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Improving the Ill-conditioning of the Method of Fundamental Solutions for
2D Laplace Equation

Chein-Shan Liu1

Abstract: The method of fundamental solu-
tions (MFS) is a truly meshless numerical method
widely used in the elliptic type boundary value
problems, of which the approximate solution is
expressed as a linear combination of fundamental
solutions and the unknown coefficients are deter-
mined from the boundary conditions by solving a
linear equations system. However, the accuracy
of MFS is severely limited by its ill-conditioning
of the resulting linear equations system. This
paper is motivated by the works of Chen, Wu,
Lee and Chen (2007) and Liu (2007a). The first
paper proved an equivalent relation of the Tre-
fftz method and MFS for circular domain, while
the second proposed a modified Trefftz method
(MTM). We first prove an equivalent relation of
MTM and MFS for arbitrary plane domain. Due
to the well-posedness of MTM, we can alleviate
the ill-conditioning of MFS through a new linear
equations system of the modified MFS (MMFS).
In doing so we can raise the accuracy of MMFS
over four orders more than the original MFS. Nu-
merical examples indicate that the MMFS can
attain highly accurate numerical solutions with
accuracy over the order of 10−10. The present
method is fully not similar to the preconditioning
technique as used to solve the ill-conditioned lin-
ear equations system.

Keyword: Laplace equation, Modified Trefftz
method, Collocation method, Method of funda-
mental solutions, Modified MFS (MMFS).

1 Department of Mechanical & Mechatronic Engineer-
ing, Department of Harbor & River Engineering, Tai-
wan Ocean University, Keelung, Taiwan. E-mail:
csliu@mail.ntou.edu.tw

1 Introduction

For a complicated shape of the problem domain
the standard numerical methods like as FEM and
BEM required a large number of nodes and ele-
ments to match the geometrical shape. In order to
overcome these deficiencies, the meshless numer-
ical methods are proposed, which are meshes free
and only boundary nodes are necessary. Among
these efforts, the meshless local boundary integral
equation (LBIE) method is proposed by Atluri
and Shen (1999), and the meshless local Petrov-
Galerkin (MLPG) method is proposed by Atluri,
Kim and Cho (2002). Both methods use local
weak forms and the integrals can be easily eval-
uated over circles in 2D problems and spheres in
3D problems.

Algorithms based on the discretizations of in-
tegral equations are often convenient for prob-
lems with complicated domains because of the re-
duced complexity of discretization when compare
them with the competing approach such as FEM.
For this reason there were many researchers de-
voted to overcome the difficulties appeared in the
boundary integral equations. At the first, Landwe-
ber and Macagno (1969) have proposed a method
to get rid of the singularity by substracting a func-
tion from the integrand so that the kernel becomes
non-singular, and then adding back an accurate in-
tegration of the function to the integral equation.
This method was modified and referred to as the
non-singular boundary integral method by Hwang
and Huang (1998) and Fan and Young (2002),
or the desingularized boundary integral method
by Chuang (1999). Recently, Liu (2007b) has
developed a meshless regularized integral equa-
tion method for the Laplace equation in arbitrary
plane domain, and Liu (2007c) extended these re-
sults to the Laplace problem defined in a doubly-
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connected region. The basic idea in these two pa-
pers is by using the second-kind Fredholm inte-
gral equations on artificial circles, and using the
degenerate kernels instead of the singular kernels.

Another way to avoid the singularity was pro-
posed by Cao, Schultz and Beck (1991), Lalli
(1997) and Zhang, Yeo, Khoo and Chong (1999),
which moves the computing nodes away from the
boundary and outside the real domain of the prob-
lem. Even, this new approach can overcome the
difficulties of singular integrals, it has another
problem of ill-posedness due to the appearence of
the first-kind Fredholm integral equations. There-
fore, Young (1999) and Young, Chen and Lee
(2005) have applied the desingularized boundary
integral equation method to the potential prob-
lems. In these approaches the source points are
located in the real boundary, and they regularized
the singular integrals by using the Gauss’ flux the-
orem.

The Trefftz method is truly meshless, since it can
be implemented without needing either domain
or surface meshing. However, it is known that
the Trefftz method is severely ill-posed when the
number of bases is increased. In order to over-
come this ill-posedness, Liu (2007a) has proposed
a modified Trefftz method (MTM) by including
the characteristic length of the problem domain
into the bases. Remarkably, the MTM performs
much better than the original Trefftz method. Liu
(2007d) has proposed by using the MTM to calcu-
late the Laplace problems under mixed-boundary
conditions. Because the ill-posedness of the con-
ventional Trefftz method is overcome by the new
method, it can be even applied on the singu-
lar problem with a high accuracy never seen be-
fore. Liu (2007e) has employed the same idea
to modify the direct Trefftz method for the two-
dimensional potential problem, and Liu (2008)
used this idea to develop a highly accurate numer-
ical method to calculate the Laplace equation in
doubly-connected domains.

