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In the Trefftz method (TM), the admissible functions satisfying the governing equation are chosen, then

only the boundary conditions are dealt with. Both fundamental solutions (FS) and particular solutions

(PS) satisfy the equation. The TM using FS leads to the method of fundamental solutions (MFS), and the

TM using PS to the method of particular solutions (MPS). Since the MFS is one of TM, we may follow our

recent book [20,21] to provide the algorithms and analysis. Since the MFS and the MPS are meshless,

they have attracted a great attention of researchers. In this paper numerical experiments are provided to

support the error analysis of MFS in Li [15] for Laplace’s equation in annular shaped domains. More

importantly, comparisons are made in analysis and computation for MFS and MPS. From accuracy and

stability, the MPS is superior to the MFS, the same conclusion as given in Schaback [24]. The uniform FS

is simpler and the algorithms of MFS are easier to carry out, so that the computational efforts using MFS

are much saved. Since today, the manpower saving is the most important criterion for choosing

numerical methods, the MFS is also beneficial to engineering applications. Hence, both MFS and MPS

may serve as modern numerical methods for PDE.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The Trefftz method (TM) as boundary methods has been fully
developed in theory and computation for several decades (see
[20]), where the particular solutions (PS) are used. In fact, the
method of fundamental solutions (MFS) originated by Kupradze
[11] is one of TM using fundamental solutions (FS). In order to
distinguish easily their differences, in this paper, the TM using PS
is called the method of particular solutions (MPS), as in Betcke
and Trefethen [2].2 Both the MFS and MPS belong to TM, and they
can be carried out by the collocation TM (CTM) in [20]. Since both
MFS and MPS are meshless, they have attracted a great attention
of researchers. It is a time to explore MFS and MPS together, and to
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ions (MPS) is referred only to

nonhomogeneous equations,

mparisons of fundamental
009.08.108
provide their comparisons. In fact, some comparisons of MFS and
MPS have been addressed in Schaback [24]. In this paper, their
comprehensive comparisons are explored in both analysis and
computation.

Take the Laplace equation in 2D for example (see Fig. 1). If the
solution is smooth, the harmonic polynomials of order n are used
as the particular solutions in MPS, and if the solution has the
corner singularity with OðraÞð14 oao2Þ, the singular solutions
given in [20], Chapter 11, are also used as the particular solutions
in TM. Note that the harmonic particular solutions look quite
differently, depending on the domain angles and the boundary
conditions. On the other hand, the invariant fundamental solution,
ln r, is used in TM, so that the algorithms of MFS are simple and
easy to carry out. More importantly, the algorithms and programs
of MFS for engineering problems do not need much mathematical
background, so that even students in high school may learn and
use MFS easily.

For smooth solutions of Laplace’s equation, the errors of MFS
will not be smaller than those of MPS using harmonic poly-
nomials. It is also proven by Schaback [24] that, when R-1, the
fundamental solutions (FS) go to the harmonic polynomials.
However, the instability of MFS (even with small R) is much worse
than that of MPS using harmonic polynomials, since both
condition number and effective condition number grow exponen-
solutions and particular solutions for Trefftz methods. Eng Anal
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tially for the MFS, see [19]. Hence, using the harmonic poly-
nomials is superior to the FS for smooth solutions. Moreover, the
MFS is inefficient for corner singularity, except for using some
techniques, such as local refinements or adding singular functions
(see Li [14]). For engineering problems, although MPS is more
efficient and beneficial than MFS, the manpower using MFS is
much saving. Since today, the computational saving is the most
important criterion for choosing numerical methods, both MFS
and MPS may serve as modern numerical methods for PDE.

Since no method is perfect, a natural strategy is to use the
singular particular solutions to deal with corner singularity, and
the FS for the rest of the solution domain S. Hence, the TM using
both the FS and the PS should be adapted simultaneously in the
TM, to provide the combination of MFS and MPS. Numerical
experiments for the benchmark Motz’s problem are reported in Li
[13], to display the significance of such combined algorithms.

In this paper, we will focus on MFS, but briefly provide MPS,
which (i.e., the TM using PS) is described in [20] systematically.
This paper is organized as follows. For Laplace’s equation on
bounded domains, in the next section the algorithms of MFS and
MPS are described, and in Section 3 the error and stability analysis
is briefly provided. In Sections 4 and 5, two numerical experi-
ments are reported to support the analysis in [15], and to make
comparisons of MFS and MPS. In the last section, a few remarks
are made.
2. Algorithms of MFS and MPS

Consider Laplace’s equation with the mixed boundary pro-
blems of the Dirichlet and the Robin boundary conditions,

Du¼
@2u

@x2
þ
@2u

@y2
¼ 0 in S; ð2:1Þ

u¼ f on GD; ð2:2Þ

@u

@n þau¼ g on GR; ð2:3Þ
Please cite this article as: Li Z-C, et al. Comparisons of fundamental
Bound Elem (2009), doi:10.1016/j.eujim.2009.08.108
where a is a non-negative constant, S the bounded simply
connected domain with the boundary @S¼GD [ GR, and n the
exterior normal of G. Denote in Fig. 1,

rmax ¼max
S

r; rmin ¼ max
SinðSin DSÞ

r; ð2:4Þ

where Sin is the maximal disc inside of S. Let the source (charge)
points Q be located outside of S. The fundamental solutions

fðr; yÞ ¼ lnjPQ j; PAS [ @S ð2:5Þ

are harmonic, where

P¼ fðx; yÞjx¼ rcosy; y¼ rsinyg: ð2:6Þ

A circle surrounding S is given by

‘R ¼ fðr; yÞjr¼ R; 0ryr2pg; R4rmax: ð2:7Þ

Based on Bogomolny [3], the source points Qi may be simply
located uniformly on ‘R:

Qi ¼ fðx; yÞjx¼ Rcosih; y¼ Rsinihg; ð2:8Þ

where R4rmax and h¼ 2p=N. We obtain the fundamental
solutions

fiðPÞ ¼ lnjPQ i j; i¼ 1;2; . . . ;N; ð2:9Þ

and the numerical solution is given by the linear combination

uN ¼
XN

i ¼ 1

cifiðPÞ; ð2:10Þ

where ci are the unknown coefficients to be sought. Since uN

satisfies Laplace’s equation in S already, the coefficients ci can be
sought by satisfying the boundary conditions (2.2) and (2.3) only.
We will follow the Trefftz method [25] (TM) in [12,20], to seek uN

(i.e., ci). Denote the energy

IðuÞ ¼

Z
GD

ðu� f Þ2þw2

Z
GR

@u

@n þau� g

� �2

; ð2:11Þ

where w is a positive weight. We choose w¼ 1=N in our
computations (see [12]). Denote by VN the finite dimensional
collection of (2.10). Then the numerical solution uN can be
obtained by

IðuNÞ ¼min
vAVN

IðvÞ: ð2:12Þ

When the integrals in (2.11) involve approximation, denote

ÎðvÞ ¼

Ẑ
GD

ðv� f Þ2þw2

Ẑ
GR

@v

@n
þav� g

� �2

; ð2:13Þ

where
R̂
GD

and
R̂
GR

are the numerical approximations of
R
GD

andR
GR

respectively, by some quadrature rules, such as the central or
the Gaussian rule. Hence, the numerical solution ~uN AVN is
obtained by

Îð ~uNÞ ¼min
vAVN

ÎðvÞ: ð2:14Þ

We may establish the collocation equations directly from (2.2)
and (2.3), to yield

XN

i ¼ 1

cifiðPjÞ ¼ f ðPjÞ; PjAGD; ð2:15Þ

XN

i ¼ 1

ci
@

@nfiðPjÞþafiðPjÞ

� �
¼ gðPjÞ; PjAGR: ð2:16Þ

First, let GD and GR be divided into small Gj
D and Gj

R with the mesh
spacings Dhj, i.e.,

GD ¼
[M1

j ¼ 1

Gj
D; GR ¼

[M2

j ¼ 1

Gj
R: ð2:17Þ
solutions and particular solutions for Trefftz methods. Eng Anal
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We obtain from (2.15) and (2.16) by multiplying different
weights,

ffiffiffiffiffiffiffiffi
Dhj

q XN

i ¼ 1

cifiðPjÞ ¼

ffiffiffiffiffiffiffiffi
Dhj

q
f ðPjÞ; PjAGj

D; j¼ 1;2; . . . ;M1; ð2:18Þ

w
ffiffiffiffiffiffiffiffi
Dhj

q XN

i ¼ 1

ci
@

@n
fiðPjÞþafiðPjÞ

� �
¼w

ffiffiffiffiffiffiffiffi
Dhj

q
gðPjÞ;

PjAGj
R; j¼M1þ1; . . . ;M1þM2; ð2:19Þ

where for simplicity, Pj are the midpoints of Gj
D and Gj

R. Following
[20], Eqs. (2.18) and (2.19) are just equivalent to (2.14), where the
central rule is chosen for

R̂
GD

and
R̂
GR

. In computation, we may
choose the number of collocation points to be equal or larger than
that of source points, i.e.

M¼M1þM2ZN: ð2:20Þ

When the Gaussian rule is chosen, the following collocation
equations are obtained:

bj

XN

i ¼ 1

cifiðPjÞ ¼ bjf ðPjÞ; PjAGD; ð2:21Þ

wbj

XN

i ¼ 1

ci
@

@nfiðPjÞþafiðPjÞ

� �
¼wbjgðPjÞ; PjAGR; ð2:22Þ

where Pj are the Gaussian nodes, the weights bj ¼Oð
ffiffiffiffiffiffiffi
Dh
p
Þ, and

Dh¼maxjDhj. Eqs. (2.21) and (2.22) (i.e., (2.14)) are called the
collocation Trefftz method (CTM) in [20]. For smooth solution of
(2.1)–(2.3), we choose the harmonic polynomials of order n (i.e.
particular solutions),

unðr; yÞ ¼
a0

2
þ
Xn

i ¼ 1

r

r0

� �i

faicos iyþbisin iyg; ð2:23Þ

where ai and bi are the coefficients to be sought by the MPS, and r0

the radius parameter to be chosen for better accuracy and stability
(details appear elsewhere). Let the functions uN in (2.10) be
replaced by (2.23); the algorithms of MPS are described in the
same way as the MFS above.
3. Brief error and stability analysis

In this paper, we focus on the error analysis of MFS, since the
analysis of MPS can be found from [12,20]. The error bounds are
provided for the mixed boundary problems in bounded simply
connected domains. Since the MFS can be classified into the
Trefftz method (TM) using the FS, we may follow the analysis of
TM in [12,20], and pay an attention only to the extra-errors
between harmonic polynomials and the fundamental solutions
(FS) in [3]. By our analysis, when the Laplace’s solutions are
infinitely smooth, the exponential convergence rates can also be
achieved as in [20]. However, when uAHpðSÞðp4 3

2Þ, only the
polynomial convergence rates are obtained. Since we may extend
the basic analysis of the TM to that of the MFS, more interesting
results of algorithms and analysis of MFS may follow [12,20].

