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Stable MFS Solution to Singular Direct and Inverse
Problems Associated with the Laplace Equation Subjected

to Noisy Data

Liviu Marin1

Abstract: In this paper, a meshless method for the stable solution of direct and
inverse problems associated with the two-dimensional Laplace equation in the pres-
ence of boundary singularities and noisy boundary data is proposed. The governing
equation and boundary conditions are discretized by the method of fundamental
solutions (MFS), whilst the existence of the boundary singularity is taken into ac-
count by subtracting from the original MFS solution the corresponding singular
solutions, as given by the asymptotic expansion of the solution near the singular
point. However, even in the case when the boundary singularity is accounted for,
the numerical solutions obtained by the direct inversion of the associated MFS lin-
ear algebraic system are still inaccurate and unstable. Therefore, the regularization
of the aforementioned problems is required and this is realized by employing either
the Tikhonov regularization method (TRM), or the singular value decomposition
(SVD), with the corresponding optimal regularization parameter given by the L-
curve method. Numerical experiments show that the proposed method is stable
with respect to the noise added into the boundary data, highly accurate and compu-
tationally very efficient.

Keyword: Direct and Inverse Problems; Laplace Equation; Singularity Subtrac-
tion Technique (SST); Regularization; Method of Fundamental Solutions (MFS).

1 Introduction

In many engineering problems governed by elliptic partial differential equations,
boundary singularities arise when there are sharp re-entrant corners in the bound-
ary, the boundary conditions change abruptly, or there are discontinuities in the
material properties. It is well known that these situations give rise to singulari-
ties of various types and, as a consequence, the solutions to such problems and/or
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their corresponding derivatives may have unbounded values in the vicinity of the
singularity. Singularities are known to affect adversely the accuracy and conver-
gence of standard numerical methods, such as finite element (FEM), boundary el-
ement (BEM), finite-difference (FDM), spectral and meshless/meshfree methods.
When the computed function is bounded, but has a branch point at the corner,
the difficulty is not serious. Grid refinement and high-order discretizations are
common strategies aimed at improving the convergence rate and accuracy of the
above-mentioned standard methods, see e.g. Apel, Sändig and Whiteman (1996)
or Apel and Nicaise (1998). If, however, the form of the singularity is taken into ac-
count and is properly incorporated into the numerical scheme then a more effective
method may be constructed.

The Laplace equation arises naturally in many areas of science and engineering.
For example, it is widely used to model potential problems and steady-state heat
conduction. There are important studies in the literature devoted to the numerical
treatment of singularities for boundary value problems related to heat conduction.
Motz (1946) and Woods (1953) have investigated the removal of the singularity for
the Laplace and biharmonic equations, and the Poisson equation, respectively, us-
ing the FDM. Later, Whiteman and Papamichael (1971) have employed conformal
transformation methods to solve singular direct problems for the Laplace equation.
Wait and Mitchell (1971) and Wait (1978) have used the FEM to stably treat sin-
gularities in the Laplace equation, whilst similar techniques, in conjunction with
the BEM, have been proposed by Symm (1973), Jaswon and Symm (1977), Ing-
ham, Heggs and Manzoor (1981), Lefeber (1989), and Ingham and Yuan (1994).
Modified BEMs that take into account the singularities caused by an abrupt change
in the boundary conditions and the presence of a sharp re-entrant corner in the
boundary of the solution domain have been developed for the time-dependent diffu-
sion equation and the anisotropic steady-state heat conduction problem by Lesnic,
Elliott and Ingham (1995) and Mera, Elliott, Ingham and Lesnic (2002), respec-
tively. The singular function boundary integral method has been applied for the
solution of the Laplace equation in an L-shaped domain by Elliotis, Georgiou and
Xenophontos (2002), and Xenophontos, Elliotis and Georgiou (2006), who have
approximated the solution by the leading terms of the local solution expansion and
have weakly enforced the boundary conditions by means of Lagrange multipliers.
For an excellent survey on the treatment of singularities in elliptic boundary value
problems, we refer the reader to Li and Lu (2000) and the references therein.

The main idea of the method of fundamental solutions (MFS), which was originally
introduced by Kupradze and Aleksidze (1964) and numerically formulated for the
first time by Mathon and Johnston (1977), consists of approximating the solution of
the problem by a linear combination of fundamental solutions with respect to some
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singularities/source points which are located outside the domain. Then the original
problem is reduced to determining the unknown coefficients of the fundamental
solutions and the coordinates of the source points by requiring the approximation
to satisfy the boundary conditions and hence solving a nonlinear problem. If the
source points are fixed a priori then the coefficients of the MFS approximation
are determined by solving a linear problem. An excellent survey of the MFS and
related methods over the past three decades has been presented by Fairweather and
Karageorghis (1998).

The MFS has been successfully applied to solving a wide variety of boundary value
problems. Karageorghis and Fairweather (1987) have solved numerically the bihar-
monic equation using the MFS. Later, their method has been modified in order to
take into account the presence of boundary singularities in both the Laplace and
the biharmonic equations by Karageorghis (1992) and Poullikkas, Karageorghis
and Georgiou (1998). The MFS has been formulated for three-dimensional Sig-
norini boundary value problems and it has been tested on a three-dimensional elec-
tropainting problem related to the coating of vehicle roofs in Poullikkas, Kara-
georghis and Georgiou (2001). Karageorghis and Fairweather (2000) have studied
the use of the MFS for the approximate solution of three-dimensional isotropic
materials with axisymmetrical geometry and both axisymmetrical and arbitrary
boundary conditions. The application of the MFS to two-dimensional problems
of steady-state heat conduction and elastostatics in isotropic and anisotropic bi-
materials has been addressed by Berger and Karageorghis (1999; 2001), whilst
Poullikkas, Karageorghis and Georgiou (2002) have successfully applied the MFS
for solving three-dimensional elastostatics problems. Tsai (2001) has combined
the dual reciprocity method (DRM) and the MFS as a meshless BEM (DRM-MFS)
to solve three-dimensional Stokes flow problems by the velocity-vorticity formu-
lation. The application of the MFS for modeling the scattering of time-harmonic
electromagnetic fields, which are governed by vector Helmholtz equations with
coupled boundary conditions, has been addressed by Young and Ruan (2005).
Tsai, Lin, Young and Atluri (2006) have proposed a procedure for locating sources
of the MFS in the case of problems without exact solutions. A novel procedure
which combines the FDM and the MFS has been introduced by Hu, Young and
Fan (2008) to solve numerically the nonhomogeneous diffusion problem with an
unsteady forcing function. Liu (2008) has proved an equivalent relation between
the modified Trefftz method (MTM) and MFS for arbitrary plane domains and, in
addition, has shown that the ill-conditioning of the MFS can be alleviated through
the MTM by obtaining a new system of linear equations for the corresponding
modified MFS. Recently, the MFS has been successfully applied to solving inverse
problems associated with the heat equation [Hon and Wei (2004; 2005); Mera,
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Elliott, Ingham and Lesnic (2005); Ling and Takeuchi (2008); Marin (2008)], lin-
ear elasticity [Marin and Lesnic (2004); Marin (2005a)], steady-state heat conduc-
tion in functionally graded materials [Marin (2005b)], Helmholtz-type equations
[Marin (2005c); Marin and Lesnic (2005); Jin and Zheng (2006)], and source re-
construction in steady-state heat conduction problems [Jin and Marin (2007)].

