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An efficient meshless formulation is presented for large deflection of thin plates with immovable edges.

In this method, a fifth-order polynomial radial basis function (RBF) is used to approximate the solution

variables. The governing equations are formulated in terms of the three displacement components u, v

and w. The solution is obtained by satisfying three coupled partial differential equations and their

boundary conditions inside the domain and over the boundary of the plate, respectively. The collocation

procedure produces a system of coupled non-linear algebraic equations, which are solved using an

incremental-iterative procedure. The numerical efficiency of the proposed method is illustrated through

numerical examples.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In the problem of small deflection of a thin elastic plate, it is
assumed that the plate is bent by lateral loads only. However, in
the case of large plate deflection, the relation between external
load and deflection is no longer linear. Due to large deflections, the
middle plane streches, developing tensile membrane forces that
may have an effect on the bending of the plate and consquently
can add considerably to its load-carrying capacity. For instance, in
the case of a clamped circular plate subjected to a uniform load
that produces a central deflection of 100% of its thickness, the
maximum stretching stress is approximately 40% of the maximum
bending stress [1]. For such situations, an extended plate theory
must be employed, accounting for the effect of large deflection.
Large elastic deflection of a thin elastic plate is governed by
coupled non-linear differential equations for which analytical
solutions are available only for very few cases involving simple
geometries and loading conditions [1–5]. For other cases, the
problem has to be solved using numerical techniques such as the
finite difference method (FDM), the finite element method (FEM)
and the boundary element method (BEM). Nevertheless, the
possibility of obtaining numerical solutions without resorting to
the mesh-based techniques mentioned above, has been the goal of
many researchers throughout the computational mechanics
community for the past two decades or so. Radial basis function
ll rights reserved.

htani).
(RBF) is one of the most recently developed meshless methods
that has attracted attention in recent years, especially in the area
of computational mechanics [6–8]. This method does not require
mesh generation which makes them advantageous for 3-D
problems as well as problems that require frequent re-meshing
such as those arising in non-linear analysis. Due to its simplicity
to implement, it represents an attractive alternative to FDM, FEM
and BEM as a solution method for non-linear differential
equations.

The roots of RBF goes back to the early 1970s, when it was used
for fitting scattered data [9]. In 1982, Nardini and Brebbia [10]
combined RBF with BEM in a technique called dual reciprocity-
boundary element method to solve free vibration problems, where
RBF was used to transform the domain integrals into boundary
integrals. Thereafter, many researchers have used RBF in conjunc-
tion with BEM to solve various problems in computational
mechanics. The method, however, has not been applied directly
to solve partial differential equations until 1990 by Kansa [11,12].
Since then, many researchers have suggested several variations to
the original method, e.g. Refs [13–18] not to mention many others.
In general, RBF method expands the solution of a problem in
terms of RBFs and chooses expansion coefficients such that the
governing equations and boundary conditions are satisfied at
some selected domain and boundary points. However, one of the
important issues in applying this technique is the determination
of the proper form of RBF for a given differential equation. Most of
the available RBFs involve a parameter, called shape factor.
Despite the excellent results obtained by using shape-parameter
dependent RBFs, their application requires a proper selection of
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the shape parameter to avoid instability of the solution [19,20]. In
this paper, the simple fifth-order polynomial RBF that does not
involve a shape factor is considered. This approach has been
applied successfully to the large deflection of plates with movable
edges [21]. The objective of this paper is to extend the method to
plates with immovable edges. The paper is organized as follows.
The governing equations based on w–F and u–v–w formulations are
presented in Section 2. In Section 3, the method of collocation with
RBF is illustrated, followed by the incremental-iterative procedure
for solving the resulted RBF coupled non-linear equations. The
efficiency of the method is demonstrated by numerical examples in
Section 4, followed by some concluding remarks in Section 5.
2. Governing equations

2.1. w–F formulation

Large elastic deflection of thin elastic plates is generally
governed by the two coupled non-linear differential equations,
known as von Kármán equations [1], which can be expressed as:

r
4F ¼ E

q2w

qxqy

 !2

�
q2w

qx2

 !
q2w

qy2

 !2
4

3
5, (1)

r
4o ¼ h

D

q

h
þ

q2F

qy2

 !
q2w

qx2

 !
þ

q2F

qx2

 !
q2w

qy2

 !"