Choose

uN ¼
XN

i ¼ 1

cifiðr; yÞ; ðr; yÞAS; ð3:1Þ

where

fiðr;yÞ ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2þr2 � 2Rrcosðy� xiÞ

q
; ð3:2Þ
Please cite this article as: Li Z-C, et al. Comparisons of fundamental
Bound Elem (2009), doi:10.1016/j.eujim.2009.08.108
ciðr; yÞ ¼
@

@n
fiðr; yÞ ¼ �

acosðy� xiÞ � 1

rða2þ1� 2acosðy� xiÞÞ
; ð3:3Þ

with xi ¼ ih;h¼ 2p=N and a¼ R=r41.
Also let VN denote the set of the admissible functions in (3.1).

Denote the boundary norm,

JvJB ¼ JvJ2
0;GD
þw2 @v

@n
þau

				
				

2

0;GR

( )1=2

; ð3:4Þ

where JvJ0;GD
is the Sobolev norm. The solution by the TM, (2.12)

also satisfies

Ju� uNJB ¼min
vAVN

Ju� vJB: ð3:5Þ

Denote the fundamental solutions

vN ¼
XN

i ¼ 1

cilnjPQ i j; ð3:6Þ

and PAðS [ @SÞ, and Qi are given in (2.8). We can obtain the
following lemma without proof (also see [3,15,14,12,20]).

Lemma 3.1. Let uAHpðSÞðp4 3
2Þ hold. Choose w¼ 1=N, and suppose

that N satisfies

R

rmax

� �2n�N rmax

rmin

� �n

rn�p; ð3:7Þ

where n is the order of harmonic polynomials in (2.23). Then for

(2.1)–(2.3) the solution uN by the MFS has the error bound,

Ju� uNJB ¼O
1

Nðp�1=2Þ

� �
: ð3:8Þ

Lemma 3.2. Suppose that there exists a positive constant m
independent of N such that

jvj1;GD
rCNmJvJ0;GD

; vAVN : ð3:9Þ

For Dv¼ 0, there exists the bound,

JvJ1;SrC Nm=2þ
1

w

� �
JvJB: ð3:10Þ

Based on Lemmas 3.1 and 3.2, we obtain the following theorem
(see [14]).

Theorem 3.1. Let the conditions in Lemmas 3.1 and 3.2 hold. Then

for (2.1)–(2.3), the numerical solution by the MFS (i.e., the TM using

FS) has the error bound,

Ju� uNJ1;S ¼ O
1

Np�t

� �
; ð3:11Þ

where t¼ 1
2 þmaxf1;m=2g.

We use the bounds of condition number and effective condition
number for stability analysis. From (2.18) and (2.19) (as well as
(2.21) and (2.22)), we obtain the linear algebraic equations

Fx¼ b; ð3:12Þ

where FARm�nðmZnÞ, xARn and bARm. Assume that rankðFÞ ¼ n.
The condition number for (3.12) is defined by

Cond¼
s1

sn
; ð3:13Þ

where s1 and sn are the maximal and the minimal singular values
of matrix F, respectively. From [16], we may define the effective
condition number

Cond_eff ¼
JbJ

snJxJ
: ð3:14Þ

Since the effective condition number is smaller, or even much
smaller than the Cond, the Cond_eff is a better criterion of
solutions and particular solutions for Trefftz methods. Eng Anal



ARTICLE IN PRESS

−2

0

2

4

6

O

Rin

Q0

Q1

Q0
*

Q1
*

Γ

Γin

S

y

Z.-C. Li et al. / Engineering Analysis with Boundary Elements ] (]]]]) ]]]–]]]4
stability. The Cond is the a priori estimate for stability; the
Cond_eff is the a posteriori estimate for stability (see [16]).

In Li and Huang [17], the effective condition number is further
explored. From the over-determined system Fx¼ b and the
perturbed system ðFþDFÞðxþDxÞ ¼ bþDb, where
FARm�nðmZnÞwith rankðAÞ ¼ rrn, the new formulas are derived
as follows:

JDxJ

JxJ
r Condeff �

JrJ

JbJ
; ð3:15Þ

where JxJ is the 2-norm, r¼Db¼ b� FðxþDxÞ, the effective
condition number is defined in (3.14). Moreover, for the
nonsingular F¼AARn�n, it is well known that the error bounds
from the perturbation of both matrix F and b are given by (see
Atkinson [1])

JDxJ

JxJ
r

1

1� d
� Cond�

JDAJ

JAJ
þCond�

JDbJ

JbJ

� �
; ð3:16Þ

where d¼ JAJ=sno1. In [17] the following new error bounds are
derived:

JDxJ

JxJ
r

1

1� d
� Cond�

JDAJ

JAJ
þCondeff �

JDbJ

JbJ

� �
: ð3:17Þ

In numerical partial differential equations (PDE), Db is obtained not
only from rounding errors, but also from discretization errors. Since
the discretization errors are dominant in general, we conclude from
(3.17) that the effective condition number defined in (3.14) is
important. This implies that the effective condition number is the
appropriate criterion for stability analysis of the numerical PDE.