The case when exact boundary conditions for the steady-state heat conduction prob-
lem are specified on the entire boundary has been extensively studied in the litera-
ture. However, in many practical situations the boundary data are available either
on the entire boundary of the solution domain or a portion of it and, when measured,
they are unavoidably contaminated by inherent measurement errors. Thus the sta-
bility of the numerical method with respect to the noise added into the boundary
data is of vital importance for obtaining stable, as well as physically meaningful re-
sults. The only studies that investigate the stability problems for the Laplace equa-
tions are due to Cannon (1964), Lesnic, Elliott and Ingham (1998) and Jin (2004).
Cannon (1964) employed mathematical programming techniques, whilst the theory
presented did not address the issue of finding higher order derivatives, and no nu-
merical results were given to justify the theory. Lesnic, Elliott and Ingham (1998)
proposed a direct method based on the BEM which yields stable and accurate re-
sults for higher-order derivatives. The MFS, in conjunction with the singular value
decomposition (SVD), was utilized by Jin (2004) to stably solve the Laplace and
biharmonic equations for noisy boundary data.

The objective of this paper is to propose, implement and analyse a meshless method
for the accurate and stable solution of direct and inverse problems associated with
the two-dimensional isotropic steady-state heat conduction (i.e. the two-dimensional
Laplace equation) in the presence of boundary singularities and noisy boundary
data. More precisely, the governing equation and boundary conditions are dis-
cretized by the MFS, whilst the existence of the boundary singularity is taken into
account by subtracting from the original MFS solution the corresponding singular
solutions, as given by the asymptotic expansion of the solution near the singular
point, i.e. using the so-called singularity subtraction technique (SST). However,
even in the case when the boundary singularity is accounted for, the numerical
solutions obtained by the direct inversion of the associated MFS linear algebraic
system are still inaccurate and unstable. Therefore, both types of problems investi-
gated in this study need to be regularized and this is achieved by employing either
the Tikhonov regularization method (TRM), or the SVD, with the regularization pa-
rameter given by the L-curve method. The proposed modified MFS, together with
the aforementioned regularization methods, is then implemented for noisy direct
and inverse problems in two-dimensional domains with an edge crack or a V-notch,
as well as L-shaped domain. The advantages of the method proposed over other
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methods, such as mesh refinement in the neighbourhood of the singularity, the use
of singular BEMs and/or FEMs etc., are the high accuracy which can be obtained
even when employing a small number of collocation points and sources, and the
simplicity of the computational scheme. A possible drawback of the method is the
difficulty in extending the method to deal with singularities in three-dimensional
problems since such an extension is not straightforward.

2 General solution of the Laplace equation in polar coordinates

In this section, some well-known results on the solution of the homogeneous Laplace
equation using the separation of variables in polar coordinates are revised and the
notation used in the present work is introduced. Consider the steady-state heat
conduction in a two-dimensional domain Ω ⊂ R

2 in the absence of heat sources.
Consequently, the temperature, T, satisfies the two-dimensional Laplace equation,
namely

ΔT(x)≡ ∂ 2T(x)
∂x2

1

+
∂ 2T(x)

∂x2
2

= 0, x = (x1,x2) ∈ Ω. (1)

Let the polar coordinate system (r,θ ) be defined in the usual way with respect to
the Cartesian coordinates (x1,x2) = (rcosθ , rcosθ ). For r > 0, equation (1) written
in polar coordinates takes the following form:

∂ 2T(r,θ )
∂ r2 +

1
r

∂T(r,θ )
∂ r

+
1

r2

∂ 2T(r,θ )
∂θ 2 = 0. (2)

If we assume that the solution of equation (1) in the domain Ω can be written using
the separation of variables

T(r,θ ) = f (r)g(θ ), (3)

then the Laplace equation (1) can be recast as(
f ′′(r)+ r−1 f ′(r)

)
g(θ )+ r−2 f (r)g′′(θ ) = 0. (4)

If f (r)g(θ ) �= 0 then the following ratio must be a constant, denoted here by λ 2:

f ′′(r)+ r−1 f ′(r)
r−2 f (r)

= −g′′(θ )
g(θ )

= λ 2, (5)

and this results in the following two linear homogeneous ordinary differential equa-
tions with respect to the variables r and θ , respectively

f ′′(r)+ r−1 f ′(r)−λ 2r−2 f (r) = 0, (6)
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Figure 1: Schematic diagram of the two-dimensional isotropic wedge domain Ω of
interior angle 2ω , ω ∈ [0,π).

g′′(θ )+λ 2g(θ ) = 0. (7)

For a fixed value of λ > 0, the general solutions of equations (6) and (7) are given
by

f (r) = ar−λ +brλ , a,b ∈ R, (8)

g(θ ) = α cos(λ θ )+β sin(λ θ ), α ,β ∈ R, (9)

respectively. Hence the general solution of equation (1) in the form (3) can be
written as

T(r,θ ) =
(
ar−λ +brλ )[

α cos(λ θ )+β sin(λ θ )
]
,

a,b,α ,β ∈ R.
(10)

3 Corner singularities for the Laplace equation

Consider now that Ω is a two-dimensional isotropic wedge domain of interior angle
2ω , where 0 ≤ ω < π , with the tip at the origin, O, of the local polar coordinates
system and determined by two straight edges of angles θ1 and θ2, such that θ2 −
θ1 = 2(π −ω), see Fig. 1. Therefore, Ω =

{
x ∈ R

2 |0 < r < R(θ ),θ1 < θ < θ2
}

,
where R(θ ) is either a bounded continuous function or infinity.

In the following, we consider the boundary value problem given by equation (1)
in Ω and homogeneous Neumann and/or Dirichlet boundary conditions prescribed
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on the wedge edges. On taking into account the finite character of the temperature,
T, in a wedge tip neighbourhood, we obtain a = 0 in equation (10). Hence the
basis function of singular solutions to the aforementioned boundary value problem
obtained from expression (10) can be written in the general form as

T(S)(r,θ ) = rλ [
α cos(λ θ )+β sin(λ θ )

]
, (11)

where α ,β ∈R are unknown singular coefficients, whilst λ > 0 is referred to as the
singularity exponent or eigenvalue. The singular exponent/eigenvalue, as well as
the corresponding singular coefficients, are determined by the geometry and bound-
ary conditions along the boundaries sharing the singular point.
The normal heat flux through a straight radial line defined by an angle θ and asso-
ciated with the normal vector n(θ ) = (−sinθ ,cosθ ) is given by

φ (S)(r,θ ) =
1
r

∂
∂θ

T(S)(r,θ ). (12)

For the sake of convenience, the singular temperature, T(S), and normal heat flux,
φ (S), given by equations (11) and (12), respectively, can be recast as:

T(S)(r,θ ) = rλ{
α cos[λ (θ −θ1)]+β sin[λ (θ −θ1)]

}
, (13)

φ (S)(r,θ ) = λ rλ−1{−α sin[λ (θ −θ1)]+β cos[λ (θ −θ1)]
}
. (14)

In this study, four configurations of homogeneous Neumann (N) and Dirichlet (D)
boundary conditions at the wedge edges applied to expressions (13) and (14) are
considered. The conditions which allow a nontrivial solution of the resulting system
of equations under the assumption λ > 0 are listed below:

Case I: N-N wedge

φ (S)(r,θ1) = φ (S)(r,θ2) = 0 ⇒ β = 0 and

sin[λ (θ2−θ1)] = 0 ⇒ λ = n π
θ2−θ1

, n ≥ 0
(15)

Case II: D-D wedge

T(S)(r,θ1) = T(S)(r,θ2) = 0 ⇒ α = 0 and

sin[λ (θ2−θ1)] = 0 ⇒ λ = n π
θ2−θ1

, n ≥ 1
(16)

Case III: N-D wedge

φ (S)(r,θ1) = T(S)(r,θ2) = 0 ⇒
β = 0 and cos[λ (θ2−θ1)] = 0 ⇒
λ =

(
n− 1

2

)
π

θ2 −θ1
, n ≥ 1

(17)



210 Copyright © 2008 Tech Science Press CMES, vol.37, no.3, pp.203-242, 2008

Case IV : D-N wedge

T(S)(r,θ1) = φ (S)(r,θ2) = 0 ⇒
α = 0and cos[λ (θ2−θ1)] = 0 ⇒
λ =

(
n− 1

2

)
π

θ2 −θ1
, n ≥ 1

(18)

