ CPV

Z
B

L�s; x� o/�s�
ons

dB�s�; x 2 B; �11�

where RPV is the Riemann principal value, CPV is the Cauchy principal value and HPV is the Hadamard
(Mangler) principal value.

It must be noted that Eq. (11) can be derived simply by applying the normal derivative operator to
Eq. (10). Di�erentiation of the Cauchy principal value should be carried out carefully using Leibnitz's rule.
The commutative property provides us with two alternatives for calculating the Hadamard principal value
in the same way used for crack problems [6]. For the problem including a normal boundary S and
degenerate boundary C� � Cÿ; i:e:; B � S � C� � Cÿ, Eqs. (10) and (11) can be reformulated as follows.
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For x 2 S, Eqs. (10) and (11) become

p/�x� � CPV

Z
S

T �s; x�/�s�dB�s� ÿRPV

Z
S

U�s; x� o/�s�
ons

dB�s� �
Z

C�
T �s; x�D/�s�dB�s�

ÿ
Z

C�
U�s; x�R o/�s�

ons

dB�s�; �12�

p
o/�x�
onx

� HPV

Z
S

M�s; x�/�s�dB�s� ÿ CPV

Z
S

L�s; x� o/�s�
ons

dB�s� �
Z

C�
M�s; x�D/�s�dB�s�

ÿ
Z

C�
L�s; x�R o/�s�

ons

dB�s�; �13�

where

D/�s� � /�s�� ÿ /�sÿ�; �14�
R

o/
on
�s� � o/

on
�s�� � o/

on
�sÿ�: �15�

For x 2 C�, Eqs. (10) and (11) reduce to

pR/�x� � CPV

Z
C�

T �s; x�D/�s�dB�s� ÿRPV

Z
C�

U�s; x�R o/�s�
ons

dB�s� �
Z

S
T �s; x�/�s�dB�s�

ÿ
Z

S
U�s; x� o/�s�

ons

dB�s�; �16�

pD
o/�x�
onx

� HPV

Z
C�

M�s; x�D/�s�dB�s� ÿ CPV

Z
C�

L�s; x�R o/�s�
ons

dB�s�

�
Z

S
M�s; x�/�s�dB�s� ÿ

Z
S

L�s; x� o/�s�
ons

dB�s�; �17�

where

R/�x� � /�x�� � /�xÿ�; �18�
D

o/
on
�x� � o/

on
�x�� ÿ o/

on
�xÿ�: �19�

Eqs. (14), (15), (18) and (19) indicate that the unknowns on the degenerate boundary double, and that the
additional hypersingular integral equation (17) is correspondingly necessary; i.e., the dual boundary inte-
gral equations can provide us with su�cient constraint relations for the doubled boundary unknowns on
the degenerate boundary.

Based on the dual integral formulation, the following four methods can be treated as special cases and
are discussed in the following subsections.

2.1. Complex-valued dual BEM

For simplicity, a two-dimensional case is considered here. The closed forms of the four kernels in the
dual complex-valued BEM are shown below:
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U�s; x� � ÿipH �1�0 �kr�
2

; �20�

T �s; x� � ÿikp
2

H �1�1 �kr� yini

r
; �21�

L�s; x� � ikp
2

H �1�1 �kr� yi�ni

r
; �22�

M�s; x� � ÿikp
2

(
ÿ k

H �1�2 �kr�
r2

yiyjni�nj � H �1�1 �kr�
r

ni�ni

)
; �23�

where i2 � ÿ1; r � jxÿ sj;H �1�n �kr� denotes the ®rst kind Hankel function with order n, and ni and �ni denote
the ith components of the normal vectors at s and x, respectively.

