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Degenerate scale problem arising from curved rigid line inclusion
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SUMMARY

This paper investigates the degenerate scale problem arising from the curved rigid line inclusion. The
problem is modeled by a continuous distribution of the body force along the prospective site of the curve.
In the first step, the problem is formulated on the configuration of the degenerate scale, and an integral
equation is suggested. Later, after using a modification for the coordinates, the problem is solved in a
modified scale or in the normal scale. From the solution of the integral equation in the normal scale,
the degenerate scale will be obtained immediately. Finally, several numerical examples are given. From
computed results it is proved that the degenerate scale depends only on the configuration of the curve
and does not depend on the initial normal scale used. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The boundary integral equation (BIE) was widely used in elasticity, and the fundamental for BIE
could be found from [1–3]. Heritage and early history of the boundary element method was
summarized more recently [4]. However, some difficult points for the BIE remain.

The degenerate scale problem in BIE is a particular problem in plane elasticity as well as in
Laplace equation. It is typical to study the degenerate scale problem through the exterior problem
of plane elasticity. Assume that there is an infinite plate with an elliptic hole. We also assume
the vanishing displacements on the elliptic contour, a non-trivial solution for relevant BIE exists
when a particular scale is reached. A non-trivial solution for the homogenous integral equation
means that the relevant non-homogenous integral equation must have a non-unique solution. From
the viewpoint of engineering, the non-unique solution is an illogical one. In the usual BIE, the
homogeneous equations in the Dirichlet problem for the exterior region and the interior region are
the same. Thus, the degenerate scale problem also exists in the interior problem.

The degenerate scale problem was investigated in the ring area [5, 6], plane elasticity [7–9],
and Laplace equation [10]. A numerical technique for evaluating the degenerate scale was also
suggested by using two sets of particular solution in the geometry of normal scale [7]. For the
elliptic hole case, a closed-form solution has been obtained by using the complex variable and
the elliptic coordinate [8]. From the viewpoint of linear algebra, the problem also originates from
rank deficiency in the influence matrices. By using a particular solution in the normal scale, the
degenerate scale can be evaluated numerically [10].
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The perspective on the degenerate problems was provided [11]. These problems include (1) the
degenerate boundary, (2) the degenerate scale, (3) the spurious eigensolution, and (4) the fictitious
frequency, in the boundary integral formulation. All the degenerate problems originate from the
rank deficiency in the influence matrix. The current status of the formulations of the dual boundary
element methods was provided [12]. In the paper, the regularizations of the hypersingular integrals
and the divergent series were emphasized.

It is seen that the elliptic notch is reduced to a rigid line when the minor half-axis of the ellipse
becomes zero. That is to say, the degenerate scale problem exists in the straight rigid line case. It is
also easy to image that the degenerate scale problem also exists in the curved rigid line problem.

In this paper, the degenerate scale problem in the curved rigid line inclusion in plane elasticity
is investigated. The problem is modeled by a continuous distribution of the body force along the
prospective site of the curve. In the first step, the problem is formulated on the configuration
of the degenerate scale, and an integral equation is suggested. Later, after using a modification
for the used coordinates, the problem is solved in a modified scale or in the normal scale. From
the solution for the integral equation in the normal scale, the degenerate scale will be obtained
immediately. Finally, several numerical examples are given. It is proved from the computed results
that the degenerate scale depends only on the configuration of the curve and does not depend on
the initial normal scale used.

2. ANALYSIS FOR THE DEGENERATE SCALE PROBLEM ARISING FROM THE
CURVED RIGID LINE INCLUSION

The complex variable function method plays an important role in plane elasticity. Fundamental of
this method is introduced. In the method, the stresses (�x ,�y,�xy), the resultant forces (X,Y ), and
the displacements (u,v) are expressed in terms of complex potentials �(z) and �(z) such that [13]

�x +�y = 4Re�(z)

�y−�x +2i�xy = 2[z̄�′(z)+�(z)] (1)

f =−Y + iX = �(z)+z�′(z)+�(z) (2)

2G(u+ iv) = ��(z)−z�′(z)−�(z) (3)

where �(z)=�′(z), �(z)=�′(z), a bar over a function denotes the conjugated value for the
function, G is the shear modulus of elasticity, �=(3−�)/(1+�) in the plane stress problem,
�=3−4� in the plane strain problem, and � is the Poisson ratio.