On the other hand, the method of fundamental so-
lutions (MFS) is also a truly meshless numerical
method popularly used in the elliptic type bound-
ary value problems, of which the approximate so-
lution is expressed as a linear combination of fun-

damental solutions of the considered partial dif-
ferential equation. The MFS is one sort of the
Trefftz method because the approximate solutions
are obtained through a linear combination of ex-
act solutions of the underlying equation. In order
to distinct it from the above mentioned T-Trefftz
method, some authors also called the MFS as the
F-Trefftz method. The coefficients of linear com-
bination as that for the T-Trefftz method are deter-
mined from the boundary conditions. The MFS
is very easy to implement and it avoids the inte-
grations on the boundary. Because the MFS is an
inherently meshless boundary method and has ex-
ponential convergence property for smooth solu-
tions, it has been used extensively for solving the
Laplace equation [Fairweather (1998); Saavedra
(2003)]. The error estimates, stability and conver-
gence analyses of the MFS for the Laplace equa-
tion in disk are carried out by Bogomolny (1985)
and Smyrlis and Karageorghis (2001). The MFS
has a broad application in engineering computa-
tions, for example, Cho, Golberg, Muleshkov and
Li (2004), Hon and Wei (2005), Young, Chen and
Lee (2005), Young and Ruan (2005), and Young,
Tsai, Lin and Chen (2006).

Similarly the MFS has the problem that the
resulting linear equations system may become
highly ill-conditioned when the number of source
points is increased [Golberg (1996)] or when the
distances of source points are increased [Chen
(2006)]. The convergence analysis of MFS has
demonstrated that the approximation improves
when the source radius tends to infinity; see.
e.g., Smyrlis and Karageorghis (2004). Never-
theless, a commonly encountered problem is its
poor accuracy as the source radius is increased to
a large vaule in the numerical computation. The
ill-conditioning of the MFS makes the accurate
approximation by the numerical solutions of the
boundary value problems extremely difficult.

An improved method than the MFS is the so-
called boundary knot method [Chen (2002);
Jin (2006)] or the boundary collocation method
[Chen (2002a); Chen (2002b)]. Instead of the sin-
gular fundamental solutions, these methods em-
ployed the non-singular kernels to evaluate the
homogeneous solutions. However, as pointed out
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by Young, Chen and Lee (2005) the introduction
of non-singular kernels as the radial basis func-
tions may jeopardize the accuracy of solutions as
compared with the MFS.

Tsai, Lin, Young and Atluri (2006) have proposed
a numerical procedure to locate the sources of the
MFS. In their numerical experiments, higher con-
dition numbers and smaller errors are observed
when the sources are located farther in a proper
way. They proposed a practical procedure to lo-
cate the sources in the use of MFS for various
time independent operators. The procedure is de-
veloped through some systematic numerical ex-
periments for relations among the accuracy, con-
dition number, and source positions in different
shapes of computational domains. By numeri-
cal experiments, they found that good accuracy
can be achieved when the condition number ap-
proaches the limit of equation solver.

Then, Young, Chen, Chen and Kao (2007) have
proposed a modified method of fundamental so-
lutions for solving the Laplace problems, which
implements the singular fundamental solutions to
evaluate the solutions, and it can locate the source
points on the real boundary as contrasted to the
conventional MFS. Therefore, the major difficulty
of the coincidence of the source and collocation
points in the conventional MFS is thereby over-
come, and the ill-posed nature of the conventional
MFS disappears.

This paper will re-formulate the MFS in a new set-
ting, different from that in the above cited paper.
A significant improvement of the ill-conditioning
associated with the linear equations system of
MFS is possible. In Section 2 we summarize the
MTM, which takes the characteristic length into
account. In Section 3 we derive a collocation nu-
merical method of the new version. The MFS
is briefly summarized in Section 4, and then in
Section 5 we derive a new relation between the
MTM and the MFS for a circular boundary by us-
ing the concept of degenerate kernel. Those re-
sults are extended in Section 6 to arbitrary plane
domain, and thus we can propose a new method
for a big improvement of the MFS. In Section 7
we use some numerical examples to test and com-
pare the numerical methods of MFS, normalized

MFS (NMFS), modified MFS (MMFS) as well as
the modified Trefftz method (MTM). Finally, we
draw some conclusions in Section 8.

2 A modified Trefftz method

The Trefftz method automatically satisfies the
governing equation and leaves the unknown co-
efficients determined by satisfying the bound-
ary conditions [Kita and Kamiya (1995); Kita,
Kamiya and Iio (1999)]. Recently, Li, Lu, Huang
and Cheng (2006) gave a very comprehensive
comparison of the Trefftz, collocation and other
boundary methods. They concluded that the col-
location Trefftz method is the simplest algorithm
and provides the most accurate solution with the
best numerical stability.

In this paper we begin with a new MTM pro-
posed by Liu (2007a) to solve the Dirichlet prob-
lem under boundary condition specified on a non-
circular boundary as shown in Fig. 1:

Δu = urr +
1
r

ur +
1
r2

uθθ = 0, r < ρ or r > ρ ,

(1)

0 ≤ θ ≤ 2π ,

u(ρ ,θ ) = h(θ ), 0 ≤ θ ≤ 2π , (2)

where h(θ ) is a given function, and r = ρ(θ ) is
a given contour describing the boundary shape
of the interior or exterior domain. The bound-
ary contour ∂Ω of the problem domain Ω in po-
lar coordinates is described by ∂Ω = {(r,θ )|r =
ρ(θ ), 0≤ θ ≤ 2π}. For exterior problem Ω is un-
bounded, and Ω is bounded for interior problem.
The complement of Ω is denoted by Ωc = R

2/Ω.