2.2. Real-valued dual MRM

By employing the conventional MRM [26,30,37], we have the two kernels

U�s; x� � U 0�s; x� ÿ k2U 1�s; x� � k4U 2�s; x� � � � � ; �24�
T �s; x� � T 0�s; x� ÿ k2T 1�s; x� � k4T 2�s; x� � � � � ; �25�

where the explicit forms of Uj�s; x� and T j�s;x� will be introduced later. In order to ®lter out the spurious
solutions, the dual MRM proposed the hypersingular integral equation with the following two kernels:

L�s; x� � L0�s; x� ÿ k2L1�s; x� � k4L2�s; x� � � � � ; �26�
M�s; x� � M0�s; x� ÿ k2M1�s; x� � k4M2�s; x� � � � � ; �27�

in which

Lj�s; x� � oUj�s; x�
onx

; j � 0; 1; 2; . . . ; �28�

Mj�s; x� � o2Uj�s; x�
onxons

; j � 0; 1; 2; . . . : �29�

The explicit forms of the jth terms in the four kernels by using the real-valued dual MRM are

U j�s; x� � r2j ln�r�A�j� ÿ r2jB�j�; �30�
T j�s; x� � ÿ ��2j ln�r� � 1�r2jÿ2yini�A�j� � �2jr2jÿ2yini�B�j�; �31�
Lj�s; x� � � ��2j ln�r� � 1�r2jÿ2yi�ni�A�j� ÿ �2jr2jÿ2yi�ni�B�j�; �32�

Mj�s; x� � ÿ ��4j�jÿ 1� ln�r� � 4jÿ 2�r2jÿ4yiniyk�nk�A�j� ÿ ��2j ln�r� � 1�r2jÿ2ni�ni�A�j�
� �4j�jÿ 1�r2jÿ4yiniyk�nk�B�j� � �2jr2jÿ2ni�ni�B�j�; �33�

where A�j� and B�j� in Eq. (30) can be found in [30,37]. After constructing the hypersingular integral
equation, the dual MRM can ®lter out the spurious eigenvalues and eigenmodes. Nevertheless, the dual
MRM cannot solve the problems with impedance boundary conditions since the information on the
imaginary part is lost. Also, this is the reason why the conventional MRM cannot solve for the exterior
problems since the method cannot satisfy the radiation condition automatically. The applications of dual
MRM to the vibration problems of a rod and a beam can be found in [26,38].

2.3. Real-part dual BEM

According to the ®ndings by Yeih et al. [29] and Kamiya et al. [36], the series forms of the kernels in the
real-valued dual MRM are no more than the real-parts of the closed-form kernels in the complex-valued
dual BEM. The real-part for the kernels in the complex-valued dual BEM are shown below:
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U�s; x� � Re
ÿipH �1�0 �kr�

2

( )
; �34�

T �s; x� � Re
ÿikp

2
H �1�1 �kr� yini

r

� �
; �35�

L�s; x� � Re
ikp
2

H �1�1 �kr� yi�ni

r

( )
; �36�

M�s; x� � Re
ÿikp

2

((
ÿ k

H �1�2 �kr�
r2

yiyjni�nj � H �1�1 �kr�
r

ni�ni

))
; �37�

where Re denotes the real-part. In the same way, this method has the problem of spurious modes as the
real-valued MRM does if the singular integral equation (UT equation) is used only. Also, this method as
well as the real-valued dual MRM, cannot treat the exterior problems and interior problems with im-
pedance boundary conditions. The main advantage of this method is that it can solve problems in the real
domain without the lengthy derivation of the series kernels in the real-valued dual MRM.

2.4. Complete complex-valued MRM

Recently, Yeih et al. [29] proposed a complete MRM which can recover the information of the imaginary
part. The main di�erence between the complete MRM and the complex-valued dual BEM is the kernel
representation. The kernels in the complete MRM are the same as those of the complex-valued dual BEM
after series expansion. The series forms can be represented by