The bounds of Cond of MFS for bounded simply connected
domains are given by the following theorem in Li et al. [19].

Theorem 3.2. Let mA ½1;2� and choose w¼Oð1=NÞ, and for (2.1)–(2.3)
the discrete Eq. (3.12) be obtained from the MFS, there exists the bound,

CondðFÞ ¼
smaxðFÞ

sminðFÞ
rCN2 R

rmin

� �N=2

: ð3:18Þ

For MFS, both Cond and Cond_eff grow exponentially. In
contract, for MPS, Cond_eff may grow polynomially. Hence, the
ill-conditioning of MFS is much worse than that of MPS.
Fortunately, it is due to Mathematica with unlimited digits so
that the severity of ill-conditioning of MFS is relaxed in some
sense.

In Chen et al. [5,6], comparisons are made for MFS and MPS to
solve Laplace’s and biharmonic equations. Since their algorithms
are similar, the equivalence of MFS and MPS is called. Note that
their errors may be different, and the ill-conditioning of MFS is
more severe. The equivalence may be interpreted as some
similarity of MFS and MPS in algorithms.

In Schabak [24], several simple examples for Laplace’s equation
in bounded simply connected domains are discussed, and some
comparisons of MFS and MPS are made. Below, we will give two
advanced examples: annular problems of Laplace’s equation and
biharmonic problems, to explore further comprehensive compar-
isons of MFS and MPS.
−8 −6 −4 −2 0 2 4 6 8

−6

−4
R

x

Fig. 2. An annular shaped domain.
4. Annular shaped domains

A relation of algorithms between the MFS and the MPS is also
discussed in Chen et al. [6]. The error bounds of the MFS are
derived in Li [15] for annular shaped domains without numerical
examples. The purposes of the numerical experiments in this
section are twofold: (1) to support the analysis in [15] and (2) to
compare MFS and MPS.
Please cite this article as: Li Z-C, et al. Comparisons of fundamental
Bound Elem (2009), doi:10.1016/j.eujim.2009.08.108
Consider

Du¼ 0; in S;

ujGin
¼ gin; ujG ¼ g; ð4:1Þ

where S is the annular shaped domain, Gin and G are the inner and
the outer boundaries, respectively see Fig. 2. Choose the
epitrochoid boundary curve as in Liu [23]

rðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþbÞ2þ1� 2ðaþbÞcos

ay
b

� �s
: ð4:2Þ

Let G be an exterior circle with a radius R ¼ 6, and Gin as (4.2)
with a¼ 3 and b¼ 1. We can see

rmaxjS ¼ R; Rin
min ¼min rjGin

¼ 3:

We choose the Trefftz method (TM) using fundamental solution
(FS) and particular solution (PS), and provide their comparisons.

Denote

lR ¼ fðx; yÞjx¼ R�cosy; y¼ R�sinyg;

R�4R;

and

lRin
¼ fðx; yÞjx¼ Rincosy; y¼ Rinsinyg;

R¼ RinorminjGin
¼ 3:

4.1. Fundamental solutions

Let QiA lR and Q�i A lRin
, where

QiAfðx; yÞjx¼ Rcosy; y¼ Rsinyg; R4R ¼ 6;

Q�i Afðx; yÞjx¼ Rincosy; y¼ Rinsinyg; RinorminjGin
¼ 3: ð4:3Þ

Choose fi ¼ lnjPQ i j and ci ¼ lnjPQ�i j, where

Qi ¼ i
2p
N
; Q�j ¼ j

2p
M
; PAS [ @S; ð4:4Þ
solutions and particular solutions for Trefftz methods. Eng Anal
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Fig. 3. Exact solution.

Table 1
Errors and condition numbers for the annular shaped domain by the MFS with

Rin ¼ 1:6;R¼ 7:4.

Ntot N M M jejB jejG� ;1 Cond Cond_eff JxJ2

21 16 4 25 11.79 7.66 3.38(4) 2.69(2) 4.92(2)

41 32 8 50 6.24 3.83 2.55(6) 5.21(2) 1.49(4)

61 48 12 75 1.25(�1) 9.62(�2) 1.30(8) 7.61(5) 4.27(2)

81 64 16 100 3.07(�3) 1.98(�3) 5.68(9) 3.43(7) 3.57(2)

101 80 20 125 8.26(�5) 6.37(�5) 2.26(11) 1.43(9) 3.10(2)

121 96 24 150 2.35(�6) 1.78(�6) 8.49(12) 5.29(10) 2.82(2)

141 112 28 175 6.90(�8) 5.32(�8) 3.06(14) 1.91(12) 2.61(2)

161 128 32 200 2.08(�9) 1.50(�9) 1.07(16) 5.84(13) 2.44(2)

3 For N ¼ 4M, Rin ¼ 1:6 and R¼ 7:4, the details of trial computations are

omitted.
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and the linear combination:

uN;M ¼ c0þ
XN

i ¼ 1

cilnjPQ i jþ
XM
i ¼ 1

dilnjPQ�i j; ð4:5Þ

where ci and di are the unknown coefficients to be determined by
MFS.

