
Comput Mech
DOI 10.1007/s00466-010-0480-6

ORIGINAL PAPER

An alternating iterative MFS algorithm for the Cauchy problem
for the modified Helmholtz equation

Liviu Marin

Received: 8 December 2009 / Accepted: 29 January 2010
© Springer-Verlag 2010

Abstract We investigate the numerical implementation of
the alternating iterative algorithm originally proposed by
Kozlov et al. (Comput Math Math Phys 31:45–52) for the
Cauchy problem associated with the two-dimensional mod-
ified Helmholtz equation using a meshless method. The
two mixed, well-posed and direct problems corresponding
to every iteration of the numerical procedure are solved
using the method of fundamental solutions (MFS), in con-
junction with the Tikhonov regularization method. For each
direct problem considered, the optimal value of the regu-
larization parameter is chosen according to the generalized
cross-validation criterion. An efficient regularizing stopping
criterion which ceases the iterative procedure at the point
where the accumulation of noise becomes dominant and the
errors in predicting the exact solutions increase, is also pre-
sented. The iterative MFS algorithm is tested for Cauchy
problems for the two-dimensional modified Helmholtz oper-
ator to confirm the numerical convergence, stability and
accuracy of the method.
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1 Introduction

Helmholtz-type equations are often used to describe the
vibration of a structure [1], the acoustic cavity problem [3],
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the radiation wave [19], the scattering of a wave [17], the
problem of heat conduction in fins [28], the Debye-Hückel
theory [7], the linearization of the Poisson–Boltzmann equa-
tion [29], etc. In many engineering problems, either the
boundary conditions are often incomplete, or the geometry
of the domain under investigation is not completely known,
or the so-called wave number, κ > 0, that characterises
the Helmholtz-type equation is unknown. These are inverse
problems and it is well known that they are generally ill-
posed, in the sense that the existence, uniqueness and stability
of their solutions are not always guaranteed [16]. A classical
example of an inverse boundary value problem associated
with Helmholtz-type equations is represented by the Cauchy
problem. In this case, boundary conditions are incomplete, in
the sense that a part of the boundary of the solution domain
is over-specified by prescribing on it both the primary field
and its normal derivative, while the remaining boundary is
under-specified and boundary conditions on the latter bound-
ary have to be determined. The uniqueness of the Cauchy
problem is guaranteed without the necessity of removing the
eigenvalues for the Laplacian operator, as it happens in the
case of direct problems for the Helmholtz equation (see [4]).
However, the Cauchy problem suffers from the non-existence
and instability of the solution.

Over the last decade, many theoretical and numerical stud-
ies have been devoted to the Cauchy problem associated
with Helmholtz-type equations. DeLillo et al. [8] detected
the source of acoustical noise inside the cabin of a midsize
aircraft from measurements of the acoustical pressure field
inside the cabin by solving a linear Fredholm integral equa-
tion of the first kind and they extended this study to three-
dimensional problems (see [9]). The alternating iterative
algorithm of Kozlov et al. [27], which reduces the Cauchy
problem to solving a sequence of well-posed boundary value
problems, was implemented numerically using the boundary
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element method (BEM) for the two-dimensional modified
Helmholtz equation by Marin et al. [41]. Marin et al. [42]
used the conjugate gradient method (CGM), in conjunction
with the BEM, in order to solve the same inverse problem
for both the Helmholtz and the modified Helmholtz equa-
tions. Four regularization methods for the stable solution of
the Cauchy problem associated with Helmholtz-type equa-
tions, namely the Tikhonov regularization, the singular value
decomposition (SVD), the CGM and the alternating itera-
tive algorithm of [27], were compared by Marin et al. [43].
The Landweber–Fridman method and the BEM were used
to solve the Cauchy problem for two-dimensional Helm-
holtz and modified Helmholtz equations with L2-boundary
data by Marin et al. [44]. Jin and Zheng [24] solved some
inverse boundary value problems for the Helmholtz equation
using the boundary knot method and a SVD regularization
and they also extended this method to some inverse prob-
lems associated with the inhomogeneous Helmholtz equa-
tion [25]. The numerical solution for the Cauchy problem
for two- and three-dimensional Helmholtz-type equations by
employing the method of fundamental solutions (MFS), in
conjunction with the Tikhonov regularization method and
SVD, was investigated by Marin and Lesnic [39] and Marin
[33], and Jin and Zheng [26], respectively. Some spectral
regularization methods and a modified Tikhonov regulariza-
tion method to stabilize the Cauchy problem for the Helm-
holtz equation at fixed frequency were proposed by Xiong
and Fu [60], while Jin and Marin [23] employed the plane
wave method and the SVD to solve stably the same prob-
lem. Wei et al. [59], Qin and Wen [51] and Qin et al. [52]
reduced the Cauchy problem associated with Helmholtz-type
equations to a moment problem and also provided an error
estimate and convergence analysis for the latter. Qin and
Wei [48,50] proposed two regularization methods, namely
a modified Tikhonov regularization method and a truncation
method, for the stable approximate solution to the Cauchy
problem for the Helmholtz equation and they also presented
convergence and stability results under suitable choices of
the regularization parameter. The quasi-reversibility method
and a truncation method were used to solve the Cauchy
problem for the modified Helmholtz equation in a rectan-
gular domain by Qin and Wei [49], who also analysed the
stability and convergence of the proposed regularization
procedures. Shi et al. [53] addressed a fourth-order modi-
fied method for the solution of the Cauchy problem asso-
ciated with the modified Helmholtz equation in an infinite
strip domain and they also provided convergence estimates
under the suitable choices of regularization parameters and
the a priori assumption on the bounds of the exact solu-
tion. Recently, the Cauchy problem for two-dimensional
Helmholtz-type equations with L2-boundary data was
approached by combining the BEM with the minimal error
method by Marin [36].