We replace Eq. (2) by the following boundary
condition:

u(R0,θ ) = f (θ ), 0 ≤ θ ≤ 2π , (3)

where f (θ ) is an unknown function to be deter-
mined, and R0 is a given positive constant, such
that the disk D = {(r,θ )|r≤ R0, 0 ≤ θ ≤ 2π} can
cover Ω for the interior problem, or it is inside in
the complement of Ω, that is, D ∈ Ωc for the ex-
terior problem. Fig. 1 schematically shows a re-
lation between R0 and ρ for the interior problem.
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Figure 1: Schematically displaying the domain
for the interior problem and the relations of R0

and R with respect to the boundary.

Specifically, we can let

R0 ≤ ρmin = min
θ∈[0,2π]

ρ(θ ) (exterior problem),

(4)

R0 ≥ ρmax = max
θ∈[0,2π]

ρ(θ ) (interior problem).

(5)

Thus, we have a Fourier series expansion for
u(r,θ ) satisfying Eqs. (1) and (3):

u(r,θ ) = a0+
∞

∑
k=1

[
ak

(
R0

r

)±k

coskθ +bk

(
R0

r

)±k

sinkθ

]
,

(6)

where

a0 =
1

2π

∫ 2π

0
f (ξ )dξ , (7)

ak =
1
π

∫ 2π

0
f (ξ )coskξdξ , (8)

bk =
1
π

∫ 2π

0
f (ξ ) sinkξdξ . (9)

In Eq. (6) the positive sign before k is used for the
exterior problem, while the minus sign before k is
used for the interior problem.

By imposing the condition (2) on Eq. (6) we ob-
tain

a0 +
∞

∑
k=1

Bk(θ )[ak coskθ +bk sinkθ ] = h(θ ), (10)

where

B(θ ) :=
(

R0

ρ(θ )

)±1

, (11)

in which +1 is for exterior problem, and -1 is for
interior problem.

It is known that for the Laplace equation in the
two-dimensional domain the set{

1, r∓k coskθ , r∓k sinkθ , k = 1,2, . . .
}

(12)

forms the T-complete functions, and the solution
can be expanded by these bases [Kita and Kamiya
(1995); Li, Lu, Huang and Cheng (2006)]:

u(r,θ ) = a0 +
∞

∑
k=1

[akr∓k coskθ +bkr∓k sinkθ ].

(13)

It is simply a direct consequence of Eq. (6) by in-
serting R0 = 1.

In Sections 5 and 6, we will address the ill-
conditioning problem of the Trefftz method,
where one can see that the present method will
lead to a big improvement of the ill-conditioning
problem [Liu (2007d,2008)].

3 The collocation method

The series expansion in Eq. (10) is well suited in
the range of θ ∈ [0,2π ]. Hence, we may have an
admissible function with finite terms

a0 +
m

∑
k=1

Bk(θ )[ak coskθ +bk sinkθ ] = h(θ ),

0 ≤ θ ≤ 2π . (14)

Our next task is to find ak,bk, k = 0,1, . . .,m from
Eq. (14).
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Eq. (14) is imposed at n = 2m+1 different collo-
cated points θi on the interval of 0 ≤ θi ≤ 2π :

a0 +
m

∑
k=1

Bk(θi)[ak coskθi +bk sinkθi] = h(θi).

(15)

Let

θi = iΔθ , i = 1, . . . ,n, (16)

where Δθ = 2π/n. When the index i in Eq. (15)
runs from 1 to n we obtain a linear equations sys-
tem with dimensions n = 2m+1:⎡
⎢⎢⎢⎢⎢⎣

1 B(θ1)cosθ1 B(θ1) sinθ1 . . .
1 B(θ2)cosθ2 B(θ2) sinθ2 . . .
...

...
...

...
1 B(θn−1)cosθn−1 B(θn−1) sinθn−1 . . .
1 B(θn)cosθn B(θn) sinθn . . .

Bm(θ1)cos(mθ1) Bm(θ1) sin(mθ1)
Bm(θ2)cos(mθ2) Bm(θ2) sin(mθ2)

...
...

Bm(θn−1)cos(mθn−1) Bm(θn−1) sin(mθn−1)
Bm(θn)cos(mθn) Bm(θn) sin(mθn)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

b1
...

am

bm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

h(θ1)
h(θ2)

...
h(θn−1)
h(θn)

⎤
⎥⎥⎥⎥⎥⎦ . (17)

We denote the above equation by

Rx = h, (18)

where

x = (a0,a1,b1, · · · ,am,bm)T (19)

is the vector of unknown coefficients. The super-
script T signifies the transpose.

The conjugate gradient method can be used to
solve the following normal equation:

Ax = b, (20)

where

A := RTR, b := RTh. (21)

Inserting the calculated x into Eq. (6) we can cal-
culate u(r,θ ) at any point in the problem domain
by

u(r,θ ) = x1 +
m

∑
k=1

[
x2k

(
R0

r

)±k

coskθ

+ x2k+1

(
R0

r

)±k

sinkθ
]
. (22)

4 The method of fundamental solutions

In the potential theory, it is well known that the
method of fundamental solutions (MFS) can be
used to solve the Laplace problems when a funda-
mental solution is known.

