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Abstract

This paper amplifies and subtends the BEM 27 paper: The unit circle trap in boundary elements. The paper deals with some traditional
boundary element formulations that suffer from apparent instability problems when a unit circle is involved in the discretization. Such
problems have been discussed informally and handled empirically by researchers, but apparently were never formalized with a numerical
convergence study in the literature until done so by the authors in the proceedings of BEM 27. The present paper details how the problem
arises, identifies sources for its occurrence, cites past allusions to the problem that have come to light since the presentation of the BEM
27 conference paper, and suggests remedies to avoid it. A theoretical outline is provided and extensive numerical case studies are

presented. Particular emphasis is placed on the Poisson equation and its synthesis.
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1. Introduction

This work focuses on an instability complaint that has
been frequently discussed casually among boundary
element researchers but apparently had been addressed
sparsely in the formal literature and never in a formal
numerical convergence study until the authors did so
recently [1]. In fact, it was stated erroneously in that paper
[1] that its contents were the only formal discussion of the
issue in the literature. It was discovered later that the
problem did have a modicum of coverage under titles
different than that of ““unit circle trap.”” The issue has to do
with solving the Poisson equation by boundary element
analysis of the unit circle which is a typical case in
normalized formulations involving circular geometry. The
purpose of this paper is to give credit to other works
dealing with the problem and to further elaborate one
application in the Poisson equation where the problem
arises and to illustrate why it happens. The cause is
identified and a solution is proposed.

The example presented here is unusual in that it is
best done using constant elements since, as will be
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demonstrated, use of the more sophisticated, higher-order
elements exacerbate the presence of an inherent stability
problem. This lends credence to referring to the problem as
a “trap.”

2. Background

A brief review of the derivation of the boundary element
formulation for the Poisson equation is necessary to
demonstrate the subtlety of the trap that ensues if one is
not careful. The boundary element method is predicated
upon defining a boundary value problem in terms of
equations involving surface integrals. Ideally, one would
like for the equations to be comprised solely of boundary
integrals since this reduces the dimensionality of the
problem. This reduction is not always possible and, in
general, a set of equations arise that appear as

[H{u} = [Gl{q} + {B}. (M
We will use the 2D Poisson equation for illustration [2].
The general form of the differential equation is

V2u(x, y) = b(x, y). (@)
The [H] and [G] matrices in Eq. (1) result from boundary
integrations. {u} and {¢q} are, respectively, boundary values
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of displacements (or temperatures, concentrations, etc.)
and their normal gradients. {B} is defined by domain
integrals that are not dependent on any of the unknowns.
The fundamental solution that makes this method
work is usually taken to be that for a point source in
free space

u}“:%lm?—m, 3)
where 7 — 7; is the position vector from point i to a general
point in the plane.

Denoting the domain of the region by @ and its
boundary by I', we will assume the boundary is discretized
into so-called constant elements for simplicity. In this case,
the [G] and [H] matrix terms are denoted explicitly as
integrals over boundary segments I';

1
Gwz/uﬁW=—i/mW—ﬂMF (4)
' I 2nJr,
and
L[ F=F)-d
Hy= v@-ﬁdr==——/nglgiﬁdr, (5)
© U 2nJr, |F =7l

where 7 is the outwardly directed unit normal vector on the
boundary.
The domain integral terms are

1
B = / wib(x,y)dQ = - / b(x,y) In|F — 7] dQ2. (©)
Q 2 Jo

Boundary element developers do not like domain
integrals, so a great deal of energy has been expended
converting terms like Eq. (6) into equivalent surface
integrals. Fortunately, this can be done for many of the
commonly occurring cases. For instance, if the known
function b(x, y) satisfies Laplace’s equation,

Vb =0 (7

then Eq. (7) may be transformed using Green’s theorem
&Z/@mmwgz/@%¢wwﬁhmﬂg (8)
Jo r

where v? arises as a function that satisfies V2v} = uf. From
Eq. (3), it can be derived casily as

)
g = T2 g e 2, ©)
! 8n

Forms of the function b(x, y) that satisfy Eq. (7) include
those with linear variations in x and y, and the all-
important case b(x, y) = constant.