The MFS is a simple but powerful technique that has been
used to obtain highly accurate numerical approximations of
solutions to linear partial differential equations. Like the
BEM, the MFS is applicable when a fundamental solution
of the governing PDE is explicitly known. Since its intro-
duction as a numerical method in the late 1970s by Mathon
and Johnston [45], it has been successfully applied to a large
variety of physical problems, an account of which may be
found in the survey papers [6,12–14].

The ease of implementation of the MFS and its low com-
putational cost make it an ideal candidate for inverse prob-
lems as well. For these reasons, the MFS, in conjunction
with various regularization methods (e.g. the Tikhonov reg-
ularization method, Morozov’s discrepancy principle, singu-
lar value decomposition), have been used increasingly over
the last decade for the numerical solution of inverse prob-
lems. For example, the Cauchy problem associated with the
heat conduction equation [10,21,22,30,35,37,54,57,58,61],
linear elasticity [32,38], steady-state heat conduction in
functionally graded materials (FGMs) [33], Helmholtz-type
equations [26,34,39], Stokes problems [5], the biharmon-
ic equation [40] etc. have been successfully addressed by
employing the MFS.

To our knowledge, the MFS has not, as yet, been applied
iteratively to the numerical solution of the Cauchy problem
associated with the modified Helmholtz equation. Due to this
fact and also encouraged by the recent results obtained by
Marin [37], who implemented the alternating iterative algo-
rithm of Kozlov et al. [27], in conjunction with the MFS,
for two-dimensional harmonic Cauchy problems, we decided
to extend, in this paper, the work of Marin [37] to Cau-
chy problems for the modified Helmholtz operator in two
dimensions. At every iteration, two mixed, well-posed and
direct problems are solved using the MFS, in conjunction
with the Tikhonov regularization method. For each of the
aforementioned direct problems, the optimal value of the reg-
ularization parameter is chosen according to the generalized
cross-validation (GCV) criterion. An efficient regularizing
stopping criterion which ceases the iterative procedure at the
point where the accumulation of noise becomes dominant
and the errors in predicting the exact solutions increase, is
also presented. The iterative MFS algorithm is then tested
for Cauchy problems for the modified Helmholtz operator
in two-dimensional simply and doubly connected domains
with smooth boundaries.

2 Mathematical formulation

Consider an open bounded domain � ⊂ R
d , with d the

dimension of the space where the problem is posed, usu-
ally d ∈ {1, 2, 3}, and assume that � is bounded by a curve
∂�, such that ∂� = �1 ∪ �2, where �1 �= ∅, �2 �= ∅ and
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�1 ∩�2 = ∅. In this work, in order to refer to a specific phys-
ical problem, we shall consider Helmholtz-type equations in
the context of heat transfer problems (see [28]). We therefore
assume that the temperature field, u(x), satisfies the modified
Helmholtz equation in a bounded Lipschitz domain � ⊂ R

d ,
namely(

∇2 − 2
κ

)
u(x) = 0, x = (x1, . . . , xd) ∈ �, (1)

where κ > 0, ∇2 ≡
∑d

i=1
∂i ∂i and ∂i ≡ ∂/∂xi . The par-

tial differential equation (2) models the heat conduction
in a fin where u is the dimensionless local fin tempera-
ture, κ2 = h

/ (̃
k δ f

)
, h is the surface heat transfer coef-

ficient [W/ (
m2 K

)], k̃ is the thermal conductivity of the fin
[W/

(m K)] and δ f is the half-fin thickness [m].
We now let n(x) = (n1(x), . . . , nd(x))T be the outward

normal vector at x ∈ ∂� and q(x) ≡ ∇u(x) · n(x) be the
normal heat flux at a point x ∈ ∂�. In the direct problem for-
mulation, the knowledge of the constant κ, the location, shape
and size of the entire boundary ∂�, the temperature and/or the
normal heat flux on the entire boundary ∂� gives the corre-
sponding Dirichlet, Neumann, or mixed boundary conditions
which enable one to determine the unknown boundary con-
ditions, as well as the temperature distribution in the solution
domain.

A different and more interesting situation arises when it
is possible to measure both the temperature and the normal
heat flux on a part of the boundary ∂�, say �1, and this
leads to the mathematical formulation of the Cauchy prob-
lem consisting of the partial differential equations (2) and the
boundary conditions

u(x) = ũ(x), q(x) = q̃(x), x ∈ �1, (2)

where ũ ∈ H1/2(�1) and q̃ ∈ (
H1/2(�1)

)∗
are prescribed

temperature and normal heat flux, respectively. In the above
formulation of the boundary conditions (2), it can be seen
that the boundary �1 is over-specified by prescribing both the
temperature u

∣∣
�1

= ũ and the normal heat flux q
∣∣
�1

= q̃,
while the boundary �1 is under-specified since both the tem-
perature u

∣∣
�2

and the normal heat flux q
∣∣
�2

are unknown and
have to be determined. We also assume that data are chosen
such that there exists a solution to this Cauchy problem. This
solution is unique according to the so-called unique continu-
ation properties for elliptic equations. A necessary condition
for the Cauchy problem given by Eqs. (1)–(2) to be identifi-
able is that meas(�1) ≥ meas(�2).