Except for the physical quantities mentioned above, from Equations (2) and (3) two derivatives
in the specified direction are introduced as follows [14]:

J1(z) = d

dz
{−Y + iX}=�(z)+�(z)+ dz̄

dz
(z�′(z)+�(z))=N+ iT (4)

J2(z) = 2G
d

dz
{u+ iv}=��(z)−�(z)− dz̄

dz
(z�′(z)+�(z))=(�+1)�(z)− J1 (5)

It is easy to verify that J1=N+ iT denotes the normal and tangential tractions along the segment
z, z+dz (Figure 1). Secondly, the J1 and J2 values depend not only on the position of the point
‘z’, but also on the direction of the segment ‘dz̄/dz’.

Formulation of the integral equation for the degenerate scale problem in the case of the curved
rigid line is introduced below. If the concentrated forces (Px , Py) is applied at the point z= t
(Figure 1(a)), the relevant complex potentials are defined as [13]

�(z)=F ln(z− t), �(z)=−�F̄ ln(z− t)− Ft̄

z− t
(6)
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(a) (b)

Figure 1. (a) A pair of concentrated forces (Px , Py) applied at the point z= t and (b) a curved rigid
line with distributed body force.

where

F=− Px + iPy
2�(�+1)

(7)

After letting F=−h′(t)dt/2� (h′(t)=dh(t)/dt) and taking integration along the curve L
(Figure 1(b)), we will obtain the following complex potentials [15]:

�(z) = − 1

2�

∫
L
ln(z− t)h′(t)dt, �′(z)= 1

2�

∫
L

h′(t)dt
t−z

, �′′(z)= 1

2�

∫
L

h′(t)dt
(t−z)2

(8)

�(z) = �

2�

∫
L
ln(z− t)h′(t)dt̄− 1

2�

∫
L

t̄h′(t)dt
t−z

�′(z) = − �

2�

∫
L

h′(t)dt̄
t−z

− 1

2�

∫
L

t̄h′(t)dt
(t−z)2

(9)

Substituting Equations (8) and (9) into Equations (2) and (3) yields

2G(u(z)+ iv(z)) = − �

2�

∫
L
(ln(t−z)+ ln(t−z))h′(t)dt+ 1

2�

∫
L

(t−z)h′(t)dt̄
t̄− z̄

(10)

f (z) = (�+1)�(z)−2G(u(z)+ iv(z)) (11)

The contour increment for some functions plays an important role in the analysis. When a point
‘z’ is going around a large circle in an anti-clockwise direction, the increment of a function, say
�(z), is defined as {�(z)}in. From this definition and Equations (2), (3), (8), and (9), we have

{�(z)}in = −i
∫
L
h′(t)dt, {�(z)}in=�i

∫
L
h′(t)dt̄ (12)

{ f }in = −i(�+1)
∫
L
h′(t)dt, {2G(u+ iv)}in=0 (13)

The first part of Equation (13) reveals that there may be some loadings applied on the curved rigid
line. The second part of Equation (13) reveals that the single-valued condition of the displacements
is satisfied automatically.

Letting z→ t+0 or z→ t−0 (Figure 1(b)), in either case from Equation (10) we will find

2G(u(t0)+ iv(t0))
± =−�

�

∫
L
ln |t− t0|h′(t)dt+ 1

2�

∫
L

(t− t0)h′(t)dt̄
t̄− t̄0

(14)
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In what follows, we define the jump value for a function �(z) along a curve by {�(t)} j =
�+(t)−�−(t) (t ∈L), where �+(t) (or �−(t)) denotes the limit value of �(z) from upper side
z→ t+ (or lower side z→ t−), respectively. From the property of the logarithmic function and
Equation (8) we find

{�(t0)} j = ih(t0) (t0∈L) (15)

where

h(t0)=
∫ t0

tA
h′(t)dt (t0∈L) (16)

In addition, from Equation (14) we find

2G(u(t0)+ iv(t0)) j =0 (t0∈L) (17)

Further, from Equations (11), (15), and (17), we have

(−i f (t0)) j =(X (t0)+ iY (t0)) j =(�+1)h(t0) (t0∈L) (18)

From Equations (17) and (18), we see that the displacements are continuous when a point is
moving across the curved line, and the resultant forces are discontinuous in the same condition.
From Equation (18) it follows that

h′(t0)= 1

�+1

d{−i f (t0)} j
dt0

=− i{J1(t0)} j
�+1

(t0∈L) (19)

Equation (19) reveals that there is a body force distribution along the curve L (Figure 1(b)).
Alternatively, the following properties u+

i =u−
i and p+

i �= p−
i hold along the curve L .