��2
q2F

qxqy

 !
q2w

qxqy

 !#
, (2)

where F is a stress function, w is a displacement component
perpendicular to the plane of the plate, E is the modulus of
elasticity for the plate material, q is the surface loading per unit
area of the plate, h is the plate thickness and D ¼ [(Eh3/12(1�n2))]
is the flexural rigidity of the plate. The stress function F is related
to the inplane forces through the follwong relations:
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q2F
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; Nxy ¼ �h
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The details for deriving Eqs. (1) and (2) are given in the classical
book by Timoshenko and Woinowsky-Krieger [1]. It should be
noted that the first equation represents the in-plane or membrane
action while the second equation represents the transverse or
bending action of the plate. Principally, there are two classes of
boundary conditions, namely, movable and immovable. In the
former class, the w�F solution approach can be readily used
where the movable boundary condition is represented by F ¼ (qF/
qn) ¼ 0. However, in the case of immovable edge condition
(u ¼ v ¼ 0), which is considered here, it is not possible to
accurately establish the boundary conditions in terms of the
stress function F. One way to overcome this difficulty is by
imposing certain boundary constraints on F in an average sense
[22]. The other more convenient and certainly more accurate
alternative is to replace Eq. (1) by two partial differential
equations in terms of the the in-plane displacements, u and v in
addition to the non-linear terms involving w, as explained the
following section.

2.2. u–v–w formulation

In the absence of body forces, the equations of equilibrium
along x and y are given by

qNx
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The forces acting on in the middle surface are related to the strain
components through the following relations:
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The strain components in the middle surface of the plate during
bending are given by
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Using Eqs. (9)–(11) in Eqs. (6)–(8), then in Eqs. (3)–(5), we have
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The corresponding membrane boundary conditions are:

u ¼ v ¼ 0, (14)

on all edges of the plate. Similarly, the terms involving F on the
right hand side of Eq. (2) can be repaced by terms involving u and
v, so that Eq. (2) becomes:
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The transverse boundary conditions for the above equation are the
same as those used for classical plate analysis, which can be
written as:

BCw1ðwÞ ¼ 0 where BCw1ðwÞ ¼ w or BCw1ðwÞ ¼ Vn, (16)

BCw2ðwÞ ¼ 0 where BCw2ðwÞ ¼
qw

qn
or BCw2ðwÞ ¼ Mn, (17)
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Table 1

Results of the bi-harmonic operator (r4F) for different degrees of the polynomial

RBF

N r4F

1 1/r3

2 0

3 9/r

4 64

5 225r

6 576r2

7 1225r3

8 2304r4

9 3969r5
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where Mn and Vn are the normal bending moment and shear force
which are given by

Mn ¼ � D vr2wþ ð1� nÞ
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where nx and ny are the x and y comonents of the unit vector
normal to the boundary. Eqs. (12), (13) and (15), together with
their boundary conditions given by Eqs. (14), (16) and (17)
represent the u–v–w formulation for large deflection of the plate.
3. RBF formulation

Consider a 2-D computational domain (Fig. 1) that represents
the plate geometry. For collocation, we use node points dis-
tributed both along the boundary ðxj

B; j ¼ 1; . . . ;NBÞ, and over the
interior ðxj

D; j ¼ 1; . . . ;NDÞ. The three displacement components are
interpolated linearly by suitable RBFs:
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where F ¼ jj x�xjjjn ¼ rn is a polynomial RBF of nth degree and
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Fig. 1. Boundary and domain nodes.
other RBFs, the polynomial RBF has the important advantage of
being free of a shape factor, which is a source of solution
instability if not properly selected. It should be noted that there
are some constraints on the permissible values of the polynomial
degree n. This is explained by Table 1 that shows the results of the
bi-harmonic operator (r4F) for different degrees of the poly-
nomial RBF. It is obvious that RBF polynomials with np4 yield
either constant or singular values as r-0 and therefore these
choices must be avoided. Furthermore, previous studies [13] have
shown that even values of n produced inaccurate solutions.
Therefore, we are left with odd values of nX5. Few numerical
experiments have been carried out to compare the accuracy of the
solution of the linear plate problem for n ¼ 5, 7 and 9. The results
of these experiments have not shown any appreciable difference
in terms of accuracy for n ¼ 5 and 7. For n ¼ 9, however, stability
problems have been encountered especially for high node
intensities. Therefore, it was decided to use n ¼ 5. The 4NB+3ND

unknown coefficients: aj
u;b

j
u;a

j
v;b

j
va

j
w;b

j
w, and gj

w, can be deter-
mined by satisfying the governing equations at the ND domain
points, and by satisfying the corresponding boundary conditions
at the NB boundary points. Before doing that, let us put the
governing equations (12), (13) and (15) in the following compact
forms:

L11ðuÞ þ L12ðuÞ ¼ NL1ðwÞ, (23)

L21ðuÞ þ L22ðuÞ ¼ NL2ðwÞ, (24)

Dr4w ¼ qþ NL3ðu; u;wÞ, (25)
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Fig. 2. Boundary and domain node distribution for Example 1 (NB ¼ 32; ND ¼ 69).
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Applying the in-plane boundary conditions, i.e. Eqs. (20) and (21)
at the NB boundary points and the in-plane governing equations,
i.e. Eqs. (23) and (24) at the ND domain points, we have:

FðxB; xDÞ FðxB; xBÞ 0 0

0 0 FðxB; xDÞ FðxB; xBÞ
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Similarly, repeating the same procedure for the transverse
boundary conditions and governing equation, we have:

BCw1ðFðxB; xDÞÞ BCw1ðBw1ðFðxB; xBÞÞÞ BCw1ðBw2ðFðxB; xBÞÞÞ
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In order to solve the above coupled and highly non-linear
equations, an incremental-iterative procedure is performed. In
the following, the superscripts represent increments while sub-
scripts represent iterations. As an example, the quantity wk

i;xy

represents the second derivative of w with respect to x for the kth
increment and ith iteration. Let us denote to the number of
increments by n. The following steps describe the incremental-
iterative procedure:
1.
 Apply the first load increment and set the initial values of
derivatives of all u, u and w terms (ux, uy, ux, uy, wxx, wyy and wxy)
to zero so that the system of Eq. (34) becomes a linear system
of equations that can be solved for the first estimates of the
coefficients aw, bw and gw.
2.
 Use the first estimates of aw, bw and gw in Eq. (22) to obtain the
first estimate of the deflection w1

1. Note that w1
1 corresponds to

the solution of small-deflection theory for the first load
increment.
3.
 Compute NL1ðw
1
1Þ and NL2ðw

1
1Þ, then solve Eq. (33) for the first

estimates of the coefficients au, bu, au and bu.

4.
 Use the first estimates of au, bu, au and bu in Eqs. (20) and (21)

to obtain the first estimate of the in-plane displacements, u1
1

and u1
1.
5.
 Update the right hand side of Eq. (34) by computing
NL3ðu

1
1; u1

1;w
1
1Þ.
6.
 Use Eq. (22) to obtain the second estimate of the deflection w1
2

and compute NL1ðw
1
2Þ and NL2ðw

1
2Þ.
7.
 Repeat the above steps until convergence is achieved, other-
wise, decrease the load increment and repeat the iterations.
8.
 Add the second load increment and use the values obtained for
NL3ðu

1
n; u1

n;w
1
nÞ at the last iteration of the first load increment,

then repeat the above iterative procedure.

9.
 Continue adding increments until the total load is applied.
4. Numerical examples
In order to examine the effectiveness of the proposed RBF
method for large deflection of thin plates, the following three
examples are considered. The accuracy of RBF solutions are
compared with the FEM solutions by calculating the % absolute
relative differences. All FEM solutions are obtained using the
package ANSYS 9.0 [23] by employing the eight-node structural
shell element named SHELL93 that has large deflection capability.
In all examples, the load is assumed to be uniformly dis-
tributed ¼ q, Poisson ratio n is assumed 0.3. For generality of the
solutions, all quantities are made dimensionless, so that the
coordinates, the load, the deflection and the stress are represented
by x̄ ¼ x=a, ȳ ¼ y=a, q̄ ¼ qa4=Eh4, w̄ ¼ w=h and s̄ ¼ sa2=Eh2,
respectively. As a first example, let us consider a simply supported
circular plate of radius ¼ a with immovable boundary subjected to
a uniform load q̄, where 0:125pq̄p2:0. A uniform node distribu-
tion consisting of 32 boundary nodes and 69 domain nodes
according to Fig. 2 has been used. An approximate analytical
solution for the problem is available [1] which can be expressed in
terms of dimensionless quantities as follows:

w̄c þ Aw̄3
c ¼ Bq̄, (35)

s̄m ¼ aw̄2
c , (36)

s̄b ¼ bw̄2
c , (37)

where w̄c is the central deflection, s̄m the stress in the plate
middle plane (membrane stress) and s̄b the extreme fiber bending
stress. The constants are A ¼ 1.852, B ¼ 0:696, a ¼ 0.905 and
b ¼ 1.778. The evolution of the plate maximum deflection at its
center with the applied load is presented in Table 2, which reveals
a very close agreement among RBF, FEM and the analytical
solutions. Similar conclusion can be said about the results for
membrane and bending stresses given in Table 3. The analytical
solution for locations other than the center of the plate is not
available and therefore, the variations of the deflection w̄, the
radial membrane stress s̄m, and the radial bending stress s̄b due
to the maximum load q̄ ¼ 2:0 as obtained by FEM and RBF are
given in Table 4. Once again the RBF solutions for the deflection
and stresses compare very well with the FEM solutions with a
maximum relative difference of 4.90% for the bending stress at
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r=a ¼ 0:9 when the plate is subjected to the maximum load of 2.0.
As a second example, let us consider a clamped a by a square plate
with immovable boundary conditions subjected to a uniform load
q̄, where 3:67pq̄p88. Exact solution does not exist for this
Table 2
Maximum (central) deflection w̄ versus load q̄

q̄ w̄

Analytical FEM RBF %Errora

0.125 0.08583 0.0856 0.0867 1.2850

0.25 0.1656 0.1651 0.167 1.1508

0.375 0.2365 0.2357 0.2379 0.9334

0.5 0.2987 0.2974 0.2997 0.7734

0.625 0.3533 0.3515 0.3537 0.6259

0.75 0.4018 0.3993 0.4015 0.5510

0.875 0.4454 0.4421 0.4442 0.4750

1.0 0.4849 0.4808 0.4828 0.4160

1.125 0.521 0.5161 0.5181 0.3875

1.25 0.5544 0.5487 0.5503 0.2916

1.375 0.5854 0.5788 0.5806 0.3110

1.5 0.6144 0.6069 0.6087 0.2966

1.625 0.6417 0.6333 0.6334 0.0158

1.75 0.6674 0.658 0.6645 0.9878

1.875 0.6918 0.6816 0.6852 0.5282

2.0 0.7150 0.7049 0.703 0.2695

a |(RBF�FEM)/FEM)|�100.

Table 3
Membrane and bending stresses at the center of the plate vs. load q̄

q̄ s̄m

Analytical FEM RBF %Erro

0.125 0.0067 0.00667 0.00683 2.398

0.25 0.02482 0.0248 0.02534 2.177

0.375 0.0506 0.0504 0.05146 2.103

0.5 0.0807 0.0804 0.08174 1.666

0.625 0.113 0.1124 0.114 1.423

0.75 0.1461 0.1452 0.147 1.239

0.875 0.1795 0.1782 0.18 1.010

1.0 0.2128 0.211 0.2128 0.853

1.125 0.2457 0.2434 0.2453 0.780

1.25 0.2782 0.2752 0.2769 0.617

1.375 0.3102 0.3066 0.3086 0.652

1.5 0.3417 0.3374 0.3387 0.385

1.625 0.3726 0.3674 0.3696 0.598

1.75 0.4031 0.3972 0.3998 0.654

1.875 0.4331 0.426 0.4292 0.751

2.0 0.4627 0.455 0.457 0.439

Table 4
Distribution of deflection and stresses along the radial direction (q̄ ¼ 2:0)

r/a w̄ s̄m

FEM RBF %Error FEM

0.0 0.7049 0.703 0.2695 0.455

0.1 0.6964 0.6948 0.2298 0.4534

0.2 0.6719 0.6704 0.2232 0.4489

0.3 0.6311 0.6299 0.1901 0.4397

0.4 0.5751 0.5742 0.1565 0.4286

0.5 0.5048 0.5039 0.1783 0.4147

0.6 0.4208 0.4204 0.0951 0.3982

0.7 0.3257 0.3256 0.0307 0.3795

0.8 0.2217 0.2216 0.0451 0.3588

0.9 0.1117 0.1118 0.0895 0.3032
problem and therefore, comparison is made with FEM solution
only. A node distribution consisting of 36 boundary nodes and 81
domain nodes (Fig. 3) has been used. The load has been increased
with equal increments of 3.67 until the total load has been
applied. Table 5 shows the deflection w̄, the membrane stress s̄m