This inverse problem is much more difficult to solve both
analytically and numerically than the direct problem, since
the solution does not satisfy the general conditions of well-
posedness. Although the problem may have a unique solu-
tion, it is well known that this solution is unstable with respect
to small perturbations into the data on �1, see Hadamard

[16]. Thus the problem is ill-posed and we cannot use a
direct approach, such as the least-squares method, in order
to solve the system of linear equations which arises from the
discretisation of the partial differential equation (1) and the
boundary conditions (2). Therefore, regularization methods
are required in order to solve accurately the inverse problem
(1)–(2) for the modified Helmholtz equation.

3 Description of the algorithm

Kozlov et al. [27] proposed the following iterative algorithm
for the simultaneous reconstruction of the unknown temper-
ature u

∣∣
�2

and normal heat flux q
∣∣
�2

on the under-specified
boundary:

Step 1 (i) If k = 1 then specify an initial boundary tem-
perature guess on �2, namely u(2k−1) ∈ H1/2(�2).

(ii) If k > 1 then solve the following mixed, well-posed,
direct problem:

(
∇2 − 2

κ

)
u(2k−1)(x) = 0, x ∈ �, (3a)

u(2k−1)(x) = ũ(x), x ∈ �1, (3b)

q(2k−1)(x) = q(2k−2)(x), x ∈ �2, (3c)

to determine u(2k−1)(x), x ∈ �, and u(2k−1)(x), x ∈
�2

Step 2 Having constructed the approximation u(2k−1), k ≥1,
the following mixed, well-posed, direct problem:(
∇2 − 2

κ

)
u(2k)(x) = 0, x ∈ �, (4a)

q(2k)(x) = q̃(x), x ∈ �1, (4b)

u(2k)(x) = u(2k−1)(x), x ∈ �2, (4c)

is solved to determine u(2k)(x), x ∈ �, and q(2k)(x) ≡
∇u(2k)(x) · n(x), x ∈ �2.

Step 3 Repeat steps 1 and 2 until a prescribed stopping cri-
terion is satisfied.

Let H1(�) be the Sobolev space and H1/2(∂�) be the
space of traces on ∂� corresponding to H1(�), see e.g.
Lions and Magenes [31]. We denote by H1/2(�i ) the space
of functions from H1/2(∂�) that are bounded on �i and by(
H1/2(�i )

)∗
the dual space of H1/2(�i ), for i = 1, 2. Kozlov

et al. [27] showed that if ∂� is smooth, ũ ∈ H1/2(�1) and
q̃ ∈ (

H1/2(�1)
)∗

, then the alternating iterative algorithm
based on steps 1 − 3 produces two sequences of approxi-
mate solutions

{
u(2k−1)

}
k≥1 and

{
u(2k)

}
k≥1 which both con-

verge in H1(�) to the solution u of the Cauchy problem
(1)–(2) for any initial guess u(1) ∈ H1/2(�2), provided that

123



Comput Mech

a solution to this Cauchy problem exists. Furthermore, the
alternating iterative algorithm has a regularizing character.
Also, the same conclusion holds if at the step 1 one speci-
fies an initial guess for the unknown normal heat flux on �2,
i.e. q(1) ∈ (

H1/2(�2)
)∗

, instead of an initial guess for the
temperature, u(1) ∈ H1/2(�2), and we modify steps 1 and 2
accordingly.

4 Method of fundamental solutions

4.1 MFS approximation

The fundamental solution of the modified Helmholtz equa-
tion in two-dimensions is given by, see Fairweather and
Karageorghis [12], and Marin and Lesnic [39]

G(x, ξ ) = 1

2π
K0 (κ ‖x − ξ‖) , x ∈ �, ξ ∈ R

2 \ �,

(5)

where ξ is a singularity (or source point) and K0 is the mod-
ified Bessel function of the second kind of order zero. The
main idea of the MFS consists of approximating the temper-
ature in the solution domain by a linear combination of fun-
damental solutions with respect to M singularities ξ ( j), j =
1, . . . , M , in the form

u(x) ≈ uM (c, ξ ; x) =
M∑

j=1

c j G(x, ξ ( j)), x ∈ �, (6)

where c = [c1, . . . , cM ]T and ξ ∈ R
2M is a vector containing

the coordinates of the singularities ξ ( j), j = 1, . . . , M .
On taking into account the definitions of normal heat

flux and the fundamental solution for the two-dimensional
modified Helmholtz equation (5) then the normal heat flux,
through a curve defined by the outward unit normal vector
n(x), can be approximated on the boundary ∂� by

q(x) ≈ qM (c, ξ ; x) =
M∑

j=1

c j H(x, ξ ( j)), x ∈ ∂�, (7)

where

H(x, ξ) = − κ

2π
K1 (κ ‖x − ξ‖)

[
x − ξ

‖x − ξ‖ · n(x)

]
,

(8)
x ∈ �, ξ ∈ R

2 \ �.