Most boundary element codes proceed by rewriting
Eq. (1) so that unknown values of {u} and {¢} are aligned
on one side of the system with specified values of {¢} and
{u} on the other. The latter are augmented by the terms { B}
computed by Eq. (8) or by some other method. Denote the
resulting vectors as {X} and {F}, respectively. The net
result is a system of equations

[4](X) = (F) (10)

which is then solved by some convenient means such as
Gaussian elimination.

3. The problem

Engineers and scientists are notorious for verifying
theories with textbook cases having simple exact solutions
and/or using simple geometries. Classic examples include
squares with unit sides or circles with unit radii. It is this
last contingency that contributes to what appears initially
to be a fallacy in the boundary element approach. To
illustrate, consider the easily obtained exact polar coordi-
nate solution of Eq. (2) on a circle of radius R with
homogeneous Dirichlet boundary conditions and with
b = By, a given constant,

um=%w—w) (11)

This problem arises routinely in electrostatics, steady-
state heat transfer, groundwater flow, and torsion analysis
of circular shafts. The normal derivative on the boundary is
usually a pertinent quantity and Eq. (11) yields for this
value:

du BoR

== (12)

T=dr|_,~ 2

This problem seems to be a perfect example for beta
testing a boundary element program for proper assembly,
solution, and consistency of results. Constructing a
boundary element grid with equal-sized elements and
without exploiting symmetry of any type serves this
purpose. Every assembled equation should be the same
and every calculated value of the boundary flux should be
identical.

A typical element convergence study was performed. It
involved progressing through several element types, pro-
gressing from the crude constant element to the linear,
parabolic, cubic, and Overhauser cubic splines [3]. It was
expected that the more sophisticated elements would be the
better performers due to their ability to represent curved
surfaces more accurately. Discretization examples are
shown in Fig. 1.

None of the elements are capable of representing a circle
exactly, so geometrical convergence was studied as well.
For constant elements, three different criteria were used to
construct the polygonal areas (Fig. 2(a)—(c)): (a) equating
the radius of the circle to the radial distance of the
midpoints of the elements where the nodes are located
(yielding more inscribed area than the circle); (b) equating
the radius of the circle to the radial distance locating the
endpoints of the elements (giving less inscribed area than
the circle); (c¢) adjusting the radial distance of the nodes so
that the area of the defining circle is preserved. The idea is
that as the number of elements increases, the three
discretizations should converge to the same geometry, as
should the results.
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b

Fig. 1. Circular BEM discretization for (a) 24 constant or linear elements or (b) 12 Overhauser cubic elements [3].

Fig. 2. Three ways of approximating a circle with eight constant elements of equal size. (a) the radial distance to the midside of an element is the same as
the radius of the circle; (b) the radial distance to the endpoints of the elements is the same as the radius of the circle; (c) the interior area of the polygon is

made to be the same as that for the circle.

The test case was a unit circle, R =1, in Egs. (11) and
(12), zero values of u on the boundary (homogeneous
Dirichlet conditions), and with the Poisson constant By=1.
The formulation described in the previous section was used
and results were first obtained using between 16 and 1000
constant elements. The results were very disappointing.
They may be viewed in Table 1 in the rows indicated by a
“K value” of 1. (The explanation of the K value will be
explained in a following section.) In each of the three
geometrical criteria, there appears to be convergence to
some value for the normal derivative but none are
approaching the proper value of ¢ = 0.5.

After coding errors were ruled out as being responsible
for the poor performance, it was suspected that the quality
of the element was at fault and higher order elements were
tried. However, the results became progressively worse as
the sophistication of the elements became better. The best
results were expected to come from the Overhauser cubic
spline element, which models the circular geometry most
accurately due to its ability to maintain a smooth surface
(C' inter-element continuity) [3]. However, it produced
what could almost be interpreted as random numbers for

the fluxes. None of the explicit results for the higher-order
elements are worth presenting here.