As in the usual BIE for the exterior problem, we can impose the following condition in the
degenerate scale problem of the curved rigid line:

(u(t0)+ iv(t0))
± =0 (t0∈L) (20)

Thus, from Equations (14) and (20), we will find the following integral equation for the degenerate
scale problem:

2�
∫
L
ln |t− t0|h′(t)dt−

∫
L

(t− t0)h′(t)dt̄
t̄− t̄0

=0 (21)

In conclusion, a particular size for the curved rigid line is sought under the condition that
Equation (21) has a non-trivial solution (h′(t) �=0). Therefore, it is preferable to catalog the studied
problem in the range of the degenerate scale problem. Alternatively, in the curved rigid line case
there is also a degenerate scale problem.

The solution technique for the integral equation for the degenerate scale problem is introduced
below. Without loss of the generality, the problem is solved for a parabolic configuration (Figure 2):

y=�a

(
1− x2

a2

)
(�-constant, |x |�a) (22)

In the first step, Equation (21) is formulated on the degenerate scale using the coordinates
o∗x∗y∗ (Figure 2(a)). In this case, Equation (21) can be rewritten as

2�
∫
Ld

ln |t− t0|h′(t)dt−
∫
Ld

(t− t0)h′(t)dt̄
t̄− t̄0

=0 (in the coordinates o∗x∗y∗) (23)

In Equation (23), the integration is performed on the curve Ld in the coordinates o∗x∗y∗
(Figure 2(a)).
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(a) (b)

Figure 2. (a) A parabolic rigid line in a degenerate scale and (b) a parabolic rigid line in a normal scale.

Similar to the degenerate scale problem in plane elasticity or in Laplace equation [7, 8, 10], one
may introduce a transform of coordinates as follows (Figure 2):

x∗ =	x, y∗ =	y (24)

Simply because ln |t− t0|in o∗x∗y∗ = ln |t− t0|in oxy+ ln	, substituting Equation (24) into (23)
yields

2�
∫
L
ln |t− t0|h′(t)dt−

∫
L

(t− t0)h′(t)dt̄
t̄− t̄0

= 1




∫
L
h′(t)dt (in the coordinates oxy) (25)

where

1



=−2� ln	 (26)

In Equation (25), the integration is performed on the curve in the coordinates oxy (Figure 2(b)).
Let ∫

L
h′(t)dt=c1+ ic2 (27)

Equation (25) can be rewritten as

2�
∫
L
ln |t− t0|h′(t)dt−

∫
L

(t− t0)h′(t)dt̄
t̄− t̄0

= 1



(c1+ ic2) (in the coordinates oxy) (28)

It is assumed that the configuration in the coordinates oxy is in a normal scale. Thus, from Equation
(28) we have a definite solution for h′(t).

On the other hand, one may introduce two fundamental solutions. When a particular function
is assumed in the right-hand term of Equation (28), the relevant solution for the density function
h′(t) is called the fundamental solution.

If the right-hand term in Equation (28) is changed by 1 and h′(t) by h′
1(t), we have

2�
∫
L
ln |t− t0|h′

1(t)dt−
∫
L

(t− t0)h′
1(t)dt̄

t̄− t̄0
=1 (in the coordinates oxy) (29)

The solution from integral equation (29), or h′
1(t), is called the first fundamental solution. The

relevant resultant force is expressed as∫
L
h′
1(t)dt=b11+ ib12 (30)

Similarly, if the right-hand term in Equation (28) is changed by i and h′(t) by h′
2(t), we have

2�
∫
L
ln |t− t0|h′

2(t)dt−
∫
L

(t− t0)h′
2(t)dt̄

t̄− t̄0
= i (in the coordinates oxy) (31)
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The solution from integral equation (31), or h′
2(t), is called the second fundamental solution. The

relevant resultant force is expressed as∫
L
h′
2(t)dt=b21+ ib22 (32)