U�s; x� �
X1
j�0

�ÿk2�jUj�s; x�; �38�

T �s; x� � oU�s; x�
ons

; �39�

L�s; x� � oU�s; x�
onx

; �40�

M�s; x� � o2U�s; x�
onxons

; �41�

where

U0�s; x� � ln�r� � c

�
� ln

k
2

� ��
ÿ p

2i
; j � 0; �42�

Uj�s; x� � 4Fj ln�r�ÿ ÿ Sj

�� Fj c

�
� ln

k
2

� ��
� pi

2
Fj; j � 1; 2; 3; . . . ; �43�

in which

c � lim
j!1

Xj

l�1

1

l

 
ÿ ln�j�

!
; �44�

Fj � r2j

�j!�24j
; �45�

Sj �
Xj

l�1

1

l
: �46�
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It is interesting to ®nd that the di�erence between U 0�s; x� in Eq. (30) for j � 0 and U0�x; s� in Eq. (42) is
only a complex constant which can make the kernel in the complete MRM satisfy the radiation condition.
Also, the kernel functions of the complete MRM in Eq. (38) with in®nite terms can be proved to be equal to
that of the complex-valued dual BEM in Eq. (20) after series expansion.

3. Detection of the spurious roots for the real-valued MRM and the real-part BEM

3.1. Residual method

According to Eqs. (10) and (11), we can obtain the eigenvalues independently for the problem without
degenerate boundaries. However, spurious roots are imbedded. As mentioned by Kamiya et al. [36], the
equation derived using MRM is no more than a real-part in the complex-valued formulation. The loss of
the imaginary part in MRM results in the spurious roots. Chen and Wong [26] and Yeih et al. [29] extended
the general proof for any dimensional problems and demonstrated it using a one-dimensional case. The
imaginary part in the complex-valued formulation is not present in MRM, and the number of constraints
for the eigenequation is insu�cient. These ®ndings can explain the reason why the spurious roots occur
using the MRM when either Eq. (10) or (11) is employed alone, i.e., the mechanism of the spurious roots
can be understood in this way.

Since only the real-part is concerned in MRM, one approach to obtaining enough constraints for the
eigenequation instead of obtaining the imaginary part of the complex-valued formulation is obtained by
di�erentiation with respect to the conventional MRM. This method results in the hypersingular formu-
lation for MRM. For simplicity, we deal with the Neumann problem. After discretizing the dual integral
equations, we have

�T �k��fug � 0; �47�
�M�k��fug � 0; �48�

where �T � and �M � are the in¯uence matrices for T and M kernels. More detail can be found in [27]. An
approach to detecting the spurious roots is the criterion of satisfying both Eqs. (47) and (48). The spurious
roots from Eq. (48) will not satisfy Eq. (47). Also, the spurious roots from Eq. (51) will not satisfy Eq. (50)
in controversia. Therefore, two residuals can be de®ned as follows:

�T � �T �kM��fuMg; �49�
where fuMg satis®es �M�kM��fuMg � 0

�M � �M�kT ��fuTg; �50�
where fuTg satis®es �T �kT ��fuTg � 0; and �T and �M are the residuals induced by Eqs. (49) and (50), re-
spectively, and kM and kT are the eigenvalues obtained by Eqs. (47) and (48), respectively. By setting an
appropriate value of the threshold, we can determine whether the root is true or spurious. To double check,
the acoustic modes are examined by means of the distribution of nodal lines and orthogonal properties.

3.2. Singular value decomposition (SVD) technique

It is noted that the residual method needs to ®nd the spurious boundary modes in advance from one
equation (either UT or LM equation) in the stage of direct search method, and then substitutes it into
another eigenequation from either UT or LM equation to ®nd the residuals. In some cases, e.g., double
roots [33] and null matrix for rank de®ciency [27], it is not straightforward to determine the boundary
modes. Now we will look for a more e�cient way to ®lter out the spurious eigenvalues free from deter-
mining the boundary mode in advances.