It was at this stage that an instability in the formulation
was suspected and the results in the next section were
derived.

4. The reason for the problem

For this particular problem, the final linear system
of simultaneous equations for solution, represented by
Eq. (10), follows from Eq. (1) to be simply

[Gl{q} = —{B} (13)
due to the values of u on the boundary being identically
zero. Also, since every boundary node follows the same
formulation as any of the others for equal elements, all the
B; are identical. With b(x, y) = By = constant, we may
compute the exact value for a boundary point B using
Eq. (8) and the aid of Fig. 3.

Note that point B can represent any given boundary
point with no loss of generality. Explicit calculation
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Table 1
Unit circle results for the Poisson equation using equal length constant
elements, homogeneous Dirichlet boundary conditions, and b(x, y) = 1

K Number Calculated derivative at boundary
value of
elements
Midside Endpoint Area of
radial radial circle
distance distance preserved
preserved preserved
1 16 0.06207 0.59773 1.14470
1 24 0.04269 0.60107 1.09085
1 32 0.03253 0.60179 1.06644
1 64 0.01668 0.60168 1.03254
1 128 0.00844 0.60115 1.01709
1 192 0.00566 0.60095 1.01257
1 250 0.00435 0.60088 1.01079
1 500 0.00216 0.60096 1.00963
1 1000 0.00109 0.60150 1.01340
2 16 0.53054 0.52126 0.52741
2 24 0.52057 0.51639 0.51917
2 32 0.51549 0.51312 0.51470
2 64 0.50778 0.50719 0.50758
2 128 0.50380 0.50375 0.50385
2 192 0.50260 0.50253 0.50258
2 250 0.50200 0.50196 0.50199
2 500 0.50100 0.50099 0.50100
2 1000 0.50050 0.50050 0.50050
3 16 0.53157 0.52194 0.52833
3 24 0.52100 0.51672 0.51957
3 32 0.51573 0.51332 0.51492
3 64 0.50784 0.50724 0.50764
3 128 0.50391 0.50376 0.50386
3 192 0.50261 0.50254 0.50258
3 250 0.50200 0.50196 0.50199
3 500 0.50100 0.50099 0.50100
3 1000 0.50050 0.50050 0.50050
10 64 0.50789 0.50728 0.50769
10 250 0.50201 0.50197 0.50199
gives

= a*,\ A~
B,:/bW-ﬁdf:Bo/ie,-endr
i d
r r or

2 a 2 0
:BO/ —{r—(lnr— 1)] cos 3 Rdo
0

or |8n
2n
=M r(2 lnr—l)costO
87'[ 0 2
ByR [" 0 0 0
= — 2R — 2 In( 2R -] -1 -
s ), cos 5 { n( cos 2) ] 0052 do
2 T
= BoR / [2 In(2R cos ) — 1]cos?y dys
T Jo
2
or B _BR R (14)

We see that if R=1, Eq. (14) gives rise to a
homogeneous system for Eq. (13) which is normally a
prelude to an eigenvalue problem. The standard boundary

r integration
R direction

072 0

=
Q
=

Fig. 3. Geometry for computing the Poisson term at a boundary point B.

element code, not being programmed for this contingency,
will attempt to solve the system by inverting the [G] matrix.
Because of the inexactness of the discretization, the B; will
not be quite zero, and numerical instability, as the mesh is
graded more finely, is most certain to ensue. This explains
the apparent convergence to the different, but erroneous,
K =1 values in Table 1 as the radial criteria were changed.
It also explains the diminishment in performance as the
higher-order elements were implemented, since they will
better approximate the exact zero values of B;.