From formulae (15)− (18) it can be noticed that the singularity exponents, λ , co-
incide in cases I and II, and III and IV, respectively. Using the above results, the
general asymptotic expansions for the singular solution of the Laplace equation for
a single wedge and corresponding to homogeneous Neumann and Dirichlet bound-
ary conditions on the wedge edges are obtained in the following form:

Case I: N-N wedge

T(S)(r,θ ) =
∞

∑
n=0

αnT(NN)
n (r,θ ) =

∞

∑
n=0

αnrλn cos[λn(θ −θ1)],

λn = n π
θ2−θ1

, n ≥ 0
(19)

Case II: D-D wedge

T(S)(r,θ ) =
∞

∑
n=1

αnT(DD)
n (r,θ ) =

∞

∑
n=1

αnrλn sin[λn(θ −θ1)],

λn = n π
θ2−θ1

, n ≥ 1
(20)

Case III: N-D wedge

T(S)(r,θ ) =
∞

∑
n=1

αnT(ND)
n (r,θ ) =

∞

∑
n=1

αnrλn cos[λn(θ −θ1)],

λn =
(

n− 1
2

)
π

θ2−θ1
, n ≥ 1

(21)

Case IV : D-N wedge

T(S)(r,θ ) =
∞

∑
n=1

αnT(DN)
n (r,θ ) =

∞

∑
n=1

αnrλn sin[λn(θ −θ1)],

λn =
(

n− 1
2

)
π

θ2−θ1
, n ≥ 1

(22)

In this paper, the following particular two-dimensional geometries containing a
boundary singularity are investigated, see Figs. 2(a)− (c):

(i) Two-dimensional domain containing a V-notch with the re-entrant angle 2ω ,
ω ∈ (0,π/2), i.e. θ1 = −θ2 = π −ω .
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(ii) Two-dimensional domain containing an edge crack, i.e. θ1 = −θ2 = π .

(iii) L-shaped domain, i.e. θ1 = 0 and θ2 = 3π/2.

It should be mentioned that a domain containing an edge crack can also be con-
sidered as the limiting case for a domain containing a V-notch with the re-entrant
angle 2ω , ω ∈ (0,π/2), in the sense that ω = 0 for the aforementioned geometry.
For the sake of completeness and taking into account the symmetry of the domains
containing a V-notch or an edge crack, we mention that the singularity exponents
corresponding to the particular geometries analysed herein are given by:

Cases I & II: N-N and D-D wedges

λn =

⎧⎨⎩ n π
π −ω for a domain containing a V-notch with ω ∈ [0,π/2)

2n
3 for an L-shaped domain

(23)

Cases III & IV : N-D and D-N wedges

λn =

⎧⎨⎩
(

n− 1
2

)
π

π −ω for a domain containing a V-notch with ω ∈ [0,π/2)

2n−1
3 for an L-shaped domain

(24)

4 Singularity subtraction technique

Consider a two-dimensional bounded domain Ω with a piecewise smooth boundary
Γ = ∂Ω which contains a singularity at the point O(x0), x0 = (x0

1,x0
2), that may be

caused by a change in the boundary conditions and/or a re-entrant corner at O.
For the simplicity of the following explanations, it is assumed that the singularity
point is located at the intersection of the Dirichlet and Neumann boundary parts,
see e.g. Fig. 2(c), although the method presented herein can easily be extended to
other local configurations or boundary conditions. Hence the problem to be solved
recasts as

ΔT(x)≡ ∂ 2T(x)
∂x2

1
+ ∂ 2T(x)

∂x2
2

= 0, x ∈ Ω (25.1)

T(x) = T̃(x), x ∈ ΓD (25.2)

φ (x)≡ ∇T(x) ·n(x) = φ̃ (x), x ∈ ΓN (25.3)
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Figure 2: Schematic diagram of the geometry and boundary conditions, i.e. Dirich-
let (•) and Neumann (◦) conditions, respectively, corresponding to the singular
problems investigated, namely (a) Example 1: N-N singular direct problem in an
L-shaped domain; (b) Example 2: N-D singular direct problem in a domain con-
taining a V-notch with the re-entrant angle 2ω = π/6; and (c) Example 3: D-N
singular inverse problem in a domain containing an edge crack OD.
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where ΓD �= /0, ΓN �= /0, ΓD ∪ ΓN ⊂ Γ, {O} ⊂ ΓD ∩ ΓN, T̃ and φ̃ are prescribed
boundary temperature and normal heat flux, respectively, and we denote the clo-
sure of a set by an overbar. It should be noted that the above formulation of the
boundary value problem associated with the isotropic steady-state heat conduction
(25.1)− (25.3) is very general, in the sense that it contains both the direct and
inverse problems. More precisely, the following situations may occur:

1. Direct problem: ΓD ∪ΓN = Γ and ΓD ∩ΓN = /0;

2. Inverse problem: ΓD ∪ΓN ⊂ Γ and ΓD ∩ΓN �= /0.

Moreover, we also assume that the Dirichlet, T̃
∣∣
ΓD

, and Neumann, φ̃
∣∣
ΓN

, input data
have been perturbed as

T̃ε∣∣
ΓD

= T̃
∣∣
ΓD

+δT, φ̃ ε ∣∣
ΓN

= φ̃
∣∣
ΓN

+δφ , (26)

where δ T̃ and δ φ̃ are Gaussian random variables with mean zero and standard
deviations σT = max

ΓD

|T| × (pT/100) and σφ = max
ΓN

|φ | × (pφ/100), respectively,

generated by the NAG subroutine G05DDF, and pT and pφ are the percentages of
additive noise included into the input data T

∣∣
ΓD

and φ
∣∣
ΓN

in order to simulate the
inherent measurement errors.

In order to avoid numerical difficulties arising from the presence of the singularity
in the potential solution at O, it is convenient to modify the original problem before
it is solved by the MFS. Due to the linearity of the Laplace operator and the bound-
ary conditions, the superposition principle is valid and the temperature, T, and the
normal heat flux, φ , can be written as

T(x) =
(

T(x)−T(S)(x)
)

︸ ︷︷ ︸
≡ T(R)(x)

+T(S)(x), x ∈ Ω, (27)

φ (x) =
(

φ (x)−φ (S)(x)
)

︸ ︷︷ ︸
≡ φ (R)(x)

+φ (S)(x), x ∈ Γ, (28)

where T(S)(x) is a particular singular potential solution of the original problem
(25.1)− (25.3) which satisfies the corresponding homogeneous boundary condi-
tions on the parts of the boundary containing the singularity point O and φ (S)(x)≡
∇T(S)(x) ·n(x) is its conormal derivative. If appropriate functions are chosen for
the singular temperature and its conormal derivative then the numerical analysis can
be carried out for the regular potential solution T(R)(x) and its conormal derivative



214 Copyright © 2008 Tech Science Press CMES, vol.37, no.3, pp.203-242, 2008

φ (R)(x) ≡ ∇T(R)(x) ·n(x) only. In terms of the regular potential solution T(R)(x),
the original problem (25.1)-(25.3) becomes

ΔT(R)(x) = 0, x ∈ Ω (29.1)

T(R)(x) = T̃ε(x)−T(S)(x), x ∈ ΓD (29.2)

φ (R)(x) = φ̃ ε(x)−φ (S)(x), x ∈ ΓN (29.3)

The modified boundary conditions (29.2) and (29.3) introduce additional unknowns
into the problem, which are the constants of the particular potential solution used
to represent the singular potential solution. It should be noted that these constants
are similar to the stress intensity factors corresponding to an analogous problem for
the Lamé (or Navier) system and, in what follows, they will be referred to as flux
intensity factors. Since the flux intensity factors are unknown at this stage of the
problem, they become primary unknowns.