Denote VN;M the finite dimensional collection of (4.5), and the
energy by

IðvÞ ¼

Ẑ
Gin

ðv� ginÞ
2
þ

Ẑ
G
ðv� gÞ2; ð4:6Þ

where
R̂
Gin

and
R̂
G are the integration approximation of

R
Gin

andR
G. The method of fundamental solutions (MFS) reads: to find uN;M

such that

IðuN;MÞ ¼min IðvÞ; vAVN;M : ð4:7Þ

We may easily provide the discrete collocation equations on Gin [

G as in Section 2.
Since the annular domain is bounded, we do not need the FS

for unbounded domains. Hence we still use

fi ¼ lnjPQ i j:

For the unbounded domains, however, we should use the bounded
fundamental solutions:

uL ¼ c0þ
XN

i ¼ 1

ciciðrÞ;

where

ciðrÞ ¼ lnjPQ i j � lnjOP j

¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

R

r

� �2

� 2
R

r

� �
cosðy�jiÞ

s
; ji ¼

2p
N

i:

Let S be split into two subdomains, Sþ and S�, where Sþ and S�

may have an overlap only for an intermediate region of S. We cite
the error bounds in Li [15] in the following theorem.

Theorem 4.1. Let uAHpðSþ Þ and uAHsðS�Þðp;sZ 3
2Þ hold. Let N

and M satisfy respectively

R

rmax

� �2n�N rmax

rmin

� �n

r
1

nðp�1=2Þ
; ð4:8Þ

rin
min

Rin

 !2n�M
rin

max

rin
min

 !n

r
1

nðs�1=2Þ
; ð4:9Þ

where n is the order of harmonic polynomials in (2.23). For the

Dirichlet problem on the annular shaped domain, there exists the

optimal error bound,

Ju� uN;MJ0;SrC
1

Np
JuJp;Sþ þ

1

Ms JuJs;S�

� �
; ð4:10Þ

where C is a constant independent of N and M.

4.2. Particular solutions

Let the exact solution of (4.1) be

uðx; yÞ ¼ exp
y

x2þy2

� �
cos

x

x2þy2

� �
þexpðyÞcosðxÞ; ð4:11Þ

with two singular points r¼ 0 and1. A solution profile of (4.11) is
provided in Fig. 3. Since no symmetry exists, the particular
Please cite this article as: Li Z-C, et al. Comparisons of fundamental
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solutions are given by

uN1 ;M1
ðr; yÞ ¼ a0þ

XN1

i ¼ 1

r

r0

� �i

ðaicos iyþbisin iyÞ

þa�0lnrþ
XM1

i ¼ 1

r�0
r

� �i

ða�i cos iyþb�i sin iyÞ; ð4:12Þ

where r0 and r�0 are parameters, and ai, bi, a�i , and b�i are the
coefficients to be sought by MPS.
4.3. Numerical experiments

Denote the errors

jejB ¼
Z
G
e2þ

Z
Gin

e2

� �1=2

; ð4:13Þ

jejG� ;1 ¼max
G[Gin

jej; ð4:14Þ

where e¼ u� uM;N . For simplicity, in computation we choose the
same number M of collocation nodes for G and Gin. Then the total
number of collocation nodes is 2M .

We use Matlab with double precision, and the numerical
results are given in Tables 1–4. Table 1 lists errors and condition
numbers under the optimal matches: N¼ 4M, and good choices:
Rin ¼ 1:6 and R¼ 7:4.3 Based on Table 1, the curves of errors and
solutions and particular solutions for Trefftz methods. Eng Anal
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Table 2
The errors and condition numbers for the annular shaped domain by the MFS with

NþM¼ 100 and M ¼ 125.

N M jejB jejG� ;1 Cond Cond_eff

0 100 568.03 360.44 2.04(17) 4.90

10 90 543.69 314.34 1.56(17) 10.25

20 80 51.67 24.37 8.01(16) 61.96

30 70 10.45 8.40 1.12(15) 4.92(4)

40 60 8.50(�1) 6.38(�1) 1.38(13) 4.80(6)

50 50 7.81(�2) 6.05(�2) 1.84(11) 6.98(8)

60 40 7.67(�3) 5.91(�3) 2.45(9) 1.37(7)

70 30 7.84(�4) 6.05(�4) 2.37(10) 1.41(8)

80 20 8.26(�5) 6.37(�5) 2.26(11) 1.40(9)

90 10 5.53(�4) 2.90(�4) 2.18(14) 1.34(10)

100 0 7.27(�1) 2.30(�1) 5.36(15) 1.36(7)

Table 3
The results for the annular shaped domain the MFS using (4.19) with outer source

points only.

N M jejB jejG� ;1 Cond Cond_eff

20 25 53.4 25.5 4.76(5) 685.37

40 50 1.36 7.85(�1) 2.44(8) 2.10(5)

60 75 7.27(�1) 2.31(�1) 8.08(10) 6.27(7)

80 100 7.27(�1) 2.31(�1) 2.20(13) 6.36(6)

100 125 7.27(�1) 2.31(�1) 5.36(15) 1.36(7)

120 150 7.27(�1) 2.31(�1) 8.02(16) 7.83(4)

140 175 7.27(�1) 2.31(�1) 1.53(17) 5.62(4)

Table 4
The results for the annular shaped domain by the MFS using (4.20) with inner

source points only.