It should be noted that it is not the boundary integral
formulation that is at fault, but rather the way typical
coding is programmed that is the culprit. Boundary
integral theory accurately predicts the correct result as
can be illustrated with this same example:

Since all the equations represented by (13) are identical,
and it is known that the ¢ values are all the same, the
entire system may be represented by the single exact
(non-discretized) statement

</ ut dF)q: B, (15)
r

where B; is the exact value from Eq. (14). The boundary
integral in Eq. (15) may be done explicitly by again
enlisting the aid of Fig. 2

. 2n
/u*df:/ilnrdfzi/ In 2Rcos€ RdO=RInR.
r ! r27'[ 27I 0 2

(16)
With this value, Eq. (15) becomes

By R?
InR
) n

(RInR)g =

and the proper solution for any value of R is ¢ = ByR/2
which agrees with the exact solution given by Eq. (12). Of
course, a BEM program will not normally perform an
eigenvalue analysis or take limiting values of R in order to
effect a solution. Rather, it will attempt what is almost a
zero by zero division in this last step.
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5. A solution to the problem

Boundary element practitioners acquainted with the
troublesome unit circle are usually aware that rescaling
the geometry so as to avoid the problem with the
logarithmic potential is a quick remedy. This is equivalent
to a coordinate transformation [4]. This expedient may be
formalized by recognizing that the usual fundamental
solution utilized, Eq. (3), is incomplete. The proper
fundamental solution is relative and allows for an additive
constant C:

*k * 1 - —
uKi:ui+C:%1n|r—ri|+C. (17)
For necatness, we choose to rewrite the constant as
C = (12n)InK where K may be interpreted as a scaling
factor. This renders Eq. (17) as
Uy = 1
K™ on
and we see that K magnifies the radial distance. With
Eq. (18) used in place of Eq. (3) and also to rederive
Eq. (9), the equivalent calculations leading up to Egs. (14)
and (16) give

In(K |7 —7;]) (18)

B = (ByR*/2)In KR and /u}}l_ dIr=RInKR (19
r

and it is readily verified that choosing K to be any positive
value other than unity will eliminate the problem that
occurs when K=1. This result is illustrated in Table 1 for
several constant mesh refinements when K =2 and 3 and
for a pair of cases when K = 10. The calculated values of
the boundary derivatives indicate deviations which gradu-
ally decrease monotonically as the discretization is refined.
This performance is consistent with what can normally be
expected for the elementary constant element. Pragmatic
convergence of the results seems to have occurred in the
neighborhood of 250 elements when K#1.

A refined test for many values of K ranging between 0.01
and 1.5 was performed to study the sensitivity of the
instability. These results are presented in Table 2. The poor
behavior seems to be very localized at values of K in the
range of 1+0.0005. This is an encouraging result since it
indicates a suspected problem with instability can be
resolved quite easily by adjusting the value of K only
slightly.

6. Further considerations

Several other cautions with this type of instability should
be observed. For one, we can see that using Eq. (18)
sidesteps the unit circle trap but it has the potential of
creating one elsewhere. In Egs. (19) for instance, it can be
seen that if K is chosen accidentally so that K = 1/R, the
problem with instability can occur for any arbitrary value
of the radius.

Table 2
Detailed study of the sensitivity to the K value
Number of K Value Calculated derivative Percentage
elements at boundary for the difference
case when the between
circular area is calculated and
preserved exact (%)
128 0.01 0.503892 0.78
128 0.1 0.503897 0.78
128 0.2 0.503901 0.78
128 0.3 0.503896 0.78
128 0.4 0.503914 0.78
128 0.5 0.503923 0.78
128 0.6 0.503936 0.79
128 0.7 0.503957 0.79
128 0.8 0.503999 0.80
128 0.9 0.504127 0.83
128 0.91 0.504155 0.83
128 0.92 0.504190 0.84
128 0.93 0.504235 0.85
128 0.94 0.504295 0.86
128 0.95 0.504379 0.88
128 0.96 0.504506 0.90
128 0.97 0.504716 0.94
128 0.98 0.505136 1.03
128 0.99 0.506392 1.28
128 0.995 0.508886 1.78
128 0.9995 0.549950 9.99
128 0.99995 0.758719 51.74
128 0.999995 0.969850 93.97
128 0.9999995 1.011942 102.39
128 1 1.017093 103.42
128 1.0000005 1.022349 104.47
128 1.000005 1.074995 115.00
128 1.000049 80.263400 15,952.68
128 1.0000491 116.962074 23,292.41
128 1.0000492 216.213748 43,142.75
128 1.0000493 1460.483820 29,1996.76
128 1.00004931 3450.571850 690,014.37
128 1.00004932 —9501.389290 1,900,377.86
128 1.00004935 —774.379471 —154,975.89
128 1.0000494 —305.683446 —61,236.69
128 1.0000495 —138.059966 —27,711.99
128 1.0000496 —89.039233 —17,907.85
128 1.0000497 —65.639287 —13,227.86
128 1.0000498 —51.935511 —10,487.10
128 1.0000499 —42.9355711 —8687.11
128 1.00005 —36.572344 —7414.47
128 1.000051 —14.538103 —3007.62
128 1.0001 0.004480 —99.10
128 1.00025 0.377751 —24.45
128 1.0005 0.447713 —10.46
128 1.003 0.495296 —0.94
128 1.005 0.498761 —0.25
128 1.01 0.501330 0.27
128 1.05 0.503367 0.67
128 1.5 0.503824 0.76