In order to obtain a unique solution to the regular problem (29.1)− (29.3), it is
necessary to specify additional constraints which must be as many as the number of
the unknown flux intensity factors, i.e. one for each singular solution/eigenfunction
included in the analysis. These extra conditions must be applied in such a way that
the cancelation of the singularity in the regular potential solution is ensured. This is
achieved by constraining the regular solution and/or its conormal derivative directly
in a neighbourhood of the singularity point O

T(R)(x) = 0, x ∈ ΓN ∩B(O;τ) (30.1)

and/or

φ (R)(x) = 0, x ∈ ΓD ∩B(O;τ), (30.2)

where B(O;τ) =
{

x ∈ R
2
∣∣‖x−x0‖ < τ

}
, τ > 0 is sufficiently small and ‖ · ‖ rep-

resents the Euclidean norm.
For example, for the problem (29.1)− (29.3) the singular solution and its normal
derivative are expressed, in terms of the polar coordinates (r,θ ), as

T(S)(x)≡ T(S)(r,θ ) =
nS

∑
n=1

αnT(DN)
n (r,θ ),

φ (S)(x)≡ φ (S)(r,θ ) =
nS

∑
n=1

αnφ (DN)
n (r,θ ),

(31)

where T(DN)
n (r,θ ) is given by equation (22), φ (DN)

n (r,θ ) is obtained by taking the

conormal derivative of T(DN)
n (r,θ ) and αn, n = 1, . . . ,nS, are the unknown flux in-

tensity factors.
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5 The method of fundamental solutions

The fundamental solution of the two-dimensional Laplace equation is given by, see
e.g. Berger and Karageorghis (1999),

F (x,y) = 1
2π ln 1

‖x−y‖ , x ∈ Ω, y ∈ R
2 \Ω, (32)

where x = (x1,x2) is either a boundary or a domain point and y = (y1,y2) is a
source point.

According to the MFS approach, the regular temperature, T(R), in the solution do-
main is approximated by a linear combination of fundamental solutions with re-
spect to M source points yj in the form

T(R)(x)≈
M

∑
j=1

cj F (x,yj), x ∈ Ω, (33)

where cj ∈ R, j = 1, . . . ,M, are the unknown coefficients. Then the regular normal
heat flux on the boundary Γ can be approximated by

φ (R)(x)≈
M

∑
j=1

cj G (x,yj), x ∈ Γ, (34)

where G (x,y) = ∇xF (x,y) ·n(x) is given by

G (x,y) = −(x−y)T ·n(x)
2π ‖x−y‖2 , x ∈ Γ, y ∈ R

2 \Ω. (35)

Assume that the singular point O is located between the collocation points xn0
D ∈

ΓD and xn0
N ∈ ΓN, see also Fig. 2(c), and nS singular solutions/eigenfunctions,

T(DN)
n (r,θ ), as well as flux intensities, αn, are taken into account, such that the

additional constraints for the regular temperature and/or its conormal derivative
given by equation (30.1) and (30.2), respectively, read as

T(R)(xn0
N+1−m) = 0, i = 2m−1 ∈ {1, . . .,nS} , (36)

and

φ (R)(xn0
D−1+m) = 0, i = 2m ∈ {1, . . .,nS} . (37)

If nD collocation points xi, i = 1, . . .,nD, and nN collocation points xnD+i, i =
1, . . .,nN, are chosen on the boundaries ΓD and ΓN, respectively, such that N =
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nD +nN, and the location of the source points yj, j = 1, . . . ,M, is set then the bound-
ary value problem (29.1)− (29.3), together with the additional conditions (30), re-
casts as a system of (N + nS) linear algebraic equations with (M+ nS) unknowns
which can be generically written as

Ac̃ = F, (38)

where c̃ = (c1, . . . ,cM,α1, . . . ,αnS)∈R
M+nS and the components of the MFS matrix

A ∈ R
(N+nS)×(M+nS) and right-hand side vector F ∈ R

N+nS are given by

Aij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (xi,yj), i = 1,nD, j = 1,M

T(DN)
j−M (ri,θ i), i = 1,nD, j = (M+1), (M+nS)

G (xi,yj), i = (nD +1), (nD +nN), j = 1,M

φ (DN)
j−M (ri,θ i), i = (nD +1), (nD +nN), j = (M+1), (M+nS)

F (xn0
N+1−m−N,yj), i−N = 2m−1 = 1,nS, j = 1,M

G (xn0
D−1+m−N,yj), i−N = 2m = 1,nS, j = 1,M

0, i−N = 1,nS, j = (M+1), (M+nS)
(39)

Fi =

⎧⎪⎪⎨⎪⎪⎩
T̃ε(xi), i = 1,nD

φ̃ ε(xi), i = (nD +1), (nD +nN)

0, i = (nD +nN +1), (nD +nN +nS)

(40)

It should be noted that in order to uniquely determine the solution c̃ of the system
of linear algebraic equations (38), i.e. the coefficients cj, j = 1, . . .,M, in approxi-
mations (33) and (34) and the flux intensity factors αn, n = 1, . . .,nS, in the asymp-
totic expansions (31), the total number of collocation points corresponding to the
Dirichlet and Neumann boundary conditions, N, and the number of source points,
M, must satisfy the inequality M ≤ N.

In order to implement the MFS, the location of the source points has to be de-
termined and this is usually achieved by considering either the static or the dy-
namic approach. In the static approach, the source points are pre-assigned and kept
fixed throughout the solution process, whilst in the dynamic approach, the source
points and the unknown coefficients are determined simultaneously during the solu-
tion process, see Fairweather and Karageorghis (1998). For nonlinear systems, the
uniqueness of the solution is not always guaranteed and it is computationally much
more expensive. In addition, the discretised MFS system is severely ill-posed in the
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case of inverse problems and thus the dynamic approach transforms the problem
into a more difficult nonlinear ill-posed problem. The dynamic approach results in
a system of nonlinear equations, which may be solved using minimization meth-
ods. Alternatively, Tankelevich, Fairweather, Karageorghis and Smyrlis (2006),
consider the source points located on a so-called pseudo-boundary, which has the
same shape as the boundary of the domain, and the problem is solved for a se-
quence of such pseudo-boundaries, whilst the optimal pseudo-boundary is taken to
be the one for which boundary conditions are satisfied most accurately. From a
computational point of view, the dynamic approach might not be appropriate for
inverse problems with noisy data. Moreover, Mitic and Rashed (2004) have shown
that the distribution and number of the source points are not, in general, important
under certain conditions, in the sense that the number of sources should reflect the
degrees of freedom inherent in the boundary conditions of the problem. Hence the
dynamic approach for determining the optimal location of the source points might
be unnecessary. Therefore, we have decided to employ the static approach in our
computations with the source points located on a pseudo-boundary chosen in the
same manner as Tankelevich, Fairweather, Karageorghis and Smyrlis (2006).

6 Regularization

The MFS can be regarded as a Fredholm integral equation of the first kind with
an analytical kernel function, see e.g. Golberg and Chen (1999), which is severely
ill-posed according to the theory of integral equations. Consequently, as an ap-
proximation to the integral operator, the discretisation matrix A is severely ill-
conditioned. The accurate and stable solution of equation (38) is very impor-
tant for obtaining physically meaningful numerical results. Regularization meth-
ods are among the most popular and successful methods for solving stably and
accurately ill-conditioned matrix equations, see Hansen (1998) and Tikhonov and
Arsenin (1986). In our computations, we use both the SVD and the TRM to solve
the matrix equation arising from the MFS discretisation.