To distinguish the spurious eigenvalues by the SVD technique, we can merge Eqs. (47) and (48) together
to have

�C�k��2N�NfugN�1 � f0g; �51�
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where N is the number of unknowns, and �C�k�� matrix is composed from �T � and �M � matrices as shown
below:

�C�k��2N�N �
T �k�
M�k�
� �

: �52�

Even though the �C� matrix has dependent rows resulted from the degenerate boundary, the SVD technique
can be employed to ®nd all the true eigenvalues since enough constraints are considered. For the true ei-
genvalues, the rank for the �C� matrix with dimension 2N � N must at most be N ÿ 1 to have a nontrivial
solution. For the spurious eigenvalues, the rank must be N to have a trivial solution. Based on this criterion,
the SVD technique is utilized to detect the true eigenvalues by checking the ®rst minimum singular value to
be zero. Since discretization creates error, not exactly zeros will be obtained. In order to avoid the threshold
for the zero de®nition, a more nearer zero will be found in the smaller increment for the critical wave
number, k. Such a value is con®rmed to be a true eigenvalue.

A brief introduction to SVD is given below.
Consider a linear algebra problem with more equations than unknowns:

A� �m�nxn�1 � bm�1; m > n; �53�

where m is the number of equations, n is the number of unknowns and A is the leading matrix, which can be
decomposed into

A� �m�n � Um�mRm�nV�n�n; �54�

where U is a left unitary matrix constructed by the left singular vectors, R is a diagonal matrix which has
singular values r1; r2; . . . ; and rn allocated in the diagonal line as

R �

rn � � � 0

..

. . .
. ..

.

0 � � � r1

..

. . .
. ..

.

0 � � � 0

2666664

3777775; m > n; �55�

in which rn P rnÿ1 � � � P r1 and V� is the complex conjugate transpose of a right unitary matrix constructed
by the right singular vectors. As we can see in Eq. (53), there exist at most n nonzero singular values. This
means that we can ®nd at most n linear independent equations in the system of equations. If we have s zero
singular values (06 s6 n), this means that the rank of the system of equations is equal to nÿ s. However,
the singular value may be very close to zero numerically, resulting in rank de®ciency. For a general ei-
genproblem as shown in this paper, the �C� matrix with dimension 2N � N in Eq. (51) will have the rank to
be N ÿ 1 for the true eigenvalue with multiplicity 1. For the true eigenvalues with multiplicity M , the rank
will be reduced to N ÿM . In the case of spurious eigenvalues, the rank is N . Therefore, only trivial solution
for the spurious mode can be obtained.

Determining the eigenvalues of the system of equations has now been transformed into ®nding the values
of k which make the rank of the leading coef®cient matrix be smaller than N. This means that when
m � 2N ; n � N and b2N�1 � 0, the eigenvalues will make s � M , such that the minimum singular value
must be zero or very close to zero. To ®nd the boundary eigenvector associated with the eigevalue of
multiplicity 1, we can set one of the elements in the boundary eigenvector to be one and solve it using SVD
by the pseudo-inverse matrices. The pseudo-inverse matrix, A� of A, is expressed as

A�n�m � Vn�nR
�
n�mU�m�m; �56�

where R� is constructed by taking the transpose of R and then replacing the diagonal singular value terms
with its inverse, expressed as
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R� �

1

rn
� � � 0 � � � 0

..

. . .
. ..

. . .
. ..

.

0 � � � 1

r1

� � � 0

2666664

3777775; m > n: �57�

The above-mentioned SVD method has been proved to be equivalent to the least square error solution in
determining the unknown vector when the number of equations is larger than the number of unknowns
[39]. After introducing the SVD method, we do not need to worry about how to pick a speci®c group of
equations such that the rank of the leading coe�cient is su�cient to solve for the boundary eigenvector. On
the other hand, we can take all the 2N equations in dual model into account, which apparently causes the
rank of the leading coe�cient matrix to be equal to N ÿ 1 for spurious eigenvalues. Thus, the boundary
eigenvector can be easily found in the sense of the least square error. After ®nding the ®rst minimum
singular value in �C� matrices for di�erent values of k, one can easily determine whether the eigenvalue is
true or not free from ®nding the boundary modes in advance as residual method does. For further details
concerning the SVD method, please refer to [40]. Another advantage for using SVD is that it can determine
the multiplicities for the true eigenvalues by ®nding the number of near zero in the successive singular
values. An example, a rectangular cavity with a zero-thickness partition with the eigenvalues of multiplicity
one is shown to demonstrate the SVD technique.