M M jejB jejG� ;1 Cond Cond_eff

20 25 806.1 365 4.24(5) 6.34

40 50 603.2 352.8 7.67(9) 71.1

60 75 9.06(3) 6.10(3) 3.68(14) 74.1

80 100 569.6 358.6 1.08(17) 20.4

100 125 568 360.4 – 4.90

120 150 568 359.7 – 3.02

140 175 568 360.5 – 8.03
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Fig. 4. The curves of errors for the annular shaped domain by the MFS, where the

solid and the dashed lines are the curves of jejG� ;1 and Cond, respectively.
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condition numbers are drawn in Fig. 4. From Table 1 we can see

jejB; jejG� ;1 ¼Oð0:836Ntot Þ; ð4:15Þ

Cond; Condeff ¼ Oð1:19Ntot Þ; ð4:16Þ

where Ntot ¼NþM. The error bounds are exponential with respect
to Ntot , since the solution (4.11) is highly smooth in the annular
shaped domain S. This also coincides with Theorem 4.1, to support
the analysis in [15].

On the other hand, the bounds of condition number and
effective condition number are also exponential with respect
to Ntot . Interestingly, we can see from (4.15) and (4.16) that

jejG� ;1 � Cond¼Oð1Þ: ð4:17Þ

We will draw the curves in Figs. 4–6 only for jejG� ;1. From Table 2
and Fig. 5, we have discovered that the ratio

N

M
¼ 4 ð4:18Þ

is optimal for Ntot ¼MþN¼ 100 and M ¼ 125. Then we use
N¼ 4M in computation.

We also choose the following fundamental solutions:

uN ¼ c0þ
XN

i ¼ 1

cilnjPQ i j ð4:19Þ

and

uM ¼ c0þ
XM
i ¼ 1

dilnjPQ�i j: ð4:20Þ

The accuracy of the numerical solutions by the MFS using (4.19)
and (4.20) is very poor, see Tables 3 and 4. The reason is that the
exact solution (4.11) has two singularity at r¼1 and 0. However,
the expansions of FS in (4.19) and (4.20) are suited for the
singularity at r¼1 and 0, respectively. This facts also supports
the MFS algorithms and the analysis in [15]. Hence for general
cases, the general fundamental solutions (4.5) are necessary for
MFS.

Finally, let us cite the results of Table 1 at Ntot ¼ 161,

jejB ¼ 2:08ð�9Þ; jejG� ;1 ¼ 1:50ð�9Þ; ð4:21Þ
100 80 60
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Fig. 5. The curves of errors for the annular shaped domain by the MFS with

different N at M ¼ 125, R¼ 7:4, Rin ¼ 1:6 and NþM¼ 100.
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Table 5
Errors and condition numbers for the annular shaped domain by the MPS with

r0 ¼ 6 and r�0 ¼ 5.

N tot N1 M1 M jejB jejG� ;1 Cond Cond_eff JxJ2

22 8 2 25 1.48(2) 6.19(1) 1.68(1) 4.89 133.32

42 16 4 50 2.20(�1) 6.58(�2) 2.46(1) 6.90 137.67

62 24 6 75 8.18(�6) 2.38(�6) 5.61(1) 7.37 137.67

82 32 8 100 1.19(�10) 3.43(�11) 1.34(2) 7.37 137.67

102 40 10 125 1.01(�12) 6.88(�13) 3.51(2) 7.51 137.67

122 48 12 120 1.03(�12) 5.37(�13) 9.36(2) 7.56 137.67

142 56 14 175 9.89(�13) 5.36(�13) 2.45(3) 7.56 137.67

162 64 16 200 1.05(�12) 7.04(�13) 6.54(3) 7.57 137.67
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Fig. 7. The curves of condition numbers for the annular shaped domain by the MFS

and the MPS.
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MPS.
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Cond¼ 1:07ð16Þ; Condeff ¼ 5:84ð13Þ: ð4:22Þ

Although the condition number is large, the errors of numerical
solutions reach Oð10�9

Þ, which may satisfy most of engineering
requirements. For the comparisons of MFS and MPS we also cite
the results of Table 5 at N tot ¼ 162,

jejB ¼ 1:05ð�12Þ; jejG� ;1 ¼ 7:04ð�13Þ; ð4:23Þ

Cond¼ 6:54ð3Þ; Condeff ¼ 7:57: ð4:24Þ

Comparing (4.23) and (4.24) with (4.21) and (4.22), we may
conclude that the errors of the MPS are much smaller, and both
the condition number and the effective condition number are
significantly smaller. Figs. 6–8 provide a clear view of superiority
of the MPS over the MFS.
Ntot

Fig. 8. The curves of effective condition numbers for the annular shaped domain

by the MFS and the MPS.
5. Biharmonic equations

5.1. Description of MFS

Below, consider the biharmonic equation with the clamped
boundary conditions:

n2u¼ 0 in S; ð5:1Þ

u¼ f in G; ð5:2Þ
Please cite this article as: Li Z-C, et al. Comparisons of fundamental
Bound Elem (2009), doi:10.1016/j.eujim.2009.08.108
un ¼
@u

@n
¼ g in G; ð5:3Þ

where n¼ @2=@x2þ@2=@y2, S is the bounded simply connected
domain, un is the outward normal derivative to G, G is its
boundary, and f and g are the functions smooth enough. The
solutions and particular solutions for Trefftz methods. Eng Anal
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Table 6
Errors and condition numbers for the biharmonic equation with the clamped

boundary condition by MFS and MPS.