These are unit circle results for the Poisson equation using 128 equal
length constant elements, homogeneous Dirichlet boundary conditions,
and b(x, y) = 1. The exact value is ¢ = 0.5.

Also, the possibility for a similar problem occurring on
an arbitrarily shaped bounded domain © must be con-
sidered. Linear algebra theory tells us it is always possible
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to construct a function b(x, y) which will be orthogonal to
a given function in an inner product space (for boundary
element analysis, this will most often be a Euclidean vector
space). Thus, by sheer happenstance, there always exists
the possibility that

B, = / uib(x,y)d2=0
Q

for any bounded domain €, and the ‘““unit circle trap” can
become a more general geometrical trap when homoge-
neous boundary conditions are present. At this writing,
there does not appear to be any complete set of conditions
that will allow the analyst to predict a priori when the
problem will occur. (This issue will be addressed in the next
section.) For this reason, the empirical device of using the
fundamental solution (18) with several different values of
the K parameter seems to be the best approach for
handling a suspected instability.

The close relationship of the Poisson equation to
Laplace’s equation can make the problem occur in a more
subtle manner. While much attention has been given
transformation of Poisson’s equation to Laplace’s equa-
tion, it is also true that the reverse can be done as well.
Starting with the Dirichlet problem

Viw(x,y) =0 in Q,

w=w on I, (20)

it is most likely possible, in principle at least, to find a
function b(x, y) such that V> = b. Letting u = w — w, This
boundary value problem defined by Eq. (20) may be recast
as

Viu=b(x,y) in Q
u=0 on T,

which is precisely the Poisson equation with homogeneous
boundary conditions.

This result means that we can look at the problem from
the viewpoint of a Laplacian solution. The separation
of variables solution for Laplace’s equation on a circle of
radius R is

0 PN
u(R,0) = [a,cosnb + b, sinnd] (E) . 21
n=0

The famous Poisson integral solution follows from either
manipulation of this formula or from the Cauchy integral
theorem [5]:

2n R2—7'2
w0 =5 [ [2 2
2 Jo | R*—2rRcos(0 —a) +r

} u(R, 0)do.

(22)

Eq. (22) is the solution to the interior Dirichlet problem
on a circle; the term in square brackets is called the Poisson
kernel. As to its relevance in this paper, we can interpret the
Poisson integral solution as finding the potential u at (r,0)
as a weighted average of the boundary potentials u(R, 0)
weighted by the Poisson kernel.

The square of this distance
is the denomiator of the
Poisson Integral kernel

u (R, o)

Fig. 4. u(r, 0) interpreted as a weighted sum of boundary potentials due to
the Poisson kernel.