6.1 Singular Value Decomposition (SVD)

The SVD of a matrix A∈R
(N+nS)×(M+nS), M≤N, is given by, see e.g. Hansen (1998),

A = UΣVT, (41)

where U = [u1,u2, . . . ,uN+nS] and V = [v1,v2, . . . ,vM+nS] are orthonormal matri-
ces with column vectors called the left and the right singular vectors, respectively,
T denotes the matrix transposition and Σ = diag(σ1,σ2, . . . ,σM+nS) is a diagonal
matrix with nonnegative diagonal elements in non-increasing order, which are the
singular values of A.
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On using the SVD, the solution c to the matrix equation (38) can be succinctly
written as a linear combination of the right singular vectors, namely

c̃ =
rank(A)

∑
i=1

uT
i F
σi

vi, (42)

where rank(A) is the rank of the matrix A. For an ill-conditioned matrix equation,
there are many small singular values clustering around zero and therefore the solu-
tion obtained by standard methods, such as the Gauss elimination method, may be
dominated by the contribution of the small singular values and hence it becomes
unbounded and oscillatory. One simple remedy is to truncate the above summation,
i.e. by considering an approximate solution, cn, given by

c̃n =
n

∑
i=1

uT
i F
σi

vi, (43)

where n ≤ rank(A) is the regularization parameter which determines when one
starts to leave out small singular values. This method is known as the SVD in the
inverse problem community, see Hansen (1998).

6.2 The Tikhonov Regularization Method (TRM)

The Tikhonov regularized solution to the system of linear algebraic equations (38)
is sought as, see Tikhonov and Arsenin (1986),

c̃λ : Tλ (̃c) = min
c̃ ∈ R

M+nS

Tλ (̃c), (44)

where Tλ represents the zeroth-order Tikhonov functional given by

Tλ (·) : R
M+nS −→ [0,∞),

Tλ (̃c) = ‖Ac̃−F‖2 +λ 2‖c̃‖2,
(45)

and λ > 0 is the regularization parameter to be chosen. Formally, the Tikhonov
regularized solution c̃λ of the problem (44) is given as the solution of the normal
equation(
AT A+λ 2 IM+nS

)
c̃ = AT F, (46)

where IM+nS is the identity matrix. If the right-hand side of equation (38) is cor-
rupted by noise, i.e.

‖F−Fδ‖ ≤ δ , (47)
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then the following stability estimate holds, see Engl, Hanke and Neubauer (2000),

‖c̃λ − c̃δ
λ‖ ≤

δ
λ

, (48)

where

c̃λ =
(
AT A+λ 2 IM+nS

)−1
AT F. (49)

6.3 The L-Curve Method

The performance of regularization methods depends crucially on the suitable choice
of the regularization parameter. One extensively studied criterion is the discrep-
ancy principle, see e.g. Morozov (1966). Although this criterion is mathematically
rigorous, it requires a reliable estimation of the amount of noise added into the
data which may not be available in practical problems. Heuristical approaches are
preferable in the case when no a priori information about the noise is available. For
both the TRM and SVD, several heuristical approaches have been proposed, includ-
ing the L-curve criterion, see Hansen (1998), and the generalized cross-validation,
see Wahba (1977). In this paper, we employ the L-curve criterion to determine
the optimal regularization parameter for the regularization methods investigated,
i.e. the optimal truncation number, nopt, in the case of the SVD and the optimal
regularization parameter, λopt, in the case of the TRM, see Hansen (1998).

If we define on a logarithmic scale the curves

{(‖Ac̃n −F‖, ‖c̃n‖) |n = 1,2, . . ., rank(A)} and {(‖Ac̃λ −F‖, ‖c̃λ‖) |λ > 0}
for the SVD and TRM, respectively, then these typically have an L-shaped form
and hence they are referred to as L-curves. According to the L-curve criterion, the
optimal regularization parameter corresponds to the corner of the L-curve since a
good tradeoff between the residual and solution norms is achieved at this point. Nu-
merically, the L-curve method is robust and stable with respect to both uncorrelated
and highly correlated noise. Furthermore, this criterion works effectively with cer-
tain classes of practical problems, see Hansen (1998) and Chen, Chen, Hong and
Chen (1995). For a discussion of the theoretical aspects of the L-curve criterion,
we refer the reader to Hanke (1996) and Vogel (1996).

Several algorithms for locating the corner of the L-curve have been reported in
the literature, see e.g. Hansen (1998), Guerra and Hernandez (2001), Kaufman
and Neumaier (1996) and Castellanos, Gomez and Guerra (2002). The first pro-
cedure is based on fitting a parametric cubic spline to the discrete points and then
taking the point corresponding to the maximum curvature of the L-curve to be its
corner [Hansen (1998)]. The second algorithm employs a conic to fit the set of
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discrete points [Guerra and Hernandez (2001)], whilst the third one is based on
using a linear-linear scale and inverting the axis [Kaufman and Neumaier (1996)].
All these procedures need to check the monotonicity condition for the sequences
of the residual and solution norms, and discard those points where the monotonic-
ity condition is not fulfilled. The last algorithm, namely the triangle method, is
based on geometric considerations [Castellanos, Gomez and Guerra (2002)]. In the
present study, we mainly employ the first algorithm. However, the curvature of
the parametric spline is very sensitive to the distribution of the collocation points
and occasionally the located corner is not suitable, see Hansen (1998). Therefore,
visual inspection is used as an auxiliary procedure.

7 Numerical results and discussion

It is the purpose of this section to present the performance of the MFS+SST, in
conjunction with either the TRM or SVD. To do so, we solve numerically both
the direct and inverse boundary value problems (25.1)− (25.3) associated with the
two-dimensional isotropic steady-state heat conduction subjected to noisy bound-
ary data and boundary singularities.

7.1 Examples

In the case of the singular boundary value problems for the Laplace equation with
noisy data analysed herein, the solution domains under consideration, Ω, accessible
boundaries, ΓD and ΓN, and corresponding analytical solutions for the temperature,
T(an)(x), are given as follows:

Example 1. N-N singular direct problem for an L-shaped domain, see Fig. 2(a):

Ω = OABCDE = (−1.0,1.0)× (0.0,1.0)∪ (−1.0,0.0)× (−1.0,0.0] (50.1)

ΓD = AB∪CD = {1.0}× (0.0,1.0)∪{−1.0}× (−1.0,1.0) (50.2)

ΓN =OA∪BC∪DE∪EO

=(0.0,1.0)×{0.0}∪ (−1.0,1.0)×{1.0}∪ (−1.0,0.0)×{0.0}
∪{0.0}× (−1.0,0.0)

(50.3)

T(an)(x) = 5.00+2.50T(NN)
2 (x)−1.50T(NN)

3 (x)−2.00T(NN)
4 (x), x ∈ Ω (50.4)

Example 2. N-D singular direct problem for a rectangle containing a V-notch with
the re-entrant angle 2ω = π/6 (Motz-type problem), see Fig. 2(b):

Ω = OABCD = (−1.0,1.0)× (−0.5,0.5)\ΔODD′ (51.1)
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ΓD =AB∪CD∪DO

={1.0}× (−0.5,0.5)∪{−1.0}× (−0.5+ sinω ,0.5)
∪{(−l,−0.5+ l sinω) |0 < l < 1}

(51.2)

ΓN = OA∪BC = (0.0,1.0)×{−0.5}∪ (−1.0,1.0)×{−0.5} (51.3)

T(an)(x) = 3.00+1.50T(ND)
2 (x) +1.00T(ND)

4 (x), x ∈ Ω (51.4)

Example 3. D-N singular inverse problem for a rectangle containing an edge crack,
see Fig. 2(c):

Ω = ABCD = (−1.0,1.0)× (−0.5,0.5) (52.1)

ΓD = OA∪AB∪CD

= (0.0,1.0)×{−0.5}∪{−1.0,1.0}× (−0.5,0.5)
(52.2)

ΓN = AB∪CD∪DO

= {−1.0,1.0}× (−0.5,0.5)∪ (−1.0,0.0)×{−0.5} (52.3)

T(an)(x) = 5.00+2.50T(DN)
1 (x)−1.50T(DN)

3 (x)−2.00T(DN)
4 (x), x ∈ Ω (52.4)

It should be mentioned that all examples analysed in this study contain a singular-
ity at the point O(x0), where x0 = (0.0,0.0) for Example 1 and x0 = (0.0,−0.5)
in the case of Examples 2 and 3. Moreover, this singularity is caused by the na-
ture of the analytical solutions for the temperatures considered, i.e. the analytical
temperature solutions are given as linear combinations of the first four singular so-
lutions/eigenfunctions satisfying homogeneous boundary conditions on the edges
of the wedge, as well as by a sharp corner in the boundary (Examples 1 and 2) or
by an abrupt change in the boundary conditions at O (Example 3), see Figs. 2(a)-
(c). In the case of Example 3, which corresponds to an inverse problem, it can be
seen that the boundary ΓD ∩ΓN = AB∪CD is over-specified by prescribing on it
both the temperature, T|AB∪CD, and normal heat flux, φ |AB∪CD, whilst the boundary
BC is under-specified since neither the temperature, T|BC, nor the normal heat flux,
φ |BC, is known and has to be determined.