Here K1 is the modified Bessel function of the second kind
of order one.

Next, we select the N1 MFS collocation points
{
x(i)

}N1

i=1
on the boundary �1 and the N2 MFS collocation points{
x(i)

}N1+N2

i=N1+1 on the boundary �2, such that the total number
of MFS collocation points used to discretise the boundary
∂� of the solution domain � is given by N = N1 + N2.

According to the MFS approximations (6) and (7), the
discretised versions of the the boundary value problems
(3a)–(3c) and (4a)–(4c) recast as

A(1) c(2k−1) = b(2k−1), k > 1, (9)

and

A(2) c(2k) = b(2k), k ≥ 1, (10)

respectively. Here the components of the MFS matrices and
right-hand side vectors corresponding to Eqs. (9) and (10)
are given by

A(1)
i j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G(x(i), ξ ( j)), i = 1, . . . , N1,

j = 1, . . . , M,

H(x(i), ξ ( j)), i = N1 + 1, . . . , N1 + N2,

j = 1, . . . , M,

(11a)

b(2k−1)
i =

⎧⎨
⎩

ũ(x(i)), i = 1, . . . , N1,

q(2k−2)(x(i)), i = N1 + 1, . . . , N1 + N2,

(11b)

and

A(2)
i j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H(x(i), ξ ( j)), i = 1, . . . , N1,

j = 1, . . . , M,

G(x(i), ξ ( j)), i = N1 + 1, . . . , N1 + N2,

j = 1, . . . , M,

(12a)

b(2k)
i =

⎧⎨
⎩

q̃(x(i)), i = 1, . . . , N1,

u(2k−1)(x(i)), i = N1 + 1, . . . , N1 + N2,

(12b)

respectively.
Each of Eqs. (9) and (10) represents a system of N lin-

ear algebraic equations with M unknowns, namely the MFS

coefficients c(2k−1) =
[
c(2k−1)

1 , . . . , c(2k−1)
M

]T
and c(2k) =[

c(2k)
1 , . . . , c(2k)

M

]T
, respectively. It should be noted that in

order to uniquely determine the solutions c(2k−1) ∈ R
M and

c(2k) ∈ R
M to the systems of linear algebraic equations (9)

and (10), respectively, the number N of MFS boundary col-
location points on the boundary ∂� and the number M of sin-
gularities must satisfy the inequality M ≤ N . However, the
systems of linear algebraic equations (9) and (10) cannot be
solved by direct methods, such as the least-squares method,
since such an approach would produce a highly unstable solu-
tion for noisy Cauchy data on �1.

4.2 MFS boundary collocation points and singularities

In order to implement the MFS, the location of the singu-
larities has to be determined and this is usually achieved by
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considering either the static or the dynamic approach. In the
static approach, the singularities are pre-assigned and kept
fixed throughout the solution process, whilst in the dynamic
approach, the singularities and the unknown coefficients
are determined simultaneously during the solution process
(see Fairweather and Karageorghis [12]). Thus the dynamic
approach transforms the inverse problem into a more difficult
nonlinear ill-posed problem which is also computationally
much more expensive. The advantages and disadvantages
of the MFS with respect to the location of the fictitious
sources are described at length in Heise [20] and Burgess and
Maharejin [2].

Recently, Gorzelańczyk and Kołodziej [15] thoroughly
investigated the performance of the MFS with respect to the
shape of the pseudo-boundary on which the source points
are situated, proving that, for the same number of bound-
ary collocation points and sources, more accurate results are
obtained if the shape of the pseudo-boundary is similar to that
of the boundary of the solution domain. Therefore, we have
decided to employ the static approach in our computations,
at the same time accounting for the findings of Gorzelańczyk
and Kołodziej [15].

5 Regularization

It is well-known that the MFS discretisation matrices A(i),
i = 1, 2, are severely ill-conditioned. The accurate and stable
solutions of Eqs. (9) and (10) are very important for obtain-
ing physically meaningful numerical results. Regularization
methods are among the most popular and successful meth-
ods for solving stably and accurately ill-conditioned matrix
equations (see Hansen [18] and Tikhonov and Arsenin [55]).
In this section we present a classical regularization proce-
dure for obtaining stable solutions to the systems of linear
algebraic equations (9) and (10), as well as details regarding
the optimal choice of the regularization parameter.

5.1 Tikhonov regularization method

Consider the following system of linear algebraic equations

A c = b, (13)

where N ≥ M , A ∈ R
N×M , c ∈ R

M and b ∈ R
N . Note

that Eq. (13) may describe each of the MFS systems of linear
equations (9) and (10), provided that

A = A(1), c = c(2k−1), b = b(2k−1), k > 1, (14)

and

A = A(2), c = c(2k), b = b(2k), k ≥ 1, (15)

respectively. The Tikhonov zeroth-order regularized solution
to the generically written system of linear algebraic equa-
tions (13) is sought as (see [55])

cλ : Fλ (cλ) = min
c∈RM

Fλ (c), (16)

where Fλ represents the Tikhonov zeroth-order regulariza-
tion functional given by (see [55])

