
ARTICLE IN PRESS

Engineering Analysis with Boundary Elements 33 (2009) 726–730
Contents lists available at ScienceDirect
Engineering Analysis with Boundary Elements
0955-79

doi:10.1

E-m
journal homepage: www.elsevier.com/locate/enganabound
Modal analysis of free vibration of liquid in rigid container by the method of
fundamental solutions
Somchart Chantasiriwan

Faculty of Engineering, Thammasat University, Pathum Thani 12121, Thailand
a r t i c l e i n f o

Article history:

Received 18 December 2007

Accepted 25 September 2008
Available online 20 November 2008

Keywords:

Sloshing

Eigenvalue

Natural frequency
97/$ - see front matter & 2008 Elsevier Ltd. A

016/j.enganabound.2008.09.004

ail address: somchart@engr.tu.ac.th
a b s t r a c t

Modal analysis of free vibration of liquid in a rigid container having arbitrary shape requires a numerical

method. The method of fundamental solutions has an advantage over the finite element method and the

boundary element method in that it does not require either volume mesh generation or surface mesh

generation. This paper presents the formulation of the method of fundamental solutions for

determining natural frequencies and mode shapes of free vibration of liquid in rigid container. Modal

analyses are performed for cylindrical container, cylindrical quadrant container, cylindrical equilateral

triangle container, hemispherical container, and cylindrical container with baffle. It is shown that

natural frequencies of certain modes obtained by the method of fundamental solutions agree with

analytical results and other numerical results.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Sloshing is caused by disturbance to a partially filled liquid
container. The dynamic stability of a moving container may be
seriously compromised if the frequency of disturbance is close to a
natural frequency of liquid free-surface motion. Although there
are an infinite number of natural frequencies, only a few lowest
ones are likely to be excited by disturbance. Determination of
natural frequencies by an analytical method is possible if liquid is
assumed to be incompressible and inviscid. In that case, the
equation of motion is reduced to the Laplace equation with
velocity potential as the dependent variable. The kinematic
free-surface condition gives an eigenvalue problem, from
which natural frequencies and corresponding mode shapes are
determined.

Modal analyses of liquid free-surface motion in rigid contain-
ers having simple shapes by analytical methods are described by
Ibrahim [1]. If the shape of the container is arbitrary, a numerical
method such as the finite element method may be used [2].
However, this method requires domain mesh generation even for
a Laplace problem. Therefore, a boundary-type method like the
boundary element, which requires only boundary mesh genera-
tion, is more efficient for this type of analysis [3–5]. An alternative
boundary-type method that, unlike the boundary element
method, does not require boundary mesh generation is the
method of fundamental solutions. Since this method has been
shown to be capable of providing accurate solutions to the
ll rights reserved.
eigenvalue problems that have Laplace and biharmonic operators
[6,7], it should be considered as a competitive method for modal
analysis of liquid free-surface motion in a container having an
arbitrary shape.

In this paper, the method of fundamental solutions is used to
find natural frequencies and mode shapes of free vibration of
liquid in rigid containers. The following sections present the
governing equation and boundary conditions for liquid motion,
the formulation of method of fundamental solutions for setting up
an eigenvalue problem, and numerical results for cylindrical,
cylindrical quadrant, cylindrical equilateral triangle, spherical
containers, and cylindrical container with annular ring baffle.
Results from the method of fundamental solutions are then
compared with analytical results for cylindrical, cylindrical
quadrant, and spherical containers and with other numerical
results for cylindrical container with annular ring baffle.
2. Governing equation and boundary conditions

Fig. 1 illustrates a rigid container filled with an incompressible,
inviscid, and irratational liquid. The governing equation for the
liquid motion is the Laplace equation of velocity potential (F):

q2F
qx2
þ
q2F
qy2
þ
q2F
qz2
¼ 0. (1)