and the bending stress s̄b computed at the center of the plate for
different load increments. Comparing the RBF results with the
s̄b

r Analytical FEM RBF %Error

8 0.1526 0.1526 0.1537 0.7208

4 0.2944 0.2935 0.295 0.5111

2 0.4205 0.4175 0.4187 0.2874

7 0.531 0.5244 0.525 0.1144

5 0.6282 0.6168 0.6167 0.0162

7 0.7145 0.6974 0.6966 0.1147

1 0.7919 0.7686 0.7671 0.1952

1 0.8621 0.832 0.8298 0.2644

6 0.9264 0.8893 0.8866 0.3036

7 0.9857 0.9413 0.9377 0.3824

3 1.0409 0.9889 0.9853 0.3640

3 1.0924 1.0329 1.0287 0.4066

8 1.1409 1.0737 1.0663 0.6892

6 1.1867 1.1117 1.1153 0.3238

2 1.23 1.1189 1.1423 2.0913

6 1.2713 1.1261 1.1701 3.9073

s̄b

RBF %Error FEM RBF %Error

0.457 0.4396 1.1261 1.1701 3.9073

0.4552 0.3970 1.1707 1.1646 0.5211

0.4498 0.2005 1.1515 1.1454 0.5297

0.4410 0.2957 1.1158 1.1110 0.4302

0.4289 0.0700 1.0614 1.0581 0.3109

0.4139 0.1929 0.9839 0.9819 0.2033

0.3962 0.5023 0.8766 0.8765 0.0114

0.3766 0.7642 0.7323 0.7350 0.3687

0.3533 1.5329 0.5448 0.5502 0.9912

0.3138 3.4960 0.337 0.3205 4.8961

a

a

x

y

Fig. 3. Boundary and domain node distribution for Example 2 (NB ¼ 36; ND ¼ 81).
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Table 5
Deflection and stresses at the center of plate vs. load q̄