From Equations (28), (29), and (31), we see that the investigated density function h′(t) can be
expressed through two fundamental solutions, which is as follows:

h′(t)= 1



(c1h

′
1(t)+c2h

′
2(t)) (32a)

Simply because the solution of Equation (28) (or h′(t)) is a linear superposition of the two
fundamental solutions (or h′

1(t),h
′
2(t)), from Equations (27) to (32) we obtain

c1



(b11+ ib12)+ c2



(b21+ ib22)=c1+ ic2 (33)

From the condition that c1 and c2 have a non-trivial solution, from Equation (33) we have

(
−b11)(
−b22)−b12b21=0 (34)

Generally, Equation (34) has two roots 
=
1 and 
=
2. Once the value 
 is evaluated, from
Equation (26) we can obtain

	=exp

(
− 1

2
�

)
(35)

Finally, the degenerate scale, for example, is obtained as follows (Figure 2):

ad =	a (36)

3. NUMERICAL SOLUTION AND EXAMPLES

In the numerical solution, the curve is divided into N divisions, from p1 p2, p2 p3, . . . , p j p j+1, . . . ,

pN pN+1 (Figure 3). In computation N =120 is used. The observation points t0 in Equations (25),
(28), (29), or (31) are assumed at the middle point of divisions and are denoted by q1,q2, . . . ,qN.
Simply because of singular behavior for the function h′(t) at the rigid line tip, on the first division
we can assume

h′(t)|t=t (s1) =(c1+d1)

√
2s1

h1+s1
(for |s1|<h1 along division p1 p2) (37)

The similar expression is used for the last division pN pN+1. For the intermediate divisions, it is
assumed that

h′(t)|t=t (s j ) =(c j + id j ) (along the divisions p j p j+1, j =2,3, . . . ,N−1) (38)

The following integration is useful in the numerical solution:∫ d

−d

√
2d ln |s|√
d+s

ds=4
√
2d{√2(lnb−1)+ ln(1+√

2)} with d=b2 (39)

Therefore, after discretization for Equations (25), (28) (29), or (31), those integral equations
can be solved numerically with the unknowns c j ,d j ( j=1,2, . . . ,N ). After the algebraic equation
for c j ,d j ( j =1,2, . . . ,N ) is solved, other computations are straightforward. Three numerical
examples are presented below.
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Figure 3. Discretization in the numerical solution of integral equation for the curved rigid line.

Table I. Degenerate scales ad1= f1(�) and ad2= f2(�) for a parabolic curve rigid line when using different
initial normal scales for the dimension ‘a’ (a=1, 10, and 20) (see Equation (40) and Figure 2).

� 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Using the initial normal scale a=1
f1(�) 2.64094 2.60975 2.52438 2.40400 2.26836 2.13161 2.00161 1.88170 1.77269 1.67414 1.58514
f2(�) 1.51505 1.51353 1.50875 1.50028 1.48788 1.47172 1.45226 1.43013 1.40598 1.38042 1.35395

Using the initial normal scale a=10
f1(�) 2.63953 2.60835 2.52304 2.40273 2.26716 2.13049 2.00056 1.88072 1.77176 1.67326 1.58431
f2(�) 1.51424 1.51273 1.50795 1.49948 1.48709 1.47093 1.45148 1.42937 1.40524 1.37969 1.35323

Using the initial normal scale a=20
f1(�) 2.63910 2.60793 2.52264 2.40234 2.26680 2.13015 2.00024 1.88042 1.77148 1.67300 1.58406
f2(�) 1.51400 1.51248 1.50771 1.49924 1.48685 1.47070 1.45125 1.42914 1.40501 1.37947 1.35302

Example 3.1: In the first example, the curved rigid line has the configuration shown by
Equation (22). As mentioned previously, there are two degenerate scales. Those degenerate scales
are expressed as

ad1= f1(�), ad2= f2(�) (40)

Three cases, a=1, 10, and 20, for the normal scale are chosen in computation. The relevant
computed results for f1(�) and f2(�) for �=0,0.1,0.2, . . . ,1.0 are listed in Table I. From the
tabulated results, we see that the final computed results for the degenerate scale do not depend
on the initial input value for the normal scale (a=1, 10, and 20). In addition, for �=0 case,
or for a straight rigid line, the relevant degenerate scales are ad1=2exp(1/2�)=2.64039 and
ad2=2exp(−1/2�)=1.51493 (using �=1.8) [8]. From Table I, we see that the computed results
are sufficiently accurate.