In the MFS the solution of u at the field point
x = (r cosθ , r sinθ ) can be expressed as a linear
combination of fundamental solutions U(x, s j):

u(x) =
n

∑
j=1

c jU(x, s j), s j ∈ Ωc, (23)

where n is the number of source points, c j are
the unknown coefficients, and s j are the source
points. For the Laplace equation we have the fun-
damental solutions

U(x, s j) = lnr j, r j = |x− s j|. (24)

In the practical application of MFS, usually the
source points are uniformly located on a circle
with a radius R as shown in Fig. 1, such that after
imposing the boundary condition (2) on Eq. (23)
we obtain a linear equations system:

Uz = h, (25)

where xi = (ρ(θi)cosθi,ρ(θi) sinθi),
s j = (Rcosθ j,Rsinθ j), and

Ui j = U(xi, s j),

z = (c1, · · · ,cn)T,

h = (h(θ1), · · · ,h(θn))T.

(26)

Then, the conjugate gradient method can be em-
ployed to solve the normal form of Eq. (25) to
determine the coefficients c j.

The above process to find the coefficients is
amount to solve a linear square problem, of which
a detailed description was given by Golberg and
Chen (1996).
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5 The ill-conditioning of linear systems

In order to demonstrate our analysis of the ill-
conditioning problem of both the F- and T-Trefftz
methods, we first limit ourself to a simpler inte-
rior problem with the boundary to be a circle with
a radius a. Then, in Section 6 we will return to
the Laplace interior problem with arbitrary plane
domain.

It is known that the fundamental solution for
Laplace equation in a plane domain can be ex-
pressed by [Chen, Wu, Lee and Chen (2007)]

U(x, s) = lnR−
∞

∑
k=1

1
k

( r
R

)k
cosk(θ −φ ), (27)

where x = (r,θ ) and s = (R,φ ) are the polar co-
ordinates of x and s. Therefore, Eq. (23) can be
expressed as

u(r,θ ) =
n

∑
j=1

c j

[
lnR−

∞

∑
k=1

1
k

( r
R

)k
cosk(θ −θ j)

]
. (28)

Along the above mentioned circle we have

u(a,θ ) =
n

∑
j=1

c j

[
lnR−

∞

∑
k=1

1
k

( a
R

)k
cosk(θ −θ j)

]
. (29)

On the other hand, from Eq. (13) we obtain the
Trefftz representation of u(a,θ ) as follows:

u(a,θ )= a0 +
m

∑
k=1

[akak coskθ +bkak sinkθ ]. (30)

Upon taking 2m + 1 = n, truncating the higher
modes than m in Eq. (29), and equating the above
two equations, we obtain

a0 =
n

∑
j=1

c j lnR, (31)

ak = −
n

∑
j=1

c j
1

kRk cos(kθ j), (32)

bk = −
n

∑
j=1

c j
1

kRk sin(kθ j). (33)

Upon letting

y = (a0,a1,b1, · · · ,am,bm)T, (34)

z = (c1, · · · ,cn)T, (35)

from Eqs. (31)-(33) follows a linear relation be-
tween y and z:

y = K1z, (36)

where

K1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

lnR lnR

− 1
R cosθ1 − 1

R cosθ2

− 1
R sinθ1 − 1

R sinθ2

...
...

− 1
mRm cos(mθ1) − 1

mRm cos(mθ2)

− 1
mRm sin(mθ1) − 1

mRm sin(mθ2)

lnR · · · lnR

− 1
R cosθ3 · · · − 1

R cosθn

− 1
R sinθ3 · · · − 1

R sinθn

... · · · ...

− 1
mRm cos(mθ3) · · · − 1

mRm cos(mθn)

− 1
mRm sin(mθ3) · · · − 1

mRm sin(mθn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(37)

Eq. (36) describes a relation between the Trefftz
method and the MFS first derived by Chen, Wu,
Lee and Chen (2007).

However, the matrix K1 is ill-conditioned as
shown in Fig. 2, where we have fixed m = 17 and
let R run in the interval [1.1,3]. The condition
number used here is defined by

Cond(K1) = ‖K1‖‖K−1
1 ‖. (38)

The norm for K1 is the Frobenius norm. For more
large m and R the ill-condition of K1 is increased
fast as reflected by its condition number.

Now we turn to the relation between the MFS and
the modified Trefftz method (MTM). For the in-
terior problem we compare Eqs. (6) and (13) by
taking the minus sign for the former and the posi-
tive sign for the latter. Thus we have

a0 = a0, ak = Rk
0ak, bk = Rk

0bk, (39)



Improving the Ill-conditioning of the Method 83

1.0 1.5 2.0 2.5 3.0
R

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+9

1E+10

1E+11
C
on
d
it
io
n
 n
u
m
b
er
 

K 1

K 2

Figure 2: Comparing the condition numbers of K1

and K2 for different R.

and come to the following relation by taking R0 =
R:

x = K2z, (40)

where

K2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

lnR lnR

−cosθ1 −cosθ2

−sinθ1 −sinθ2

...
...

− 1
m cos(mθ1) − 1

m cos(mθ2)

− 1
m sin(mθ1) − 1

m sin(mθ2)

lnR · · · lnR

−cosθ3 · · · −cosθn

−sinθ3 · · · −sinθn

... · · · ...

− 1
m cos(mθ3) · · · − 1

m cos(mθn)

− 1
m sin(mθ3) · · · − 1

m sin(mθn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (41)

Similarly, we plot the condition number of K2 in
Fig. 2 for a comparison with K1. It can be seen
that the condition number of K2 is insensitive to
R, and when R increases, the condition number of
K2 is much smaller than that of K1. Contrasting to

K1, K2 is always well-conditioned even for more
large m and R.