Fλ(·) : R
M −→ [0,∞),

Fλ (c) = ‖A c − b‖2 + λ2 ‖c‖2 ,
(17)

and λ > 0 is the regularization parameter to be prescribed.
Formally, the Tikhonov regularized solution cλ of the prob-
lem (13) is given as the solution of the normal equation(

ATA + λ2IM

)
c = AT b, (18)

where IM ∈ R
M×M is the identity matrix. More precisely,

cλ can be expressed as

cλ = A† b, A† ≡
(

ATA + λ2IM

)−1
AT. (19)

If the Cauchy data on the over-specified boundary �1 are
noisy and hence the right-hand side of Eq. (13) is corrupted
by noise, i.e.
∥∥bε − b

∥∥ ≤ ε, (20)

then the following stability estimate holds, see [11],

‖cε
λ − cλ‖ ≤ ε

λ
, (21)

where cλ is given by Eq. (19).
To summarize, the Tikhonov regularization method solves

a constrained minimization problem using a smoothness
norm in order to provide a stable solution which fits the data
and also has a minimum structure.

5.2 Selection of the optimal regularization parameter

The performance of regularization methods depends cru-
cially on the suitable choice of the regularization parameter.
One extensively studied criterion is the discrepancy principle
(see e.g. Morozov [46]). Although this criterion is mathemat-
ically rigorous, it requires a reliable estimation of the amount
of noise added into the data which may not be available in
practical problems. Heuristic approaches are preferable in the
case when no a priori information about the noise is avail-
able. For the Tikhonov zeroth-order regularization method,
several heuristical approaches have been proposed, includ-
ing the L-curve criterion (see Hansen [18]), and the gen-
eralized cross-validation (GCV) (see Wahba [56]). In this
paper, we employ the GCV criterion to determine the optimal
regularization parameter, λopt, for the Tikhonov zeroth-order
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regularization method, namely

λopt : G (
λopt

) = min
λ>0

G (λ) . (22)

Here

G (·) : (0,∞) −→ [0,∞),

G (λ) =
∥∥A cλ − bε

∥∥2

[
trace

(
IN − A A†

)]2 ,
(23)

where cλ is given by Eq. (19) with b = bε.

6 Numerical results and discussion

In this section, we present the performance of the proposed
numerical method, namely the alternating iterative MFS
described in Sects. 3 and 4. To do so, we solve numerically
the Cauchy geometric problem given by Eqs. (1)–(2) for the
two-dimensional modified Helmholtz equation in the geom-
etries described below.

6.1 Examples

For the examples investigated in this paper, we consider the
following analytical solution for the temperature

u(an)(x) = exp (a1 x1 + a2 x2) , x = (x1, x2) ∈ �, (24a)

and the corresponding analytical normal heat flux

q(an)(x) = [a1 n1(x) + a2 n2(x)] u(an)(x),
(24b)

x = (x1, x2) ∈ ∂�.

The geometries considered herein and constants involved
in the analytical solutions (24a) and (24b) are given by:

Example 1 (Simply connected domain with a smooth bound-
ary) We consider the unit disk

� =
{

x = (x1, x2) ∈ R
2
∣∣ ρ(x) < r

}
,

where ρ(x) =
√

x2
1 + x2

2 is the radial polar coordinate
of x and r = 1.0. Here κ = 1.0, a1 = 0.5, a2 =√

2
κ −a2

1 = √
3
/

2, �1 = {
x ∈ ∂�

∣∣ π /2 ≤ θ(x) ≤ 2 π
}

and �2 = {
x ∈ ∂�

∣∣ 0 < θ(x) < π /2
}
, where θ(x) is the

angular polar coordinate of x.

Example 2 (Doubly connected domain with a smooth bound-
ary) We consider the annular domain

� =
{

x = (x1, x2) ∈ R
2
∣∣ rint < ρ(x) < rout

}
,

where rint = 0.5 and rout = 1.0. Here κ = 2.0, a1 = 1.0,

a2 = −
√

2
κ −a2

1 = −√
3, �1 = {

x ∈ ∂�
∣∣ ρ(x) = rout

}
and �2 = {

x ∈ ∂�
∣∣ ρ(x) = rint

}
.

The inverse problems investigated in this paper have been
solved using the uniform distribution of both the MFS bound-
ary collocation points x(i), i = 1, . . . , N , and the singulari-
ties ξ ( j), j = 1, . . . , M . Furthermore, the numbers of MFS
boundary collocation points N1 and N2 corresponding to the
over- and under-specified boundaries �1 and �2, respectively,
the number of singularities M and the distance dS between
the physical boundary ∂� and the pseudo-boundary ∂�S on
which the singularities are situated, were set to:

(i) N1/3 = N2 = N/4 ∈ {10, 20, 30}, M = N and
dS = 3.0 for Example 1;

(ii) N1/2 = N2 = N/3 ∈ {20, 30, 40}, M = N1 +
N2/2 = 5N/6, while dS = 0.5 and dS = 2.0 for the
inner and outer boundaries, respectively, for Exam-
ple 2.