FS with R¼ 5 PS

N M JeJB Cond Cond_eff n M JeJB Cond Cond_eff

11 20 2.86(�2) 1.81(8) 1.12(3) 5 20 8.24(�3) 3.94(1) 7.23

21 40 1.46(�6) 5.19(12) 1.73(7) 10 40 4.92(�7) 3.00(2) 13.2

31 60 3.14(�11) 1.74(17) 6.02(11) 15 60 1.98(�12) 2.07(3) 19.5

41 80 2.94(�11) 2.14(21) 7.40(15) 20 80 0.56(�14) 1.36(4) 25.8
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biharmonic solutions can be represented by

u¼ uðr;yÞ ¼ r2vþw; ð5:4Þ

where v and w are the harmonic functions. Hence the funda-
mental solutions of biharmonic equations in 2D are found by

Cðr; yÞ ¼ r2lnr ¼ ðR2þr2 � 2Rrcosðy� cÞÞlnjR2þr2

� 2Rrcosðy� cÞj; ð5:5Þ

where R4r, r ¼ jPQ j, P¼ reiy, Q ¼ Reic and i¼
ffiffiffiffiffiffiffi
�1
p

.
Denote the two kind types of fundamental solutions:

Cjðr; yÞ ¼ r2
j lnr j; ð5:6Þ

Fjðr; yÞ ¼ lnr j; ð5:7Þ

where r j ¼ jPQ jj, Qi ¼ Reicj and cj ¼ ð2p=NÞj. Hence we may choose
the linear combinations

vN ¼ c0þ
XN

j ¼ 1

fcjCjðr; yÞþdjFjðr; yÞg; ð5:8Þ

where cj and dj are the unknown coefficients to be determined by
the boundary conditions (5.2) and (5.3). We may use the
collocation Trefftz method (CTM). Denote VN the set of (5.8).
Then the collocation Trefftz method reads:

ÎðuNÞ ¼min
vAVN

ÎðvÞ; ð5:9Þ

where the integrals involve numerical approximation are given by

ÎðvÞ ¼

Ẑ
G
ðv� f Þ2þw2

Ẑ
G
ðvn � gÞ2; ð5:10Þ

and w is the weight which may be chosen as w¼ 1=N.
The Almansi’s representation for biharmonic equations are

obtained in [8] directly from (5.4). Then the Almansi’s FS is given
by [22]. The MFS and numerical experiments were provided in
Fairweather and Karageorghis [7–10].

The analysis of error and stability is given in Li et al. [22]; here
we only provide the important results for (5.1)–(5.3). Denote

½u; v�H ¼

Z
G

uvþw2

Z
G

unvn; ð5:11Þ

and the norm

JvJH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
½v; v�H

p
: ð5:12Þ

The Trefftz method (5.9) using FS and PS (i.e., MFS and MPS), for
biharmonic equation is rewritten as

Ju� uNJH ¼min
nAVn

Ju� vJH: ð5:13Þ

Since there exists the orthogonality

½u� uN ; v�H ¼ 0; ð5:14Þ

where

½uN ; v�H ¼

Z
G

fvþw2

Z
G

gvn: ð5:15Þ

We cite the theorem from [22].

Theorem 5.1. Suppose that uAHpðSÞðpZ3=2Þ, and N is chosen such

that

R

rmax

� �2n�N rmax

rmin

� �n

r
1

nðp�1=2Þ
: ð5:16Þ

For (5.1)–(5.3) by the MFS, there exists the error bound,

Ju� uNJH ¼O
1

Nðp�1=2Þ

� �
JuJp;S: ð5:17Þ

In computation, we also consider the mixed type of the clamped
and the simply support boundary conditions on G. Then the
Please cite this article as: Li Z-C, et al. Comparisons of fundamental
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boundary condition (5.3) is replaced by

un ¼ g in G1; unn ¼ g� in G2; ð5:18Þ

where G1 [ G2 ¼G, and G1 \ G2 ¼ |: The admissible functions
(5.8) retain, but ÎðvÞ in (5.10) is replaced by

Î
�
ðvÞ ¼

Ẑ
G
ðv� f Þ2þw2

1

Ẑ
G1

ðvn � gÞ2þw2
2

Ẑ
G2

ðvnn � g�Þ2; ð5:19Þ

where wi ¼Oð1=NiÞ. The boundary collocation equations can be
established similarly, and error bounds can be obtained, similarly
to Theorem 5.1.

5.2. Comparisons with MPS

Consider the rectangular domain S¼ fðx; yÞj � 1oxo1;�1
oyo1g, and choose the exact solution:

uðx; yÞ ¼ expðxÞcosyþðx2þy2ÞexpðyÞcosx: ð5:20Þ

The boundary errors are defined as

JeJB ¼ JuN � uJB ¼
ffiffiffiffiffiffiffiffiffiffiffi
IðuNÞ

p
;

IðvÞ ¼

Z
G
ðv� f Þ2þw2

1

Z
G1

ðvn � gÞ2þw2
2

Z
G2

ðvnn � g�Þ2;

where wi ¼ 1=Ni. For the plate bending problem with the clamped
boundary conditions in (5.2) and (5.3), G1 ¼G and G2 ¼ |. We also
choose the biharmonic polynomials for the MPS

PB
nðr; yÞ ¼ PH

n ðr; yÞþPnðr; yÞ; ð5:21Þ

where

PH
n ðr; yÞ ¼

a�0r2

2
þ
Xn

i ¼ 1

riþ2ða�i cos iyþb�i sin iyÞ; ð5:22Þ

Pnðr; yÞ ¼
a0

2
þ
Xn

i ¼ 1

riðaicos iyþbisin iyÞ; ð5:23Þ

and ai; bi; a
�
i and b�i are the coefficients. The MPS is obtained when

the biharmonic polynomials (5.21) replace the fundamental
solutions (5.8), and the error analysis may follow [20] directly.