q̄ w̄ s̄m s̄b

FEM RBF %Error FEM RBF %Error FEM RBF %Error

3.67 0.0506 0.0503 0.5929 0.00850 0.00842 0.9412 0.504 0.5016 0.4762

7.33 0.1008 0.1002 0.5952 0.0337 0.0334 0.8902 1.0028 0.998 0.4787

11.00 0.1502 0.1493 0.5992 0.0749 0.0742 0.9346 1.4915 1.4844 0.4760

14.67 0.1985 0.1974 0.5542 0.1308 0.1295 0.9939 1.966 1.9569 0.4629

18.33 0.2455 0.2441 0.5703 0.2000 0.198 1.0000 2.4232 2.4124 0.4457

22.00 0.2910 0.2894 0.5498 0.2806 0.278 0.9266 2.8608 2.8485 0.4299

25.67 0.3349 0.3331 0.5375 0.3713 0.3679 0.9157 3.2776 3.2641 0.4119

29.33 0.3771 0.3751 0.5304 0.4705 0.4662 0.9139 3.6731 3.6586 0.3948

33.00 0.4177 0.4154 0.5506 0.5766 0.5713 0.9192 4.0473 4.032 0.3780

36.67 0.4566 0.4542 0.5256 0.6884 0.6821 0.9152 4.4009 4.385 0.3613

40.33 0.4939 0.4913 0.5264 0.8045 0.7975 0.8701 4.7345 4.7182 0.3443

44.00 0.5297 0.5270 0.5097 0.9247 0.9165 0.8868 5.0492 5.0327 0.3268

47.67 0.5641 0.5612 0.5141 1.0473 1.0383 0.8594 5.3462 5.3296 0.3105

51.33 0.597 0.5941 0.4858 1.1723 1.1623 0.8530 5.6265 5.61 0.2933

55.00 0.6287 0.6257 0.4772 1.2988 1.2878 0.8469 5.8913 5.8749 0.2784

58.67 0.6592 0.6560 0.4854 1.4265 1.4145 0.8412 6.1415 6.1255 0.2605

62.33 0.6886 0.6853 0.4792 1.5549 1.542 0.8296 6.3786 6.3629 0.2461

66.00 0.7169 0.7135 0.4743 1.6838 1.6699 0.8255 6.6031 6.5879 0.2302

69.67 0.7442 0.7407 0.4703 1.8130 1.798 0.8274 6.8161 6.8014 0.2157

73.33 0.7705 0.7670 0.4543 1.9421 1.9262 0.8187 7.0188 7.0044 0.2052

77.00 0.796 0.7924 0.4523 2.0711 2.0542 0.8160 7.2113 7.1975 0.1914

80.67 0.8207 0.8170 0.4508 2.1997 2.1819 0.8092 7.3944 7.3815 0.1745

84.33 0.8446 0.8409 0.4381 2.3279 2.309 0.8119 7.5695 7.5571 0.1638

88.00 0.8678 0.864 0.4379 2.4555 2.436 0.7941 7.7364 7.7247 0.1512

Table 6
Distribution of deflection and stresses (at y ¼ 0.5) for q̄ ¼ 88

x/a w̄ s̄m s̄b

FEM RBF %Error FEM RBF %Error FEM RBF %Error

0.05 0.043 0.0409 4.8837 1.9703 1.9192 2.5935 �12.692 �13.1659 3.7338

0.1 0.1451 0.142 2.1365 2.0602 2.0394 1.0096 �5.764 �5.874 1.9084

0.15 0.2754 0.2719 1.2709 2.1404 2.109 1.4670 �0.8577 �0.8734 1.8305

0.2 0.4126 0.4089 0.8968 2.2145 2.1883 1.1831 2.521 2.484 1.4677

0.25 0.5424 0.5387 0.6822 2.2821 2.2571 1.0955 4.7606 4.7357 0.5230

0.3 0.6558 0.652 0.5794 2.3412 2.3187 0.9610 6.1725 6.1544 0.2932

0.35 0.7473 0.7435 0.5085 2.3899 2.3686 0.8913 7.007 6.9926 0.2055

0.4 0.8139 0.8101 0.4669 2.4259 2.4057 0.8327 7.4604 7.4477 0.1702

0.45 0.8543 0.8505 0.4448 2.4481 2.4283 0.8088 7.6747 7.6628 0.1551

0.5 0.8678 0.864 0.4379 2.4555 2.436 0.7941 7.7364 7.7247 0.1512
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corresponding ones obtained by FEM shows that they are in a very
good agreement. In Table 6, the profiles for deflection and stresses
at y ¼ 0.5a under the maximum load q̄ ¼ 88 are given. Note that
values for 0:5px=ap1:0 are reflections of values 0:0px=ap0:5
and therefore, they are not included in the table. The maximum
error for this problem is 4.88% for the displacement near the
boundary at x/a ¼ 0.05. As a last example, let us repeat the above
problem by assuming simply supported edges for the plate. Exact
solution does not exist for this problem, either, and therefore,
comparison is made with FEM solution only. The load has been
increased with equal increments of 1.375 until the total load has
been applied. Table 7 shows the deflection w̄, the membrane
stress s̄m and the bending stress s̄b computed at the center of the
plate for different load increments, while Table 8 gives the profiles
for deflection and stresses at y ¼ 0.5a under the maximum load
q̄ ¼ 33. Once again, both tables show very good agreements
between RBF and the FEM solutions with a maximum relative
error of 4.77% occurring for the bending stress at x/a ¼ 0.05. It
should be noted that the maximum errors for all the three
examples occur for solutions near the boundary.
5. Conclusions

This work is an extension of the previous work on the use of
RBF for large deflection of thin plates. The current paper addresses
the case of plates having immovable edges. The method presented
here is based on the use of a fifth-order polynomial RBF to build
approximations of the three components of the plate displace-
ment. The solution is obtained by collocating the governing and
boundary conditions equations at some selected points on the
boundary and inside the domain. The employed polynomial RBF
does not require a shape parameter, which makes it more efficient
than other RBFs. Furthermore, the method can be easily extended
to other non-linear problems.
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Table 7
Deflection and stresses at the center of plate vs. load q̄