The above discussions indicate that when one ob-
tains the coefficients y by the Trefftz method, it
is hard to precisely obtain the coefficients z of the
MFS from Eq. (36) because K1 is ill-conditioned.
Conversely, when one obtains the coefficients x
by the modified Trefftz method, it can precisely
obtain the coefficients z of the MFS from Eq. (40)
because K2 is well-conditioned.

Indeed, we will use the above mentioned circle
to verify that both the linear systems resulting
from the TM and the MFS are ill-conditioned.
Conversely, the linear system resulting from the
MTM is well-conditioned. In order to show this
fact we display the condition numbers for the re-
sulting linear systems of these three methods in
Fig. 3(a), where a = 2 was fixed, and for the TM
one uses R0 = 1, for the MTM one uses R0 = 2,
and for the MFS one uses R = 4. It can be seen
that the condition numbers for the TM and the
MFS are much larger than that of the MTM. Un-
der these situations we may expect that the nu-
merical solution provided by the MTM may be
accurate than those provided by the TM and the
MFS. For definite we consider an exact solution
u = x2 − y2 = r2 cos(2θ ) along a circle with a
radius r = 1. Under the following parameters
m = 15 and n = 31, the numerical errors are plot-
ted in Fig. 3(b), where for the TM one uses R0 = 1,
for the MTM one uses R0 = 2, and for the MFS
one uses R = 8. It can be seen that the numeri-
cal errors for the TM is much larger than that of
the MFS and the MTM. The MFS is accurate than
the TM, but it is still less accurate than the MTM
about three orders. The numerical accuracy pro-
vided by the MTM is almost within the machinery
accuracy.

6 Mitigating the ill-conditioning of MFS

Mathematically speaking, the MFS can be made
more accurate, if one can mitigate its ill-
conditioning of the linear equations system in
Eq. (25). However, there has no such result in
the open literature of MFS.
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Figure 3: Considering an exact solution u = x2 −
y2 with a circular boundary with radius 2, (a) com-
paring the condition numbers of TM, MFS and
MTM, and (b) comparing the numerical errors by
the TM, MFS, NMFS and MTM.

6.1 Normalized fundamental solutions

About the MFS, Cheng (1987) has studied the
Dirichlet boundary condition where the interior
domain is a circle of radius a and the source
points are located uniformly around a disk of ra-
dius R > a. The collocated points are also uni-
formly spaced around the boundary to match the
boundary condition. In this case he has shown that
the error of the numerical solution un is governed
by

max
Ω

|u−un| ≤ c
( a

R

)n
, (42)

where c is a constant. Hence, it can be seen that
the error decreases exponentially with respect to n
and R. For the purpose of numerical calculations
it is better to use a moderate n but tries to take R

as large as possible. Unfortunately, the condition
number of MFS increases like as eR as shown in
Fig. 4(a) by the heavy dashed line, where we are
fixed a = 2 and n = 20 and let R change in the
interval of a < R ≤ 10.
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Figure 4: (a) Comparing the condition numbers
of MFS and NMFS, and (b) plotting the condition
number of NMFS with respect to α .

Inspired by the works of Han and Olson (1987)
and Smyrlis and Karageorghis (2001, 2003), one
may use the following expansion:

u(x) =
n

∑
j=1

c jU(x, s j), s j ∈ Ωc, (43)

U(x, s j) = ln
r j

Rα , r j = |x− s j|. (44)

When α = 0 we can recover to the original MFS.

In Fig. 4(a) we use the solid line to express its
improvement of reducing the condition number,
where we are fixed a = 2, n = 20, α = 1.001 and
let R change in the interval of a < R ≤ 10. When
R = 10, the condition number of MFS is about
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2.3× 109, which is reduced to about 3× 107 for
the normalized MFS (NMFS). In Fig. 4(b) we plot
the variation of condition number with respect to
α , but fixed R = 6 and n = 20. It can be seen that
near α = 1 there exists a minimum. For the nu-
merical example in Fig. 3, we also compare the
numerical error of the NMFS with other methods,
where R = 8, n = 31 and α = 1 were used. Upon
comparing with the MFS, the NMFS can increase
the accuracy about two orders. However, this im-
provement is limited.

6.2 A significant improvement of MFS

Encouraged by a big improvement of the new
modification of the Trefftz method, we may at-
tempt to directly correlate Eqs. (18) and (25). For
this purpose we require to construct a relation as
that Eq. (40) for the circular boundary.

Suppose that Eq. (28) is imposed on the boundary
by

u(ρ(θ ),θ ) =
n

∑
j=1

c j

[
lnR−

∞

∑
k=1

1
k

(ρ
R

)k
cosk(θ −θ j)

]
. (45)

On the other hand, from Eq. (6) we obtain a corre-
sponding modified Trefftz equation on the bound-
ary:

u(ρ(θ ),θ ) =

a0+
∞

∑
k=1

[
ak

(
ρ
R0

)k

coskθ +bk

(
ρ
R0

)k

sinkθ

]
.