Example 3.2: In the second example, an arc rigid line is under consideration (Figure 4(a)). As
mentioned previously, there are two degenerate scales. Those degenerate scales are expressed in
two forms

Rd1= f1(	), Rd2= f2(	) (41)

or

	Rd1=	 f1(	)=g1(	), 	Rd2=	 f2(	)=g2(	) (42)

In computation, we choose the normal scale R=0.5; the relevant computed results for f1(	) and
f2(	) and g1(	) and g2(	) for 	=�/12, 2�/12, . . . ,11�/12 are listed in Table II. In addition,
for 	=�/12 case, the arc crack has a slight difference with a line rigid line, and we have
g1(	)|	=�/12=2.61840, g2(	)|	=�/12=1.53051. This result is close to that for the straight rigid
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R β2

a

a

β

(a) (b)

Figure 4. (a) An arc rigid line in a normal scale and (b) a kinked rigid line in a normal scale.

Table II. Degenerate scales Rd1= f1(	), Rd2= f2(	), 	Rd1=g1(	), 	Rd2=g2(	) for an arc rigid line
(see Equations (41) and (42) and Figure 4(a)).

	 �/12 2�/12 3�/12 4�/12 5�/12 6�/12 7�/12 8�/12 9/12 10�/12 11�/12

f1(	) 10.0016 4.88068 3.15230 2.29496 1.80023 1.49365 1.29698 1.16927 1.08710 1.03647 1.00905
f2(	) 5.84613 3.00680 2.09714 1.66859 1.43050 1.28490 1.18898 1.12117 1.07054 1.03295 1.00882
g1(	) 2.61840 2.55552 2.47581 2.40328 2.35650 2.34622 2.37684 2.44892 2.56142 2.71346 2.90585
g2(	) 1.53051 1.57435 1.64709 1.74735 1.87251 2.01832 2.17893 2.34817 2.52239 2.70426 2.90520

Table III. Degenerate scales ad1= f1(	) and ad2= f2(	) for a kinked rigid line
(see Equation (43) and Figure 4(b)).

	 0 �/12 2�/12 3�/12 4�/12 5�/12 6�/12 7�/12 8�/12 9/12 10�/12

f1(	) 2.64094 2.63133 2.60444 2.56563 2.52250 2.48358 2.45737 2.45206 2.50085 2.87789 3.39206
f2(	) 1.51505 1.52657 1.56172 1.62237 1.71184 1.83519 1.99982 2.21643 2.47599 2.53874 2.65453

line case, or the case of �=0 in Example 3.1, where the relevant degenerate scales are 2.64039
and 1.51493, respectively.

Example 3.3: In the third example, the curved rigid line has the kinked configuration with a
kinked angle from 	=0, �/12, 2�/12 3�/12, . . . ,10�/12 (Figure 4(b)). As before, the computed
degenerate scales are expressed as

ad1= f1(	), ad2= f2(	) (43)

In computation, we choose the normal scale a=1. The relevant computed results for f1(	) and
f2(	) for 	=0, �/12, 2�/12, 3�/12, . . . ,10�/12 are tabulated in Table III.

4. CONCLUSIONS

In order to solve the degenerate scale problem, the relevant integral equation is solved in the
normal scale [7, 10]. This technique is also efficient in the degenerate scale problem of the curved
rigid line. Researchers may concern about how to choose the normal scale in computation. This
problem is easy to deal with. In fact, after the Fortran program is completed, one can input
some initial normal scale, for example, a=0.8 in Example 3.1. If we do not satisfy the results
from computation, we simply change the input value for ‘a’, for example, a=1, 10, and 20 in
Example 3.1. The computation is finished once the computed results for ad1 and ad2 have a large
difference from the input value of ‘a’. It was found that one set of computation takes only 15 s in
all examples cited previously.
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