The boundary condition at the rigid boundary is

qF
qn
¼ 0, (2)
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Fig. 1. Rigid container filled with liquid.
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Fig. 2. Location of source point (white circle) relative to boundary point (black

circle).
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where n is the coordinate normal to the boundary. Assume that
the undisturbed liquid level is at z ¼ 0. Disturbance will cause free
surface elevation x(x,y,t). For small-amplitude waves, the bound-
ary conditions at the free surface for x and F are

qx
qt
¼
qF
qz

, (3)

qF
qt
¼ �gx. (4)

Eliminating x from Eqs. (3) and (4) results in the kinematic
boundary condition

q2F
qt2
¼ �g

qF
qz

. (5)

A functional form of F that satisfies Eq. (5) is

Fðx; y; z; tÞ ¼ fðx; y; zÞeiot (6)

provided that

qf
qz
¼
o2

g
f. (7)

Substituting F from Eq. (6) into Eqs. (1) and (2) yields,
respectively, the Laplace equation of f and the homogeneous
Neumann boundary condition of f with Eq. (7) being the
kinematic boundary condition.
3. Method of fundamental solutions

Suppose the total number of boundary nodes (N) is divided
into Nf nodes on the free surface and Nr nodes on the rigid
boundary. Coordinates of free boundary nodes are (xi,yi,zi) with
i ¼ 1, 2,y,Nf, whereas coordinates of rigid boundary nodes are
(xNf+i,yNf+i,zNf+i) with i ¼ 1, 2,y,Nr. The method of fundamental
solutions approximates f(x,y,z) as

fðx; y; zÞ ¼
XN

j¼1

ajGðx; y; z; x̄j; ȳj; z̄jÞ, (8)

where the fundamental solution of the Laplace equation is

Gðx; y; z; x̄j; ȳj; z̄jÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� x̄jÞ
2
þ ðy� ȳjÞ

2
þ ðz� z̄jÞ

2
q , (9)

and ðx̄j; ȳj; z̄jÞ are coordinates of source points located outside the
domain. The number of source points is N. Each source point is
situated at a suitable distance from the boundary in the normal
direction.

x̄j ¼ xj þ sD cos a, (10a)
ȳj ¼ yj þ sD cos b, (10b)

z̄j ¼ zj þ sD cos g, (10c)

where D is grid spacing, s is the source point parameter, and (cosa,
cosb, cosg) is the vector of directional cosines. Fig. 2 illustrates the
placement of a source point. Mitric and Rashed [8] suggested that
s should be sufficiently large in order for the solution to be
accurate. It is found in this study that s should be at least 1.5, and
that solution accuracy is relatively insensitive to s if it is larger
than this value.

The homogeneous Neumann boundary condition of f gives the
following matrix equation:

Bf~af þ Br~ar ¼
~0. (11)

The dimensions of Bf and Br are, respectively, Nr�Nf and Nr�Nr.
Their components are

ðBf Þi;j ¼
qG

qn
ðxNfþi; yNfþi; zNfþi; x̄j; ȳj; z̄jÞ, (12)

ðBrÞi;j ¼
qG

qn
ðxNfþi; yNfþi; zNfþi; x̄Nfþj; ȳNfþj; z̄NfþjÞ. (13)

Vectors ~af and ~ar are defined as ~af ¼ ða1; a2; . . . ; aNf
Þ and

~ar ¼ ðaNfþ1; aNfþ2; . . . ; aNÞ. The kinematic boundary condition of f
gives the following matrix equation:

Cf~af þ Cr~ar ¼
o2

g
ðDf~af þ Dr~arÞ. (14)

The dimensions of Cf and Cr are, respectively, Nf�Nf and Nf�Nr.
Their components are

ðCf Þi;j ¼
qG

qz
ðxi; yi; zi; x̄j; ȳj; z̄jÞ, (15)

ðCrÞi;j ¼
qG

qz
ðxi; yi; zi; x̄Nfþj; ȳNfþj; z̄NfþjÞ. (16)

The dimensions of Df and Dr are, respectively, Nf�Nf and Nf�Nr.
Their components are

ðDf Þi;j ¼ Gðxi; yi; zi; x̄j; ȳj; z̄jÞ, (17)

ðDrÞi;j ¼ Gðxi; yi; zi; x̄Nfþj; ȳNfþj; z̄NfþjÞ. (18)
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Fig. 3. Partitioning of container with baffle.
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In order to formulate an eigenvalue problem, eliminate ~ar from
Eqs. (11) and (14), and rearrange the result.