4. An illustrative example

To demonstrate the validity of the four methods using dual formulation, an example given by Petyt
[34,35] is considered. A two-dimensional cavity enclosed by rigid walls is shown in Fig. 1. The cavity is a
rectangle, 236 mm long and 113 mm high, and contains a rigid partition located halfway along the longer
side of the cavity. The thickness of the partition is modeled as zero thickness, i.e., the boundary of partition
is degenerate. The partition extends from one side of the cavity halfway across to the other wall. The cavity
is ®lled with an acoustic ¯uid whose density is 1.0 kg=m

3
and whose bulk modulus is 0.1183 MPa. The ®rst

®ve acoustic frequencies given in Table 1 were solved using the four methods, and the results were com-
pared with those of ABAQUS program [30,31] and FEM by Petyt [34,35]. In order to ®lter out the spurious
eigenvalues for the real-valued dual MRM and the real-part dual BEM, the residual method and the
singular value decomposition technique can be adopted. Fig. 2 shows the residuals by using the real-valued
dual MRM. Fig. 3 shows the residuals by using the real-part dual BEM. It is found that the spurious
eigenvalues can be easily ®ltered out by Fig. 3 after choosing an appropriate threshold value and checking
the number of nodal lines and the orthogonality of modal shapes. However, Fig. 2 cannot have an ap-
propriate threshold value. The reason may be explained that only ten-terms expansion is considered in the
real-valued dual MRM. Figs. 4 and 5 show the ®rst minimum singular value, r1, versus acoustic frequency,

Fig. 1. A cavity with an incomplete partition.
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f, for the real-valued dual MRM and the real-part dual BEM, respectively. It is found that the true ei-
genvalues can be easily determined by ®nding the near-zero singular values. It can be expected that the two
®gures are the same if in®nite-terms expansion for the kernels are considered in the real-valued MRM. Two
types of elements in the ABAQUS program, AC2D4 and AC2D8, were considered. Although no mesh

Fig. 2. The residuals for the real-valued dual MRM: (a) �M�k��fug � �; (b) �T �k��fug � �.

Fig. 3. The residuals for the real-part dual BEM: (a) �M�k��fug � �; (b) �T �k��fug � �.

Table 1

The ®rst ®ve acoustic frequencies (Hz) using di�erent methods

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Complex-valued dual BEM 584 1439 1518 1537 1818

Real-valued dual MRM by residual 580 1452 1510 1532 1762

Real-part dual BEM by residual 579 1445 1515 1531 1818

Real-valued dual MRM by SVD 577 1444 1529 1534 1991

Real-part dual BEM by SVD 588 1444 1518 1537 1827

Complete complex-valued MRM 576 1447 1510 1521 1800

ABAQUS (AC2D4) 618 1421 1496 1527 1780

ABAQUS(AC2D8) 605 1458 1536 1563 1851

FEM by Petyt 591 1478 1540 1570 1861

Measurement by Petyt 570 1470 1534 1555 1840
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convergence studies have been performed, the close agreement between the acoustic frequencies and the
acoustic modes of the present results in coarse mesh and those given by Petyt et al. suggests that the mesh is
adequate. For the ®rst mode, the present results are also in better agreement with the experimental data
obtained by Petyt than they are with the data obtained using other numerical methods.

5. Conclusions

The general formulation of the dual integral equations of the boundary value problem for the two-
dimensional Helmholtz equation with a degenerate boundary has been reviewed in this paper. Four
methods based on the dual formulation, the complex-valued dual BEM, the real-valued dual MRM, the
real-part dual BEM and the complete complex-valued MRM, were proposed. The acoustic frequencies for

Fig. 4. The ®rst minimum singular value, r1 for di�erent frequencies using the real-valued dual MRM for 10-terms expansion.

Fig. 5. The ®rst minimum singular value versus, r1 for di�erent frequencies using the real-part dual BEM.
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a rectangular cavity with an incomplete partition has been successfully determined by using the four
methods, and the results have been compared well with those obtained using other numerical methods and
experiments.
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