6.2 Initial guess

An arbitrary real valued function u(1) ∈ H1/2(�2) may be
specified as an initial guess for the unknown temperature on
the under-specified boundary �2. In order to improve the rate
of convergence of the iterative algorithm, one may choose
a real valued function which ensures the continuity of the
boundary temperature at the common endpoints of the over-
and under-specified boundaries �1 and �2, respectively, and
which is also linear with respect to the angular polar coordi-
nate θ (see e.g. Marin et al. [41]). More precisely, for Exam-
ple 1 the following initial guess for the unknown temperature
on �2 may be chosen:

u(1)(x) = θ(x(2)) − θ(x)

θ(x(2)) − θ(x(1))
u(an)(x(1))

+ θ(x) − θ(x(1))

θ(x(2)) − θ(x(1))
u(an)(x(2)), x ∈ �2, (25)

where x(1) and x(2) are the common endpoints of the over-
and under-specified boundaries, i.e. �1 ∩ �2 = {

x(1), x(2)
}
.

However, in the general situation when the over- and under-
specified boundaries have no common points, as is the case
of Example 2, one cannot use the procedure described above.
Therefore, in this case, the initial guess for the unknown tem-
perature on the under-specified boundary �2 is chosen as

u(1)(x) = 0, x ∈ �2. (26)

In this study, we have decided to use the initial guess
(26). In this way, the most general situations regarding the
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geometry of the solution domain are accounted for and the
robustness of the alternating iterative algorithm with respect
to the initial guess for the unknown temperature on �2 is also
tested.

6.3 Convergence of the algorithm

If Ni MFS collocation points,
{
x(�)

}Ni

�=1, are considered on
the boundary �i ⊂ ∂� then the root mean square error
(RMS error) associated with the real valued function f (·) :
�i −→ R on �i is defined by

RMS�i( f ) =
√√√√ 1

Ni

Ni∑
�=1

f (x(�))2, (27)

In order to investigate the convergence of the algorithm,
at every iteration, k ≥ 1, we evaluate the following accuracy
errors corresponding to the temperature and normal heat flux
on the under-specified boundary, �2, which are defined as
relative RMS errors, i.e.

eu(k) = RMS�2(u
(2k−1) − u(an))

RMS�2(u
(an))

= ‖u(2k−1)|�2 − u(an)|�2‖2

‖u(an)|�2‖2
, k ≥ 1, (28a)

and

eq(k) = RMS�2(q
(2k) − q(an))

RMS�2(q
(an))

= ‖q(2k)|�2 − q(an)|�2‖2

‖q(an)|�2‖2
, k ≥ 1, (28b)

where u(2k−1) and q(2k) are the temperature and normal heat
flux on the boundary �2 retrieved after k iterations by solv-
ing the well-posed, mixed, direct, boundary value problems
(3a)–(3c) and (4a)–(4c), respectively. The error in predicting
the temperature inside the solution domain, �, may also be
evaluated, but it has an evolution similar to that of the errors
eu and eq given by Eqs. (28a) and (28b), respectively, and
hence this is not pursued herein.

Figure 1a and b display the accuracy errors eu and eq as
functions of the number of iterations, k, obtained using exact
Cauchy data on the over-specified boundary, �1, and various
numbers of MFS collocation points, for the inverse problems
given by Examples 1 and 2, respectively. It can be seen from
these figures that both errors eu and eq decrease even after
a large numbers of iterations, e.g. k = 3000 and k = 1000
for Examples 1 and 2, respectively, and as expected eu < eq

for all MFS discretisations employed, i.e. normal heat fluxes
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Fig. 1 The accuracy errors, eu and eq, as functions of the number
of iterations, k, obtained using exact Cauchy data on �1 and various
numbers of MFS boundary collocation points, for a Example 1, and b
Example 2

are more inaccurate than temperatures. Furthermore, as N
increases, the errors eu and eq decrease showing that N ≥ 80
for Example 1 and N ≥ 120 in the case of Example 2 ensure
a sufficient discretisation for the accuracy to be achieved.

The analytical and numerical solutions for the temperature
u
∣∣
�2

and the normal heat flux q
∣∣
�2

obtained with exact Cau-
chy data after k = 3000 iterations, for the Cauchy problem
given by Example 1 are presented in Fig. 2a and b, respec-
tively. Fig. 3a and b illustrate the analytical and numerical val-
ues for the temperature u

∣∣
�2

and the normal heat flux q
∣∣
�2

,
respectively, retrieved with exact Cauchy data after k = 1000
iterations, in the case of Example 2. From these figures, it
can be seen that the accuracy in predicting both the temper-
ature distribution and normal heat flux on the boundary �2
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Fig. 2 The analytical and numerical a temperatures u, and b normal
heat fluxes q, on the under-specified boundary �2, obtained using exact
Cauchy data on �1, k = 300 iterations and various numbers of MFS
boundary collocation points, namely N ∈ {40, 80, 120}, for Example 1

is very good. As expected, the errors in predicting the nor-
mal heat flux q

∣∣
�2

are larger than the errors in predicting the

temperature u
∣∣
�2

since the normal heat flux contains higher-
order derivatives of the latter.

From Figs. 1, 2, 3, it can be concluded that the MFS-
based alternating iterative algorithm described in Sects. 3
and 4 produces an accurate and convergent numerical solu-
tion for both the missing boundary temperature and normal
heat flux with respect to increasing the number of iterations,
k, and the number of MFS boundary collocation points, N ,
provided that exact input Cauchy data are used. However,
exact data are seldom available in practice since measure-
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Fig. 3 The analytical and numerical a temperatures u, and b normal
heat fluxes q, on the under-specified boundary �2, obtained using exact
Cauchy data on �1, k = 300 iterations and various numbers of MFS
boundary collocation points, namely N ∈ {60, 120, 180}, for Exam-
ple 2

ment errors always include noise in the prescribed boundary
conditions and this is investigated next.