The interpretation about the underlying physical system
is that the potential at a point is the weighted average of
neighboring potentials. The Poisson kernel dictates the
weight assigned to each point. For boundary values u(R, «)
close to (r, 0), the Poisson kernel gets large, since the
denominator of the Poisson kernel is the square of the
distance from (r, 0) to (R, «) as shown in Fig. 4. Due to this
fact, the integral puts more weight on those values of u(R, o)
that are closest to (r, 8). Unfortunately, if (r, 8) is extremely
close to the boundary r = R, then the Poisson kernel gets
very large for those values of o that are closest to (r, 0).
For this reason, when point (r, 0) is close to the boundary,
it is known that the series solution, Eq. (21), works
better for evaluating the numerical value of the solution.
Taking (r, 8) on the boundary is precisely what happens
in the boundary element formulation; the similarity of
Figs. (3) and (4) should be apparent. It is thus demon-
strated that the problems with the two integral statements
are equivalent.

7. Other discussions of the unit circle trap

It was mentioned earlier that the background sources
alluding to this problem were transmitted mostly by private
communications. However, literary sources that used
terminology different than that of the “trap,” coined in
this work, were pointed out after the publication of the
authors’ conference paper [1]. The text by Jaswon and
Symm [6] discusses work previously published by Jaswon
[7] and further credits Petrovsky [8] with discovering this
troublesome feature of the unit circle as carly as 1954.
Jaswon and Symm [6] describe the existence of curves
called I'-contours for which expressions of the form (15)
have no solution. Particularly a circle of unit radius yields
as feasible solutions any finite values of the normal
derivatives.

They also point out that the notion of the problem with
the unit circle may be generalized to any Cartesian contour
defined by f(x, y) = 0. They prove that given such a contour,
the family of similar contours defined by fix/m, y/m) =0,
where m>0 is a continuously varying parameter, each
admits a unique solution for the normal derivatives ¢ except
for one, that being the I'-contour which will create the
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problem. Thus, no closed contour in the Cartesian plane is
immune from yielding a possible instability when the Poisson
equation with zero potentials is analyzed.

More recently, Chen et al. [9,10] addressed the similar
problem showing up in the Laplace equation and annular
regions and other special geometries. The term used by
them for a generic unit circle trap is “degenerate scale.”
The exhaustive analytical and numerical experiments
overlap somewhat with the more concise presentation
given here in Section 6.

8. Discussion and conclusions

The unit circle with homogeneous boundary conditions
in the boundary element method has been shown to
institute a numerical stability problem in the Poisson
equation. While admittedly the unit circle trap is an
isolated instance, it is troublesome for at least three
reasons. First, the trap may not manifest itself as an
obvious instability. For instance, if only one of the radial
criteria had been instituted in construction of the K =1
results in Table 1, and the correct result had not been
known a priori, then it would have been very easy to have
concluded that the results were converging with increased
mesh refinement. Such a premature conclusion can
obviously be dangerous. Secondly, if the problem can
occur with the Poisson equation on the unit circle, it
can possibly occur with other geometries, boundary
conditions, and governing equations in more subtle ways
not as easily detected. The underlying problem lies in the
nature of the logarithmic potential, which shows up not
only in two-dimensional potential theory but also in
elastostatics. The elasticity problem of this nature has
been addressed by Chen et al. [11]. Other fundamental
potentials may create similar problems. Thirdly, and most
simply, circular geometries are quite common occurrences
in practice.

Proposed here is a formal remedy that involves rescaling
using the additive constant available in the full form of the
fundamental solution for the Laplacian operator. Other
basic solutions to the underlying problem exist, the most
efficacious of which might be exploiting the symmetry of
the geometry. For instance, modeling a one-quarter sector
of the unit circle domain and using the no-flux boundary
conditions on the straight sides gives very good results with

the unscaled version of the fundamental solution. This is
due to the mixed boundary value nature of the synthesis.
This work shows that it may be futile to try predict a
priori when a problem with a vanishing Poisson term may
cause a numerical instability. Though the unit circle seems
to be the most vulnerable to this type of problem (probably
due to its frequent occurrence), the instability can occur on
any arbitrary closed domain. The full form of the
fundamental solution given by either Eq. (17) or Eq. (18)
should be respected and used appropriately. The empirical
means of dealing with the problem is to evaluate the
solution for several values of the scaling factor K.
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