(46)

Upon taking 2m + 1 = n, truncating the higher
modes than m in Eqs. (45) and (46), and equating
the above two equations, we obtain the following
sufficient conditions:

a0 =
n

∑
j=1

c j lnR, (47)

ak = −
n

∑
j=1

c j
Rk

0

kRk cos(kθ j), (48)

bk = −
n

∑
j=1

c j
Rk

0

kRk sin(kθ j). (49)

Defining x as that in Eq. (19) and z as that in
Eq. (36), from Eqs. (47)-(49) it follows a definite
relation between x and z:

x = Kz, (50)

where

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

lnR lnR

−R0
R cosθ1 −R0

R cosθ2

−R0
R sinθ1 −R0

R sinθ2

...
...

− Rm
0

mRm cos(mθ1) − Rm
0

mRm cos(mθ2)

− Rm
0

mRm sin(mθ1) − Rm
0

mRm sin(mθ2)

lnR · · · lnR

−R0
R cosθ3 · · · −R0

R cosθn

−R0
R sinθ3 · · · −R0

R sinθn

... · · · ...

− Rm
0

mRm cos(mθ3) · · · − Rm
0

mRm cos(mθn)

− Rm
0

mRm sin(mθ3) · · · − Rm
0

mRm sin(mθn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(51)

It should be stressed that the relation (50) is inde-
pendent of the boundary shape, and when R0 = R
the matrix K is reduced to K2.

We need to mention that in the paper by Chen,
Wu, Lee and Chen (2007) the relation of Trefftz
method and the MFS has been set up for a unit
circle, which means that R0 = 1 in Eq. (51). Now,
we extend this relation to arbitrary domain with a
characteristic length R0 determined by the physi-
cal problem.

Now, utilizing Eqs. (18) and (50) we obtain a very
important formulation:

Umz = h, (52)

Um := RK, (53)

where

R =
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⎡
⎢⎢⎢⎢⎢⎣

1 B(θ1)cosθ1 B(θ1) sinθ1 . . .
1 B(θ2)cosθ2 B(θ2) sinθ2 . . .
...

...
...

...
1 B(θn−1)cosθn−1 B(θn−1) sinθn−1 . . .

1 B(θn)cosθn B(θn) sinθn . . .

Bm(θ1)cos(mθ1) Bm(θ1) sin(mθ1)
Bm(θ2)cos(mθ2) Bm(θ2) sin(mθ2)

...
...

Bm(θn−1)cos(mθn−1) Bm(θn−1) sin(mθn−1)
Bm(θn)cos(mθn) Bm(θn) sin(mθn)

⎤
⎥⎥⎥⎥⎥⎦

(54)

The boundary shape influences the solution of z
through the term B = ρ(θ )/R0 appeared in the
matrix R. Upon comparing with Eq. (25), we call
the present Um a modification of U. Although U is
ill-conditioning, the new Um will be proved to be
well-conditioning by the following numerical ex-
amples. In the present formulation, the R-circle
is no more required to be far from the bound-
ary as suggested in the literature of MFS, and in
practice we can take R = R0 for simplicity. We
should stress that the present modification is not
of the preconditioning type for the MFS, because
Eq. (52) cannot be obtained from Eq. (25) by sim-
ply multiplying a preconditioning matrix on both
the sides.

We find that K can be decomposed as

K = TRTθ , (55)

where

TR =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

lnR 0 0 0 · · · 0 0

0 −R0
R 0 0 · · · 0 0

0 0 −R0
R 0 · · · 0 0

...
...

... · · · ...
...

...

0 0 0 0 · · · − Rm
0

mRm 0

0 0 0 0 · · · 0 − Rm
0

mRm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(56)

Tθ =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

cosθ1 cosθ2 cosθ3 · · · cosθn

sinθ1 sinθ2 sinθ3 · · · sinθn

...
...

... · · · ...

cos(mθ1) cos(mθ2) cos(mθ3) · · · cos(mθn)

sin(mθ1) sin(mθ2) sin(mθ3) · · · sin(mθn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(57)

Furthermore, due to the orthogonal property of Tθ

Tθ TT
θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

n 0 0 · · · 0

0 n
2 0 · · · 0

0 0 n
2 · · · 0

...
...

... · · · ...

0 0 0 · · · n
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (58)

we can prove that

det (Tθ ) =
nm+ 1

2

2m . (59)

Therefore, we can prove that K is invertible (see
Appendix A), and in view of Eq. (56) by inserting
R = R0, K is also well-conditioned, such that in
the calculation of z by Eq. (52) we suggest to use

z = K−1(RT R)−1RT h. (60)

In Appendix A we have derived an explicit form
of K−1. After z is solving from the above equa-
tion, we can insert it into Eq. (23) to calculate the
solution of u.

In order to distinct these two methods in this sec-
tion from the method of fundamental solutions
(MFS) in Section 4, we will call the method in
Section 6.1 the normalized MFS (NMFS), while
the method in Section 6.2 the modified MFS
(MMFS). Also for the shorthand of notations we
will use TM to denote the Trefftz method and the
MTM to denote the modified Trefftz method.

7 Numerical examples

In this section we will apply the new method of
MMFS on interior problems.
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7.1 Example 1 (interior problem)

In this example we consider a complex epitro-
choid boundary shape

ρ(θ ) =
√

(a+b)2 +1−2(a+b)cos(aθ/b),
(61)

x(θ ) = ρ cosθ , y(θ ) = ρ sinθ (62)

with a = 4 and b = 1. For the purpose of compar-
ison we also consider an exact solution:

u(x,y) = x2 −y2. (63)

The exact boundary data can be obtained by in-
serting Eqs. (61) and (62) into the above equation.