The singular boundary value problems investigated in this paper have been solved
using a uniform distribution of both the boundary collocation points xi, i = 1, . . .,N,
and the source points yj, j = 1, . . .,M, with the mention that the later were located
on a so-called pseudo-boundary, which has the same shape as the boundary Γ of
the solution domain and is situated at the distance d > 0 form Γ, see e.g. Tankele-
vich, Fairweather, Karageorghis and Smyrlis (2006). Furthermore, the number of
boundary collocation points was set to:
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(i) N = 154 for Example 1, such that 19 and 39 collocation points are situated on
each of the boundaries OA, AB, DE and EO, and BC and CD, respectively;

(ii) N = 120 for Examples 2 and 3, such that N/3 = 40 and N/6 = 20 collocation
points are situated on each of the boundaries BC and OA, AB, CD and OD,
respectively.

In addition, for all examples investigated throughout this study, the number of
source points, M, was taken to be equal to that of the boundary collocation points,
N, i.e. M = N.

7.2 Accuracy errors

In what follows, we denote by T(num) and φ (num) the numerical solutions for the
temperature and normal heat flux, respectively, obtained using the least-squares
method (LSM), i.e. by a direct inversion method, TRM and SVD, i.e. by regulariza-
tion methods, and by subtracting the first nS ≥ 0 singular solutions/eigenfunctions,
with the convention that when nS = 0 then the numerical temperature and normal
heat flux are obtained using the standard MFS, i.e. without removing the singular-
ity.

In order to measure the accuracy of the numerical approximation for the temper-
ature, T(num), and normal heat flux, φ (num), with respect to their corresponding
analytical values, T(an), and , φ (an), respectively, we define the relative root mean-
square (RMS) errors by

eT(Γj) =

√√√√ Nj

∑
j=1

(
T(num)(xj)−T(an)(xj)

)2

/
Nj

∑
j=1

(
T(an)(xj)

)2
(53)

eφ (Γj) =

√√√√ Nj

∑
j=1

(
φ (num)(xj)−φ (an)(xj)

)2

/
Nj

∑
j=1

(
φ (an)(xj)

)2
(54)

where Nj is the number of collocation points on the boundary Γj ⊂ Γ. Furthermore,
we also define the normalized errors

err(T(x)) = |T(num)(x)−T(an)(x)|
max
y∈Γ̃

|T(an)(y)| , x ∈ Γ,

err(φ (x)) = |φ (num)(x)−φ (an)(x)|
max
y∈Γ̃

|φ (an)(y)| , x ∈ Γ,

(55)
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Figure 3: Analytical ( ) and numerical (· · ·� · · ·) temperatures (a) T|EO,
and (b) T|OA, obtained using the LSM without subtracting any singular solu-
tions/eigenfunctions (nS = 0) and pT = 1% noise added into the boundary tem-
perature T|ΓD, for the N-N singular direct problem given by Example 1.

for the temperature and normal heat flux, respectively, where Γ̃ denotes the set of
boundary collocation points, since on using these errors divisions by zero and very
high errors at points where the temperature and/or normal heat flux have relatively
small values are avoided.

7.3 Direct problem subjected to noisy data

If the LSM is applied to solving a singular direct problem for the steady-state
heat conduction subjected to noisy data without subtracting any singular solu-
tions/eigenfunctions (nS = 0) then the numerical solution retrieved by this direct
solution method is not only inaccurate, but also unstable. This aspect, which is
strongly related to the direct solution method for the perturbed direct problem for
the Laplace equation, can be clearly noticed from Figs. 3(a) and (b) that present
the analytical and LSM-based numerical temperatures on the wedges EO and OA,
respectively, when the Dirichlet data T|ΓD = T|AB∪CD was perturbed by pT = 1%
noise, in the case of Example 1.

Figs. 4(a)-(d) illustrate a comparison between the analytical and numerical solu-
tions for T|EO obtained by removing various numbers of singular functions/eigenfunctions,
namely nS = 1, nS = 3, nS = 5 and nS = 6, respectively, for Example 1. It can be
seen from these figures that, although by solving this problem using the LSM and
accounting for the appropriate singular solutions/eigenfunctions, i.e. nS ≥ 1, the
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Figure 4: Analytical ( ) and numerical values for the temperature T|EO, ob-
tained using the LSM, pT = 1% noise added into the boundary temperature T|ΓD

and subtracting various numbers of singular solutions/eigenfunctions, namely nS =
1(· · ·� · · ·), nS = 3(· · ·• · · ·), nS = 5(· · ·∗ · · ·) and nS = 6(· · ·× · · ·), for the singu-
lar direct problem given by Example 1.
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numerical results are improved (especially in the vicinity of the singular point O),
the numerically retrieved solutions for the temperature and normal heat flux still
suffer from the point of view of the accuracy and stability. In this case, inaccu-
rate numerical results are also obtained for the exact flux intensity factors given by
equation (50.4), as can be seen from Table 1, which presents the numerical values,
α (num)

j , for the flux intensity factors, αj, as well as the corresponding absolute errors
defined as

Err(αj) = |α (num)
j −αj|. (56)

Table 1: The numerically retrieved values, α (num)
j , for the flux intensity factors

and the corresponding absolute errors, Err(αj), obtained using the LSM, pT = 1%
noise added into the boundary temperature T|ΓD and subtracting various numbers
of singular solutions/eigenfunctions, namely nS = 1, nS = 3, nS = 5 and nS = 6, for
the N-N singular direct problem given by Example 1.

nS α (num)
1 Err(α1) α (num)

2 Err(α2) α (num)
3 Err(α3) α (num)

4 Err(α4)
1 −3.76 3.76 − − − − − −
3 −2.37 2.37 2.23 0.27 −1.24 0.26 − −
5 0.19 0.19 2.49 0.01 −1.54 0.04 −2.01 0.01
6 1.97 1.97 2.93 0.43 −1.61 0.11 −2.72 0.72

The aforementioned inconvenience can be overcome by solving the MFS+SST sys-
tem of linear algebraic equations (38) for the perturbed singular direct problem
given by Example 1, in conjunction with one of the regularization methods de-
scribed in the previous section, namely the TRM or SVD, together with the L-curve
criterion for selecting the optimal value for the regularization parameter. Figs. 5(a)
and (b) illustrate the analytical and numerical results for the temperatures on the
wedges EO and OA, respectively, retrieved by employing the TRM, in conjunc-
tion with the L-curve criterion for choosing the optimal regularization parameter,
nS = 6 and various values of noise added into the Dirichlet data T|ΓD = T|AB∪CD, in
the case of Example 1. On comparing Figs. 3, 4 and 5(a)-(b), we can conclude that
the TRM provides very accurate MFS+SST-based numerical solutions to singular
direct problems subjected to noisy boundary data, at the same time having a regu-
larizing/stabilizing effect on the MFS+SST solutions to such problems. The same
conclusion can also be drawn from Figs. 5(c) and (d) which present the results
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shown in Figs. 5(a) and (b) in terms of the normalized errors err(T(x)), x ∈ EO,
and err(T(x)), x ∈ OA, respectively, as defined by formula (55).