6.4 Stopping criterion

Once the convergence, with respect to increasing the number
of iterations, k, and the number of MFS boundary collocation
points, N , of the numerical solution to the exact solution has
been established, we fix N = 80 and N = 120 for Exam-
ples 1 and 2, respectively, and investigate the stability of the
numerical solution. In what follows, the temperature, u

∣∣
�1

=
u(an)

∣∣
�1

, and/or the normal heat flux, q
∣∣
�1

= q(an)
∣∣
�1

, on
the over-specified boundary have been perturbed as
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ũε|�1
= u|�1

+ δu, δu = G05DDF(0, σu),

σu = max
�1

|u| × (pu/100), (29)

and

q̃ε
∣∣
�1

= q|�1
+ δq, δq = G05DDF(0, σq),

σq = max
�1

|q| × (
pq/100

)
, (30)

respectively. Here δu and δq are Gaussian random variables
with mean zero and standard deviations σu and σq, respec-
tively, generated by the NAG subroutineG05DDF [47], while
pu% and pq% are the percentages of additive noise included
into the input boundary temperature, u

∣∣
�1

, and normal heat

flux, q
∣∣
�1

, respectively, in order to simulate the inherent mea-
surement errors.

Figure 4a and b present the accuracy errors eu and eq,
respectively, for various levels of Gaussian random noise
pu ∈ {1%, 2%, 3%} added into the temperature data u

∣∣
�1

.
From these figures it can be seen that as pu decreases then
eu and eq decrease. However, the errors in predicting the
temperature and the normal heat flux on the under-speci-
fied boundary �2 decrease up to a certain iteration number
and after that they start increasing. If the iterative process
is continued beyond this point then the numerical solutions
lose their smoothness and become highly oscillatory and
unbounded, i.e. unstable. Therefore, a regularizing stopping
criterion must be used in order to terminate the iterative pro-
cess at the point where the errors in the numerical solutions
start increasing.

After each iteration, k, we evaluate the following conver-
gence error which is associated with the temperature on the
over-specified boundary, �1, namely

Eu(k) = RMS�1(u
(2k) − ũε)

RMS�1 (̃u
ε)

= ‖u(2k)|�1 − ũε|�1‖2

‖̃uε|�1‖2
, k ≥ 1,

(31)

where u(2k) is the temperature on the over-specified bound-
ary �1 retrieved numerically after k iterations by solving
the well-posed, mixed, direct, boundary value problem (4a)–
(4c). This error Eu should tend to zero as the sequences{
u(2k−1)

}
k≥1 and

{
u(2k)

}
k≥1 tend to the analytical solution,

u(an), in the space H1(�) and hence they are expected to pro-
vide an appropriate stopping criterion. If we investigate the
error Eu obtained at every iteration for Example 2 for various
levels of Gaussian random noise added into the input temper-
ature data u

∣∣
�1

, we obtain the curves graphically represented
in Fig. 5. By comparing Figs. 4 and 5, it can be noticed that the
convergence error Eu reaches a plateau region at around the
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Fig. 4 The accuracy errors a eu, and b eq, as function of the number
of iterations, k, obtained using N = 120 MFS boundary collocation
points and various levels of noise added into the Dirichlet data on �1,
namely pu ∈ {1%, 3%, 5%}, for Example 2

same number iterations as the number of iterations required
for the accuracy errors eu and eq attain their corresponding
minimum. Therefore, for noisy Cauchy data a natural stop-
ping criterion ceases the MFS alternating iterative algorithm
at the optimal number of iterations, kopt, at which the plateau
region is reached by the convergence error, Eu.

As mentioned in the previous section, for exact data the
iterative process is convergent with respect to increasing the
number of iterations, k, since the accuracy errors eu and eq

keep decreasing even after a large number of iterations, see
Figs. 1a and b. It should be noted in this case that a stopping
criterion is not necessary since the numerical solution is con-
vergent with respect to increasing the number of iterations.
Nonetheless, even in this case the errors Eu, eu and eq have
a similar behaviour and the error Eu may be used to stop the
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Fig. 5 The convergence error, Eu, as a function of the number of iter-
ations, k, obtained using N = 120 MFS boundary collocation points
and various levels of noise added into the Dirichlet data on �1, namely
pu ∈ {1%, 3%, 5%}, for Example 2

iterative process at the point where the rate of convergence is
very small and no substantial improvement in the numerical
solution is obtained even if the iterative process is continued.
Therefore, it can be concluded that the regularizing stopping
criterion proposed is very efficient in locating the point where
the errors start increasing and the iterative process should be
ceased.