Before computing this example we use it to
demonstrate the improvement by using the
MMFS. In Fig. 5 we compare the condition num-
bers of the linear systems resulting from the use
of MFS, NMFS and MMFS on this example, from
which it can be seen that the MMFS has the small-
est condition number than the other two methods.
When the condition numbers of MFS and NMFS
increase fast with respect to n, the condition num-
ber of MMFS increases slowly.
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Figure 5: For Example 1 we comparing the con-
dition numbers of MFS, NMFS and MMFS with
different n.

The contour shape of this example is plotted in the
inset of Fig. 6. In the numerical computations we
have fixed R = R0 = 6 and m = 25 for the MTM
and MMFS. In Fig. 6(a) we compare the numeri-
cal solutions with the exact solution along a circle

with radius r = 3, while the numerical errors are
plotted in Fig. 6(b) with the heavy-dashed line for
the MTM and the solid line for the MMFS. When
we apply the MFS to this example we adjust the
best parameters with R = 20 and n = 30, whose
error is plotted in Fig. 6(b) with the dashed line.
For the NMFS we use R = 25, n = 40 and α = 1,
whose error is plotted in Fig. 6(b) with the dashed-
dotted line. The accuracy of the MMFS is bet-
ter than the NMFS and then than the MFS, and is
competitive with the MTM. For all these methods
very accurate numerical solutions are obtained
with absolute errors smaller than 10−8. This ex-
ample reveals the improvements over the MFS by
using the NMFS about three orders and further by
using the MMFS about five orders.
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Figure 6: For Example 1, (a) comparing the nu-
merical solutions with exact solution, and (b)
comparing the numerical errors by the MFS,
NMFS, MMFS and MTM.
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7.2 Example 2 (interior problem)

In this example we consider the same epitrochoid
boundary shape as given by Eqs. (61) and (62)
with a = 4 and b = 1, but with a more complex
solution given by

u(x,y) = ex cosy. (64)

In the numerical computations we have fixed R =
R0 = 6 and m = 25 for the MTM and MMFS. In
Fig. 7(a) we compare the numerical solutions with
the exact solution along a circle with radius r = 3,
while the numerical errors are plotted in Fig. 7(b)
with the solid line for the MTM and the heavy-
dashed-line for the MMFS. When we apply the
MFS to this example we adjust the best parame-
ters with R = 7 and n = 120, whose error is plotted
in Fig. 7(b) with the dashed line. For the NMFS
we use R = 7, n = 150 and α = 1.1, whose error
is plotted in Fig. 7(b) with the dashed-dotted line.
The accuracy of the MTM and MMFS is much
better than the NMFS and then than the MFS. This
example shows again a big improvement over the
MFS and NMFS by using the MMFS.

7.3 Example 3 (interior problem)

In this example we consider the exact solution
given by Eq. (64) again, but with the following
boundary:

ρ(θ ) =

√
cos(2θ )+

√
2− sin2(2θ ). (65)

This example has been computed by Ramachan-
dran (2002) and Chen, Cho and Golberg (2006)
through the MFS together with the singular value
decomposition (SVD) and the Gaussian elimina-
tion methods to solve the resulting linear sys-
tem. As they are, we place 40 collocation and
source points on the boundary and the artificial
circle with a source radius R = R0. In Table 1 we
compare the absolute maximum errors along the
boundary calculated by the MTM and the MMFS
with the results provided by Chen, Cho and Gol-
berg (2006). Under moderate radius, the present
solutions with R = 2,3,5 are better than that cal-
culated by Chen, Cho and Golberg (2006).

0 1 2 3 4 5 6 7

-10

0

10

20

u
 (r

,
)

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E-9

1.0E-8

1.0E-7

1.0E-6

N
u
m
er
ic
al
 E
rr
or

0 1 2 3 4 5 6 7

(a)

(b)

M FS

NM FS

M TM
M M FS

Figure 7: For Example 2, (a) comparing the nu-
merical solutions with exact solution, and (b)
comparing the numerical errors by the MFS,
NMFS, MMFS and MTM.

Table 1: For Example 3 we comparing the max-
imum errors of the present methods with those
in Chen, Cho and Golberg (2006) under different
source radius

R SVD MTM MMFS
2 2.00×10−4 2.55×10−9 3.32×10−5

3 1.17×10−9 5.57×10−12 1.08×10−10

5 7.54×10−10 2.70×10−11 2.71×10−11

8 2.26×10−9 1.85×10−8 1.85×10−8

10 4.45×10−10 2.09×10−7 2.09×10−7

20 1.02×10−7 2.24×10−7 2.47×10−7

In order to compare the present results with that
calculated by Ramachandran (2002), we define
the L2 error by

Error(uL2) =
N

∑
i=1

|u(i)−un(i)|2, (66)

where u and un denotes the exact and numerical
solution, respectively, and N is the total number of
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calculated points on the boundary. In Table 2 we
compare the Error(uL2) calculated by the MTM
and the MMFS with the results from Ramachan-
dran (2002). It can be seen that our results are
much better than that calculated by Ramachan-
dran (2002).