The SVD, in conjunction with the L-curve method for selecting the optimal trun-
cation number nopt, also provides very accurate and stable results with respect to
decreasing the level of noise added into the boundary temperature T|ΓD = T|AB∪CD,
for the N-N singular direct problem described in Example 1. The analytical and
SVD-based numerical results for the temperatures T|EO and T|OA are shown in
Figs. 6(a) and (b), respectively, whilst Figs. 6(c) and (d) present the corresponding
normalized errors for the numerical temperatures retrieved on the N-N wedges EO
and OA, respectively.

Table 2 tabulates the relative RMS errors, eT(Γ\ΓD) and eφ (Γ\ΓN), and the corre-
sponding optimal regularization parameters, nopt or λopt, obtained using the LSM,
SVD and TRM, nS = 6 and various amounts of noise added into the temperature
boundary data, for the N-N singular direct problem given by Example 1. From
this table, as well as Figs. 4−6, we can conclude that both the TRM and SVD, in
conjunction with the L-curve method for selecting the corresponding optimal reg-
ularization parameter, have a regularizing/stabilizing character for the combined
MSF and SST scheme, at the same time improving significantly the accuracy of the
numerical solutions, in the case of the N-N singular direct problem given by Exam-
ple 1 subjected to noisy boundary temperature. It should be noted that, in terms of
accuracy, both regularization methods employed in this study have the same effect
on the numerical solutions to perturbed singular direct problems.

The same accurate and stable numerical results have been obtained for the N-D sin-
gular direct problem given by Example 2 when the input Neumann data on ΓN has
been perturbed by additive Gaussian noise. The analytical and numerical results
for the normal heat flux and temperature on the wedges adjacent to the singularity
O, obtained using the MFS+SST scheme, in conjunction with the TRM and SVD,
are illustrated in Figs 7(a) and (b), and Figs 8(a) and (b), respectively. The ef-
fect of the TRM and SVD on the accuracy of the numerical results in comparison
with the LSM is clearly shown in Table 3, which presents the relative RMS errors,
eT(Γ\ΓD) and eφ (Γ\ΓN), and the values for the corresponding optimal regular-
ization parameters, nopt or λopt, obtained using the LSM, SVD and TRM, nS = 6
and various levels of noise added into φ |ΓN, for Example 2.

7.4 Inverse problem subjected to noisy data

Consider now the D-N singular inverse problem given by Example 3 with perturbed
boundary temperature on ΓD. This singular problem is actually more severe than
the singular direct problems with noisy boundary data, in the sense that apart from
the singularity due to the abrupt change in boundary conditions on the side DA (in
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Figure 5: Analytical ( ) and numerical temperatures (a) T|EO, and (b) T|OA, and
the corresponding normalized errors (c) err(T(x)), x ∈ EO, and (d) err(T(x)), x ∈
OA, obtained using the TRM, λopt chosen according to the L-curve criterion, sub-
tracting nS = 6 singular solutions/eigenfunctions and various levels of noise added
into the boundary temperature T|ΓD, namely pT = 1%(· · ·� · · ·), pT = 3%(· · ·• · · ·)
and pT = 5%(· · ·� · · · ), for the N-N singular direct problem given by Example 1.
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Figure 6: Analytical ( ) and numerical temperatures (a) T|EO, and (b) T|OA, and
the corresponding normalized errors (c) err(T(x)), x ∈ EO, and (d) err(T(x)), x ∈
OA, obtained using the SVD, nopt chosen according to the L-curve criterion, sub-
tracting nS = 6 singular solutions/eigenfunctions and various levels of noise added
into the boundary temperature T|ΓD, namely pT = 1%(· · ·� · · ·), pT = 3%(· · ·• · · ·)
and pT = 5%(· · ·� · · · ), for the N-N singular direct problem given by Example 1.
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Table 2: The relative RMS errors, eT(Γ\ΓD) and eφ (Γ\ΓN), and the values for the
corresponding optimal regularization parameters, nopt or λopt, obtained using the
LSM, SVD and TRM, nS = 6 and various levels of noise added into the boundary
temperature T|ΓD, for the N-N singular direct problem given by Example 1.

Method pT|ΓD eT(Γ\ΓD) eφ (Γ\ΓN) nopt
/

λopt

LSM 1% 0.94733×100 0.57505×100 −
3% 0.29226×101 0.17250×101 −
5% 0.48720×101 0.28750×101 −

SVD 1% 0.50002×10−2 0.93940×10−3 14
3% 0.67140×10−2 0.13848×10−2 14
5% 0.88853×10−2 0.32013×10−2 14

TRM 1% 0.43086×10−2 0.29648×10−2 1.0×10−1

3% 0.47218×10−2 0.31985×10−2 1.0×10−1

5% 0.70128×10−2 0.39149×10−2 1.0×10−1

Table 3: The relative RMS errors, eT(Γ \ΓD) and eφ (Γ \ΓN), and the values for
the corresponding optimal regularization parameters, nopt or λopt, obtained using
the LSM, SVD and TRM, nS = 6 and various levels of noise added into the normal
heat flux through the boundary pφ |ΓN, for the N-D singular direct problem given by
Example 2.

Method pφ |ΓN eT(Γ\ΓD) eφ (Γ\ΓN) nopt
/

λopt

LSM 1% 0.99454×10−1 0.34197×100 −
3% 0.29835×100 0.10259×101 −
5% 0.49726×100 0.17098×101 −

SVD 1% 0.97503×10−3 0.84285×10−2 13
3% 0.32706×10−3 0.28098×10−2 13
5% 0.16230×10−2 0.14047×10−1 13

TRM 1% 0.19742×10−3 0.16317×10−2 1.0×10−3

3% 0.57438×10−3 0.53492×10−2 1.0×10−3

5% 0.11378×10−2 0.93756×10−2 1.0×10−3

this case, T|OA and φ |DO are known), see Fig. 2(c), it is also ill-posed since both
the temperature and normal heat flux are prescribed on AB∪CD, whilst neither the
temperature, nor the normal heat flux is prescribed on the boundary BC, see e.g.
Hadamard (1923). Although not presented, it is reported that, as expected, the LSM
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Figure 7: Analytical ( ) and numerical values for (a) the normal heat flux φ |DO,
and (b) the temperature T|OA, obtained using the TRM, λopt chosen according to
the L-curve criterion, subtracting nS = 6 singular solutions/eigenfunctions and var-
ious levels of noise added into the normal heat flux through the boundary φ |ΓN,
namely pφ = 1%(· · ·� · · ·), pφ = 3%(· · · • · · ·) and pφ = 5%(· · ·� · · ·), for the
N-D singular direct problem given by Example 2.

in conjunction with the SST, as well as the TRM and SVD without subtracting the
singular solutions/eigenfunctions, provide us with highly unstable and inaccurate
numerical results for the temperature and flux not only on the wedges adjacent
to the singularity, but also on the under-specified boundary BC. Therefore, both
the SST and regularization are required to stably solve the inverse problem under
investigation.

Figs. 9(a) and (b) present the numerical solutions for the temperature T|DO and
normal heat flux φ |OA, respectively, retrieved by the TRM along with the L-curve
criterion, subtracting nS = 6 singular functions and various levels of noise added
into the boundary temperature T|ΓD, in comparison with their analytical counter-
parts, for the D-N singular inverse problem given by Example 3. It can be seen
from these figures, as well as Figs. 9(c) and (d), which show the associated nor-
malized errors err(T(x)), x∈ DO, and err(φ (x)), x ∈ OA, that the numerical results
for both the temperature T|DO and normal heat flux φ |OA on the wedges adjacent to
the singular point O are in excellent agreement with their corresponding analytical
values, being at the same time exempted from high and unbounded oscillations.