The fundamental solutions in (5.8) are used for the MFS in
computation. By MFS and MPS, the errors and condition numbers
are listed in Table 6, where M is the total number of collocation
nodes on G, and their curves are drawn in Figs. 9–11. From the
tables and figures, the MFS is inferior to the MPS.

Next, we still choose the solution (5.20), but use the following
mixed type of the clamped and simply supported boundary
conditions:

u¼ f ; un ¼ g on x¼ 71;

u¼ f ; unn ¼ g� on y¼ 71; ð5:24Þ

where n is the exterior normal of @S. The errors and condition
numbers are listed in Table 7, and their curves are drawn in Figs.
12–14. Moreover, the 2-norm of JxJ2 by the MFS and the MPS is
solutions and particular solutions for Trefftz methods. Eng Anal
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with the clamped boundary condition by MFS and MPS.

Table 7
Errors and condition numbers for the biharmonic equation with the mixed type of

the clamped and simply supported boundary conditions by MFS and MPS.

FS with R¼ 5 PS

N M JeJB Cond Cond_eff n M JeJB Cond Cond_eff

11 20 2.48(�2) 3.32(8) 1.95(3) 5 20 1.04(�2) 4.60(1) 3.31

21 40 1.28(�6) 5.16(12) 1.73(7) 10 40 5.50(�7) 5.13(2) 4.19

31 60 4.87(�11) 1.51(17) 5.23(11) 15 60 2.32(�12) 5.48(3) 5.81

41 80 3.72(�11) 2.54(21) 8.80(15) 20 80 1.86(�14) 4.66(4) 7.53
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Fig. 12. The curves of errors for the biharmonic equation with the mixed type of

the clamped and simply supported boundary conditions by MFS and MPS.
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also given in Table 8, to display that the MFS has a subtraction
cancelation; but the MPS does not. The error curves of MFS in Figs.
9 and 12 will not go down for large N. The reason is that the huge
Cond_eff of MFS damages the accuracy of numerical solutions.

From the above tables and figures, we may also concluded that
for smooth solutions, the errors of MFS may catch up with the
errors of MPS, if the huge effective condition number occurring
will not deteriorate the accuracy. Evidently, it is due to better
stability that MPS is superior to MFS.

6. Concluding remarks

To close this paper, let us make a few remarks.
1.
P
B

The numerical experiments in Section 4 support the analysis in Li
[15] of the MFS for Laplace’s equation on annular shaped domains.
lease cite this article as: Li Z-C, et al. Comparisons of fundamental
ound Elem (2009), doi:10.1016/j.eujim.2009.08.108
2.
sol
Since MFS and MPS are the TM using FS and PS, respectively,
both fall into the TM family. Since the TM has been developed
in algorithms and analysis in our recent book [20], the
utions and particular solutions for Trefftz methods. Eng Anal
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Table 8
The solution norms JxJ2 for the biharmonic equation with the clamped and the

mixed boundary conditions by MFS and MPS.

N Clamped type Mixed type

FS PS FS PS

11 2.33(3) 3.25 2.28(3) 3.25

21 3.13(3) 3.25 3.14(3) 3.25

31 2.59(3) 3.25 2.58(3) 3.25

41 2.27(3) 3.25 2.28(3) 3.25

51 5.18(3) 3.25 6.76(3) 3.25
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algorithms and analysis of MFS can be easily obtained, to
greatly extend its application in engineering problems.
3.
 Comprehensive comparisons are made for the TM using FS and
PS by analysis in Section 3, and by numerical examples in
Sections 4 and 5. For Laplace’s equation in 2D, both FS and PS
are harmonic. The lnr is the fundamental solution in 2D, and
the PS are obtained by means of techniques of separation, see
Chapter 11 in [20]. For smooth solutions, the particular
solutions are just the harmonic polynomials. For non-smooth
solutions, the particular solutions are the angular particular
solutions, and the mild singular solutions with rnlnr may also
be involved in. Hence, the PS have different formulations,
depending on different solution domains and different corner
boundary conditions. On the other hand, the lnr is uniform and
invariant, so that the algorithms of MFS is simple and easily to
carry out. In philosophy, the more general the one is, the less

efficient it is. Of course, the MFS is less efficient than the MPS.

4.
 The ill-conditioning is a severe issue of MFS, since both Cond

and Cond_eff grow exponentially. In contrast, the Cond_eff of
MPS grow polynomially. Moreover, the coefficients ci in the
MFS are large or huge, and their signs are alternatively changed
to cause the other instability: subtraction cancelation [18].
Even though the MFS can be carried out by Mathematica, when
the more working digits are used, the more CPU time is
consumed.
5.
 From both accuracy and stability, if the particular solutions can
be found, the MFS should be avoided. This conclusion is
announced for smooth solutions by Schabck [24]; it is more
true for singular solutions, see [13]. From the analysis and the
numerical examples, we confirm that the MPS is better than
the MPFS. Such a conclusion also supports the viewpoints on
MFS by Schaback [24].
6.
 Although the performance of MFS is inferior to that of MPS,
the MFS is still useful and developing. The reason is as follows.
The uniform FS and simplicity of the MFS algorithms are the
remarkable advantage of MFS, so that less computational
efforts are needed. Since today the manpower saving is the
most important saving, the MFS can be widely used, and very
welcome by users. This proves the other philosophy: the

simplest, the best.
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