ðDf � DrB
�1
r Bf Þ

�1
ðCf � CrB�1

r Bf Þ~af ¼
o2

g
~af . (19)

This equation can be solved for eigenvalue o2/g, and the
corresponding eigenvector~af , from which~ar can be determined by
using Eq. (11). The mode shape is determined by using Eq. (3) to
find the expression of x.

xðx; y; tÞ ¼
1

o
qf
qz

eðiot�p=2Þ. (20)

The sloshing motion in a container may be suppressed, and
natural frequencies may be changed by installing baffle below the
free surface. The method of fundamental solutions can be used to
determine natural frequencies in this case. Consider a cylindrical
tank with annular ring baffle as shown in Fig. 3. The domain is
divided into two non-overlapping subdomains. Each subdomain
has a distinct velocity potential function, which is governed by the
Laplace equation. Boundary conditions for f(1) are

qfð1Þ

qz
¼
o2

g
fð1Þ ðfree surfaceÞ, (21)

qfð1Þ

qn
¼ 0 ðrigid boundary of subdomain 1Þ. (22)

Boundary condition for f(2) is

qfð2Þ

qn
¼ 0 ðrigid boundary of subdomain 2Þ. (23)

In addition, f and qf/qz are required to be continuous at the
interface between subdomains 1 and 2. Therefore,

fð1Þ ¼ fð2Þ ðinterfaceÞ, (24)

qfð1Þ

qz
¼
qfð2Þ

qz
ðinterfaceÞ. (25)

Suppose the total number of boundary nodes (N1) in domain 1
consists of Nf nodes on the free surface, Nr1 nodes on the rigid
boundary, and Nm nodes on the interface. Suppose that the
number of boundary nodes (N2) in domain 2 consists of Nr2 nodes
on the rigid boundary and Nm nodes on the interface. Let (xi

(1),
yi

(1), zi
(1)) with i ¼ 1, 2,y,Nf denote coordinates of free boundary

nodes in domain 1; ðxð1ÞNfþi; y
ð1Þ
Nfþi; z

ð1Þ
NfþiÞ with i ¼ 1, 2,y,Nr1 denote

coordinates of rigid boundary nodes in domain 1; and

ðxð1ÞNfþNr1þi; y
ð1Þ
NfþNr1þi; z

ð1Þ
NfþNr1þiÞwith i ¼ 1, 2,y,Nm denote coordinates

of interface nodes in domain 1. In addition, let (xi
(2), yi

(2), zi
(2)) with

i ¼ 1, 2,y,Nr2 denote coordinates of rigid boundary nodes in

domain 2; and ðxð2ÞNr2þi; y
ð2Þ
Nr2þi; z

ð2Þ
Nr2þiÞ with i ¼ 1, 2,y,Nm denote
coordinates of interface nodes in domain 1. The expressions for

f(1) and f(2) are analogous to Eq. (8)

fð1Þðx; y; zÞ ¼
XN

j¼1

að1Þj Gðx; y; z; x̄ð1Þj ; ȳð1Þj ; z̄ð1Þj Þ, (26)

fð2Þðx; y; zÞ ¼
XN

j¼1

að2Þj Gðx; y; z; x̄ð2Þj ; ȳð2Þj ; z̄ð2Þj Þ. (27)

Eq. (23) gives the following matrix equation:

Bð2Þ~a
ð2Þ
¼ ~0. (28)

The dimension of B(2) is Nr2�N2. Its components are

Bð2Þi;j ¼
qG

qn
ðxð2Þi ; yð2Þi ; zð2Þi ; x̄ð2Þj ; ȳð2Þj ; z̄ð2Þj Þ. (29)

Eq. (24) gives the following matrix equation:

Eð2Þ~a
ð2Þ
¼ Eð1Þ~a

ð1Þ
. (30)

The dimension of E(2) is Nm�N2. Its components are

Eð2Þi;j ¼ Gðxð2ÞNr2þi; y
ð2Þ
Nr2þi; z

ð2Þ
Nr2þi; x̄

ð2Þ
j ; ȳð2Þj ; z̄ð2Þj Þ. (31)

The dimension of E(1) is Nm�N1. Its components are

Eð1Þi;j ¼ Gðxð1ÞNfþNr1þi; y
ð1Þ
NfþNr1þi; z

ð1Þ
NfþNr1þi; x̄

ð1Þ
j ; ȳð1Þj ; z̄ð1Þj Þ. (32)

Eqs. (28) and (30) can be solved for ~a
ð2Þ

in terms of ~a
ð1Þ

.

~a
ð2Þ
¼

Bð2Þ

Eð2Þ

" #�1
0

Eð1Þ

� �
~a
ð1Þ

. (33)

The next step is to formulate an eigenvalue problem from Eqs.
(21), (22), (25), and (33). Eq. (25) gives the following matrix
equation:

Fð1Þ~a
ð1Þ
¼ Fð2Þ~a

ð2Þ
. (34)

The dimension of F(2) is Nm�N2. Its components are

Fð2Þi;j ¼
qG

qz
ðxð2ÞNr2þi; y

ð2Þ
Nr2þi; z

ð2Þ
Nr2þi; x̄

ð2Þ
j ; ȳð2Þj ; z̄ð2Þj Þ. (35)

The dimension of F(1) is Nm�N1. Its components are

Fð1Þi;j ¼
qG

qz
ðxð1ÞNfþNr1þi; y

ð1Þ
NfþNr1þi; z

ð1Þ
NfþNr1þi; x̄

ð1Þ
j ; ȳð1Þj ; z̄ð1Þj Þ. (36)

Substitute ~a
ð2Þ

from Eq. (33) into Eq. (34). After being rear-
ranged, the resulting equation becomes

H~a
ð1Þ
¼ ~0, (37)

where

H ¼ Fð1Þ � Fð2Þ
Bð2Þ

Eð2Þ

" #�1
0

Eð1Þ

� �
. (38)

Eqs. (22) and (37) are then combined into

Bð1Þf
~a
ð1Þ
f þ Bð1Þrm

~a
ð1Þ
rm ¼

~0. (39)

The dimensions of Bf
(1) and Brm

(1) are, respectively,
(Nr1+Nm)�Nf and (Nr1+Nm)� (Nr1+Nm). Their components are

ðBð1Þf Þi;j ¼
qG

qn
ðxð1ÞNfþi; y

ð1Þ
Nfþi; z

ð1Þ
Nfþi; x̄

ð1Þ
j ; ȳð1Þj ; z̄ð1Þj Þ ðipNr1Þ, (40)

ðBð1ÞrmÞi;j ¼
qG

qn
ðxð1ÞNfþi; y

ð1Þ
Nfþi; z

ð1Þ
Nfþi; x̄

ð1Þ
Nfþj; ȳ

ð1Þ
Nfþj; z̄

ð1Þ
NfþjÞ ðipNr1Þ, (41)

ðBð1Þf ÞNr1þi;j ¼ Hi;j, (42)

ðBð1ÞrmÞNr1þi;j ¼ Hi;Nr1þj. (43)
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Vectors ~a
ð1Þ
f and ~a

ð1Þ
rm are defined as ~a

ð1Þ
f ¼ ða

ð1Þ
1 ; að1Þ2 ; . . . ; að1ÞNf

Þ and

~a
ð1Þ
rm ¼ ða

ð1Þ
Nfþ1; a

ð1Þ
Nfþ2; . . . ; a

ð1Þ
N1
Þ. Eq. (21) gives the following matrix

equation:

Cð1Þf
~a
ð1Þ
f þ Cð1Þrm

~a
ð1Þ
rm ¼

o2

g
ðDð1Þf

~a
ð1Þ
f þ Dð1Þrn

~a
ð1Þ
rmÞ. (44)