The numerical temperature and normal heat flux on the under-specified boundary
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Figure 8: Analytical ( ) and numerical values for (a) the normal heat flux φ |DO,
and (b) the temperature T|OA, obtained using the SVD, nopt chosen according to the
L-curve criterion, subtracting nS = 6 singular solutions/eigenfunctions and various
levels of noise added into the normal heat flux through the boundary φ |ΓN, namely
pφ = 1%(· · ·� · · ·), pφ = 3%(· · ·• · · ·) and pφ = 5%(· · ·� · · ·), for the N-D singu-
lar direct problem given by Example 2.

BC, obtained using the regularized MFS+SST, nS = 6 and pT ∈ {1%,3%,5%}, are
illustrated in Figs. 10(a) and (b). From these figures we can conclude that the
numerical results for the temperature and normal heat flux on the under-specified
boundary BC are also excellent approximations for their corresponding exact val-
ues and, in addition, they are convergent and stable with respect to decreasing the
amount of noise added into the input boundary temperature T|D.

Accurate, stable and convergent results are also obtained for the unknown temper-
ature T|DO and normal heat flux φ |OA, as well as the unspecified temperature T|BC

and normal heat flux φ |BC, when the MFS+SST, in conjunction with the SVD and
the L-curve criterion, is employed to numerically solve the singular inverse prob-
lem given by Example 3 subjected to perturbed input boundary temperature, as can
be observed form Figs. 11 and 12, respectively. By comparing Figs. 9− 12, it
can be noticed that, although the normalized errors for the numerical temperature
T|BC∪DO and normal heat flux φ |OA∪BC obtained using the TRM and SVD are of
the same order of magnitude, the TRM-based numerical solutions for the temper-
ature and normal heat flux are slightly more inaccurate than those retrieved using
the SVD. This quantitative result is also valid for the relative RMS errors eT(BC)
and eφ (BC) presented together with the values for the corresponding optimal regu-
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Figure 9: Analytical ( ) and numerical results for (a) the temperature T|DO, and
(b) normal heat flux φ |OA, and the corresponding normalized errors (c) err(T (x)),
x∈ DO, and (d) err(φ (x)), x∈ OA, obtained using the TRM, λopt chosen according
to the L-curve criterion, subtracting nS = 6 singular solutions/eigenfunctions and
various levels of noise added into the boundary temperature T|ΓD, namely pT =
1%(· · ·� · · ·), pT = 3%(· · · • · · ·) and pT = 5%(· · ·� · · · ), for the D-N singular
inverse problem given by Example 3.
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Figure 10: Analytical ( ) and numerical results for (a) the temperature T|BC,
and (b) normal heat flux φ |BC, obtained using the TRM, λopt chosen according
to the L-curve criterion, subtracting nS = 6 singular solutions/eigenfunctions and
various levels of noise added into the boundary temperature T|ΓD, namely pT =
1%(· · ·� · · ·), pT = 3%(· · · • · · ·) and pT = 5%(· · ·� · · · ), for the D-N singular
inverse problem given by Example 3.

larization parameters nopt or λopt in Table 4, as well as the numerical flux intensity
factors listed in Table 5.

Overall, from the numerical results presented in this section it can be concluded
that the MFS+SST proposed in Section 5, combined with any of the regulariza-
tion methods described in Section 4, i.e. the TRM and SVD, is a very suitable
method for solving both direct and inverse boundary value problems exhibiting
singularities caused by the presence of sharp corners in the boundary of the so-
lution domain and/or abrupt changes in the boundary conditions, for the isotropic
two-dimensional isotropic steady-state heat conduction problem with noisy bound-
ary data. The numerical temperatures and normal heat fluxes retrieved using this
regularized MFS+SST are very good approximations for their analytical values on
the entire boundary, they are exempted from oscillations in the neighbourhood of
the singular point and there is no need of further mesh refinement in the vicinity of
the singularities.
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Figure 11: Analytical ( ) and numerical results for (a) the temperature T|DO, and
(b) normal heat flux φ |OA, and the corresponding normalized errors (c) err(T (x)),
x ∈ DO, and (d) err(φ (x)), x ∈ OA, obtained using the SVD, nopt chosen according
to the L-curve criterion, subtracting nS = 6 singular solutions/eigenfunctions and
various levels of noise added into the boundary temperature T|ΓD, namely pT =
1%(· · ·� · · ·), pT = 3%(· · · • · · ·) and pT = 5%(· · ·� · · · ), for the D-D singular
inverse problem given by Example 3.
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Figure 12: Analytical ( ) and numerical results for (a) the temperature T|BC,
and (b) normal heat flux φ |BC, obtained using the SVD, nopt chosen accord-
ing to the L-curve criterion, subtracting nS = 6 singular solutions/eigenfunctions
and various levels of noise added into the boundary temperature T|ΓD, namely
pT = 1%(· · ·� · · ·), pT = 3%(· · ·• · · ·) and pT = 5%(· · ·� · · · ), for the D-D singu-
lar inverse problem given by Example 3.

Table 4: The relative RMS errors, eT(BC) and eφ (BC), and the values for the
corresponding optimal regularization parameters, nopt or λopt, obtained using the
LSM, SVD and TRM, nS = 6 and various amounts of noise added into the boundary
temperature T|ΓD, for the D-N singular inverse problem given by Example 3.

Method pT|ΓD eT(BC) eφ (BC) nopt
/

λopt

LSM 1% 0.11655×100 0.25011×100 −
3% 0.33497×100 0.75038×100 −
5% 0.55828×100 0.12506×101 −

SVD 1% 0.89535×10−3 0.10505×10−2 9
3% 0.24584×10−2 0.30050×10−2 9
5% 0.40264×10−2 0.49789×10−2 9

TRM 1% 0.20118×10−2 0.25635×10−2 1.0×10−2

3% 0.45654×10−2 0.55811×10−2 1.0×10−2

5% 0.71598×10−2 0.87984×10−2 1.0×10−2
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8 Conclusions

In this paper, the MFS was applied for solving accurately and stably direct and
inverse problems associated with the two-dimensional isotropic steady-state heat
conduction (Laplace equation) in the presence of boundary singularities and noisy
boundary data. The existence of the boundary singularity was accounted for by sub-
tracting from the original MFS solution the corresponding singular solutions/eigen-
functions, as given by the asymptotic expansion of the solution near the singular
point. Hence, in addition to the original MFS unknowns, new unknowns were in-
troduced, namely the so-called flux intensity factors. Consequently, the original
MFS system was extended by considering a number of additional equations which
equals the number of flux intensity factors introduced and specifically imposes the
type of singularity analysed in the vicinity of the singular point. However, even
in the case when the boundary singularity was taken into account, the numerical
solutions obtained by the direct inversion of the associated MFS linear algebraic
system were found to be inaccurate and unstable, provided that the given boundary
temperature and/or normal heat flux were contaminated by noise. This inconve-
nience was overcome for the direct and inverse problems investigated in this study
by employing either the TRM or SVD. The corresponding optimal regularization
parameter, namely the optimal regularization parameter in the case of the TRM
and the optimal truncation number for the SVD, was chosen according to Hansen’s
L-curve criterion. The proposed MFS+SST, together with the aforementioned reg-
ularization methods, was implemented and analysed for noisy direct and inverse
problems in two-dimensional domains containing an edge crack or a V-notch, as
well as an L-shaped domain.

From the numerical results presented in this study, we can conclude that the ad-
vantages of the proposed method over other well known methods, such as mesh re-
finement in the neighbourhood of the singularity, the use of singular BEMs and/or
FEMs etc., are the high accuracy which can be obtained even when employing a
small number of collocation points and sources, and the simplicity of the com-
putational scheme. A possible drawback of the present method is the difficulty
in extending the method to deal with singularities in three-dimensional problems
since such an extension is not straightforward.
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