6.5 Stability of the algorithm

Based on the stopping criterion described in Sect. 6.4, the
analytical and numerical values for the temperature, u, and
normal heat flux, q, on the under-specified boundary �2,
obtained using various levels of noise added into the temper-
ature data on the over-specified boundary �1 for Example 1,
are illustrated in Fig. 6a and b, respectively. From Fig. 6a
it can be seen that the accuracy in predicting the missing
boundary temperature, u

∣∣
�2

, is reasonable and the numerical
solution converges to the exact solution as the level of noise,
pu, added into the input Dirichlet data decreases. However,
the numerical solutions obtained for the unknown normal
heat flux on the under-specified boundary �2 are very poor
approximations for their exact values, as can be seen from
Fig. 6b, at the same time exhibiting an oscillatory behaviour.
The reason for this is that �1 ∩ �2 �= ∅ and it is well known
that the gradient of the temperature possesses singularities at
the points where the data changes from temperature bound-
ary conditions to normal heat flux boundary conditions, even
if the temperature and the flux data are of class C∞.

The proposed MFS-alternating iterative algorithm, in
conjunction with the stopping criterion introduced in the
previous section, works very well for the Cauchy problem
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Fig. 6 The analytical and numerical a temperatures u, and b nor-
mal heat fluxes q, on the under-specified boundary �2, obtained using
N = 116 MFS boundary collocation points and various levels of noise
added into the Dirichlet data on �1, namely pu ∈ {1%, 3%, 5%}, for
Example 1

associated with the modified Helmholtz equation in a dou-
bly connected domain with a smooth boundary, such as the
annulus investigated in Example 2. Figure. 7a and b show
the numerical results for the temperature and normal heat
flux on the boundary �2, obtained using the stopping cri-
terion introduced in Sect. 6.4, M = N = 80 and vari-
ous amounts of noise added into the Dirichlet data, namely
pu ∈ {1%, 2%, 3%}, in comparison with their corresponding
analytical values, in the case of Example 2.

In the case of Example 2, very good results have also
been retrieved for both the unknown temperature, u

∣∣
�2

, and

normal heat flux, q
∣∣
�2

, when using the stopping criterion
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Fig. 7 The analytical and numerical a temperatures u, and b nor-
mal heat fluxes q, on the under-specified boundary �2, obtained using
N = 80 MFS boundary collocation points and various levels of noise
added into the Dirichlet data on �1, namely pu ∈ {1%, 3%, 5%}, for
Example 2

described in Sect. 6.4, M = N = 100 and various lev-
els of noise added into the Neumann data on �1, namely
pq ∈ {1%, 2%, 3%}, and these are presented in Fig. 8a and
b, respectively. By comparing Figs. 7 and 8 we can conclude
that, as expected, the numerical results obtained using the
proposed MFS alternating iterative algorithm, in conjunction
with the aforementioned stopping criterion, are more sensi-
tive to perturbations in the normal heat flux on the over-spec-
ified boundary than to noisy boundary temperature on �1.

From the numerical results presented in this section, it
can be concluded that the stopping criterion developed in
Sect. 6.4 has a regularizing effect and the numerical solution
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Fig. 8 The analytical and numerical a temperatures u, and b nor-
mal heat fluxes q, on the under-specified boundary �2, obtained using
N = 100 MFS boundary collocation points and various levels of noise
added into the Neumann data on �1, namely pq ∈ {1%, 3%, 5%}, for
Example 2

obtained by the iterative MFS described in this paper is con-
vergent and stable with respect to increasing the number of
MFS boundary collocation points and decreasing the level of
noise added into the Cauchy input data, respectively.

7 Conclusions

In this paper, the alternating iterative algorithm of Kozlov
et al. [27] was implemented, for the Cauchy problem associ-
ated with the two-dimensional modified Helmholtz equation,
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using a meshless method. The two mixed, well-posed and
direct problems corresponding to every iteration of the
numerical procedure were solved using the MFS, in conjunc-
tion with the Tikhonov regularization method. For each direct
problem considered, the optimal value of the regularization
parameter was selected according to the GCV criterion. An
efficient regularizing stopping criterion which ceases the iter-
ative procedure at the point where the accumulation of noise
becomes dominant and the errors in predicting the exact solu-
tions increase, was also presented. The MFS-based iterative
algorithm was tested for Cauchy problems associated with
the modified Helmholtz operator in two-dimensional simply
and doubly connected domains with smooth boundaries.

From the numerical results presented in this study, it can
be concluded that the proposed method is consistent, accu-
rate, convergent with respect to increasing the number of
MFS boundary collocation points and stable with respect to
decreasing the amount of noise added into the Cauchy data.
It should be mentioned that, for a simply connected domain,
although the missing boundary temperatures are predicted
within a reasonable accuracy, the numerical results obtained
using the present algorithm for the unknown normal heat flux
are very poor approximations for their exact values. One pos-
sible disadvantage of the MFS-based iterative algorithm is
related to the optimal choice of the regularization parameter
associated with the Tikhonov regularization method which
requires, at each step of the alternating iterative algorithm
of Kozlov et al. [27], additional iterations with respect to
the regularization parameter. However, this inconvenience
can be overcome by introducing relaxation procedures in the
MFS iterative algorithm and this is currently being under
investigation.

The implementation of the MFS in an iterative manner
can be extended to the alternating iterative method of Kozlov
et al. [27] for two-dimensional Cauchy problems associated
with elliptic partial differential operators whose fundamen-
tal solutions are available, such as the Navier-Lamé system
of linear elasticity and anisotropic heat conduction, as well
as other iterative algorithms and similar three-dimensional
inverse problems, but these are deferred as future work.
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