Table 2: For Example 3 we comparing the L2

errors of the present methods with those in Ra-
machandran (2002) under different source radius

R SVD MTM MMFS
1.75 7.81×10−5 2.14×10−14 3.10×10−5

2 9.79×10−9 4.10×10−17 2.39×10−9

3 1.42×10−9 1.41×10−22 2.65×10−20

5 3.99×10−7 1.64×10−20 1.64×10−20

10 2.42×10−2 1.37×10−12 1.37×10−12

20 4.56×10−1 1.56×10−12 1.63×10−12

7.4 Example 4 (exterior problem)

In this example we consider a complex epitro-
choid boundary shape given by Eqs. (61) and (62)
with a = 3 and b = 1. The analytical solution is
given by

u(x,y) = exp

(
x

x2 +y2

)
cos

(
y

x2 +y2

)
. (67)

The exact boundary data can be easily derived by
inserting Eqs. (61) and (62) into the above equa-
tion.

We have applied the MTM to this example by us-
ing R0 = 2 and m = 50. In Fig. 8(a) we compare
the exact solution with numerical solution along
a circle with radius 10. It can be seen that the
numerical solution is almost coincident with the
exact solution. The numerical error is plotted in
Fig. 8(b) with the solid line, of which we can see
that the new method has absolute error smaller
than 10−10. The MFS cannot be applied to this
problem. For the NMFS we use R = 2.99, n = 20
and α = −500, whose error is plotted in Fig. 8(b)
with the dashed line. The accuracy of the MTM
is much better than the NMFS.
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Figure 8: For Example 4, (a) comparing the nu-
merical solutions with exact solution, and (b)
comparing the numerical errors by the NMFS and
MTM.

8 Conclusions

In this paper we have proposed a new method
to modify the MFS to calculate the solutions of
Laplace problems in arbitrary plane domains. In
practice, the MTM is a modified Trefftz method
by taking the domain’s characteristic length R0

into account. With the aid of MTM, we have con-
structed an exact relation between the MFS and
MTM, which brings out a new linear equations
system (60) to solve the unknown coefficients z
for the MMFS. In doing so, we can largely allevi-
ate the ill-conditioning of MFS, and as a byprod-
uct we can raise the accuracy over four orders
more than the original MFS. Numerical examples
indicate that both the MTM and MMFS can attain
highly accurate numerical solutions with the ac-
curacy about in the orders from 10−10 to 10−18.
For the MFS there is still a problem to suitably
choose the source radius. When it is theoreti-
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cally proved that larger source radius results in
worse condition number and better accuracy, how
to making a trade-off between these two tenden-
cies is still a problem. Conversely, for the MMFS
we can take R = R0 to be the maximum radius of
the boundary, and there is no problem to choose
the source radius. The basic idea employed here
may be extended to other type elliptic problems.
However, this will be a main issue of our forth-
coming works.

Acknowledgement: Taiwan’s National Sci-
ence Council project NSC-96-2221-E-019-027-
MY3 granted to the author is highly appreciated.

Appendix A

In this appendix we derive the inverse of K. First
we note that Tθ can be decomposed as

Tθ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

...
...

... · · · ...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

1√
2

1√
2

· · · 1√
2

cosθ1 cosθ2 cosθ3 · · · cosθn

sinθ1 sinθ2 sinθ3 · · · sinθn

...
...

... · · · ...

cos(mθ1) cos(mθ2) cos(mθ3) · · · cos(mθn)

sin(mθ1) sin(mθ2) sin(mθ3) · · · sin(mθn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(A1)

Denote the last matrix by B,

B =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

1√
2

1√
2

· · · 1√
2

cosθ1 cosθ2 cosθ3 · · · cosθn

sinθ1 sinθ2 sinθ3 · · · sinθn

...
...

... · · · ...

cos(mθ1) cos(mθ2) cos(mθ3) · · · cos(mθn)

sin(mθ1) sin(mθ2) sin(mθ3) · · · sin(mθn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(A2)

and due to the orthogonal property of B we have

BBT =
n
2

In, (A3)

where n = 2m+1.

Let

C =
√

2√
n

B, (A4)

and then by Eq. (A3) we have

CCT = In. (A5)

From this equation it follows that

C−1 = CT =
√

2√
n

BT . (A6)

In terms of C, we have

Tθ =
√

n√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

...
...

... · · · ...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

C, (A7)

and thus

T−1
θ =

√
2√
n

C−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

...
...

... · · · ...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
2
n

BT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

...
...

... · · · ...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A8)

Inserting Eq. (A2) for B into the above equation
we obtain

T−1
θ =

2
n
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⎡
⎢⎢⎢⎢⎢⎣

1
2 cosθ1 sinθ1 · · · cos(mθ1) sin(mθ1)
1
2 cosθ2 sinθ2 · · · cos(mθ2) sin(mθ2)
...

...
... · · · ...

...
1
2 cosθn sinθn · · · cos(mθn) sin(mθn)

⎤
⎥⎥⎥⎥⎥⎦

(A9)

Then, from Eq. (55) we can derive the inverse of
K by

K−1 =
2
n⎡

⎢⎢⎢⎢⎢⎣

1
2 lnR − R

R0
cosθ1 − R

R0
sinθ1 · · ·

1
2 lnR − R

R0
cosθ2 − R

R0
sinθ2 · · ·

...
...

... · · ·
1

2 lnR − R
R0

cosθn − R
R0

sinθn · · ·
−mRm

Rm
0

cos(mθ1) −mRm

Rm
0

sin(mθ1)

−mRm

Rm
0

cos(mθ2) −mRm

Rm
0

sin(mθ2)
...

...

−mRm

Rm
0

cos(mθn) −mRm

Rm
0

sin(mθn)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A10)
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