q̄ w̄ s̄m s̄b

FEM RBF %Error FEM RBF %Error FEM RBF %Error

1.375 0.0606 0.0607 0.1650 0.0112 0.0112 0.0000 0.3931 0.3925 0.1526

2.750 0.1195 0.1195 0.0000 0.0435 0.0435 0.0000 0.7734 0.772 0.1810

4.125 0.1753 0.1752 0.0570 0.0937 0.0936 0.1067 1.1315 1.1291 0.2121

5.500 0.2272 0.227 0.0880 0.1574 0.1572 0.1271 1.4623 1.4648 0.1710

6.875 0.2752 0.2748 0.1453 0.2311 0.2305 0.2596 1.765 1.7653 0.0170

8.250 0.3194 0.3188 0.1879 0.3113 0.3103 0.3212 2.0407 2.0384 0.1127

9.625 0.36 0.3594 0.1667 0.396 0.3944 0.4040 2.2919 2.2868 0.2225

11.000 0.3977 0.3968 0.2263 0.4833 0.481 0.4759 2.5212 2.5134 0.3094

12.375 0.4326 0.4314 0.2774 0.572 0.569 0.5245 2.7315 2.7212 0.3771

13.750 0.465 0.4648 0.0430 0.6614 0.6625 0.1663 2.9249 2.9124 0.4274

15.125 0.4954 0.4947 0.1413 0.7508 0.7508 0.0000 3.1037 3.0893 0.4640

16.500 0.5238 0.5227 0.2100 0.84 0.8388 0.1429 3.2696 3.2536 0.4894

17.875 0.5507 0.5492 0.2724 0.9287 0.9261 0.2800 3.4243 3.407 0.5052

19.250 0.576 0.5741 0.3299 1.0166 1.0127 0.3836 3.5691 3.5505 0.5211

20.625 0.6 0.5978 0.3667 1.1038 1.0983 0.4983 3.7049 3.6935 0.3077

22.000 0.6229 0.6203 0.4174 1.19 1.1831 0.5798 3.8328 3.8212 0.3027

23.375 0.6447 0.6417 0.4653 1.2753 1.2669 0.6587 3.9537 3.9331 0.5210

24.750 0.6656 0.6623 0.4958 1.3596 1.3498 0.7208 4.0683 4.0473 0.5162

26.125 0.6855 0.6819 0.5252 1.4431 1.4319 0.7761 4.177 4.1559 0.5051

27.500 0.7047 0.702 0.3831 1.5255 1.5139 0.7604 4.2805 4.2686 0.2780

28.875 0.7231 0.7189 0.5808 1.607 1.5941 0.8027 4.3793 4.3688 0.2398

30.250 0.7409 0.7364 0.6074 1.669 1.6717 0.1618 4.4552 4.4526 0.0584

31.625 0.758 0.7533 0.6201 1.7672 1.7533 0.7866 4.5641 4.5434 0.4535

33.000 0.7746 0.7695 0.6584 1.8461 1.8295 0.8992 4.6509 4.6263 0.5289

Table 8
Distribution of deflection and stresses (at y ¼ 0.5) for q̄ ¼ 33:0

x/a w̄ s̄m s̄b

FEM RBF %Error FEM RBF %Error FEM RBF %Error

0.05 0.1331 0.1316 1.1270 1.9535 1.9242 1.4999 1.5006 1.382 4.7714
0.1 0.2603 0.2578 0.9604 1.9579 1.9265 1.6038 2.5985 2.5254 2.8132

0.15 0.3773 0.3741 0.8481 1.9501 1.9218 1.4512 3.3791 3.3274 1.5300

0.2 0.4813 0.4776 0.7688 1.9345 1.9081 1.3647 3.9114 3.8721 1.0048

0.25 0.5706 0.5664 0.7361 1.9145 1.8908 1.2379 4.2545 4.2226 0.7498

0.3 0.644 0.6395 0.6988 1.8935 1.8721 1.1302 4.4599 4.432 0.6256

0.35 0.7012 0.6965 0.6703 1.8744 1.855 1.0350 4.5715 4.5456 0.5666

0.4 0.742 0.7371 0.6604 1.8592 1.8413 0.9628 4.6246 4.5996 0.5406

0.45 0.7664 0.7614 0.6524 1.8494 1.8325 0.9138 4.6457 4.621 0.5317

0.5 0.7746 0.7695 0.6584 1.8461 1.8295 0.8992 4.6509 4.6263 0.5289
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