The dimensions of Cf
(1) and Crm

(1) are, respectively, Nf�Nf and
Nf� (Nr1+Nm). Their components are

ðCð1Þf Þi;j ¼
qG

qz
ðxð1Þi ; yð1Þi ; zð1Þi ; x̄ð1Þj ; ȳð1Þj ; z̄ð1Þj Þ, (45)

ðCð1ÞrmÞi;j ¼
qG

qz
ðxð1Þi ; yð1Þi ; zð1Þi ; x̄ð1ÞNfþi; ȳ

ð1Þ
Nfþi; z̄

ð1Þ
NfþiÞ. (46)

The dimensions of Df
(1) and Dð1Þrm are, respectively, Nf�Nf and

Nf� (Nr1+Nm). Their components are

ðDð1Þf Þi;j ¼ Gðxð1Þi ; yð1Þi ; zð1Þi ; x̄ð1Þj ; ȳð1Þj ; z̄ð1Þj Þ, (47)

ðDð1ÞrmÞi;j ¼ Gðxð1Þi ; yð1Þi ; zð1Þi ; x̄ð1ÞNfþi; ȳ
ð1Þ
Nfþi; z̄

ð1Þ
NfþiÞ. (48)
H

R

Cylindrical container 

H

R

Cylindrical quadrant container

R

H

Hemispherical container 

H

R

Cylindrical equilateral
triangle container

Fig. 4. Four partially filled liquid containers for which modal analyses by the

method of fundamental solutions are performed.

Fig. 5. Shapes of the first five non-degenerate modes of free vibration of liquid in (a) cy

equilateral triangle container.
After eliminating ~a
ð1Þ
rm from Eqs. (39) and (44), and rearranging,

the resulting equation is

½Dð1Þf �Dð1ÞrmðB
ð1Þ
rmÞ
�1Bð1Þf �

�1½Cð1Þf � Cð1ÞrmðB
ð1Þ
rmÞ
�1Bð1Þf �

~a
ð1Þ
f ¼

o2

g
~a
ð1Þ
f , (49)

which is the required eigenvalue problem.
It should be noted that the coefficient matrix in Eqs. (19) or

(49) is a dense matrix, and may have a large condition number if
the number of free boundary nodes is large. Fortunately, it is
found that the method of fundamental solutions is capable of
giving a sufficiently accurate solution using only a few hundred
free boundary nodes. The system of equations from Eqs. (19) or
(49) can, therefore, be solved by a direct method.
4. Results and discussion

Four types of containers considered are illustrated in Fig. 4. The
parameters for all 4 containers are R ¼ H ¼ 1. The first five non-
degenerate natural frequencies of the four containers, as well as
corresponding mode shapes, are determined by the method of
fundamental solutions. The numbers of nodes used for cylindrical
container, cylindrical quadrant container, cylindrical equilateral
triangle container, and hemispherical container are, respectively,
1340, 1463, 1602, and 1267. It is found that fewer nodes (or larger
grid spacing) may result in missing natural frequencies. Therefore,
it is recommended that different solutions using different values
of grid spacing should be compared in each case to ensure that
there is no missing natural frequency. Mode shapes are shown in
Fig. 5. Computed natural frequencies are shown in Table 1, and are
compared with analytical results [1]. It can be seen that computed
natural frequencies are very close to analytical values.

Next, the method of fundamental solutions is used to find
natural frequencies of free-surface vibration in cylindrical con-
tainer with annular ring baffle, as illustrated in Fig. 6. The
parameters in this case are R ¼ H ¼ 1; h ¼ 0.1, and 0.3; and
r ¼ 0.2, 0.4, 0.6, and 0.8. Natural frequencies (o) are converted to
sloshing frequency parameter (defined as o(R/g)1/2). Since no
analytical results are available, results from the method of
fundamental solutions are compared with results obtained by
Biswal et al. [2] and Gedikli and Erguven [3]. It can be seen from
Table 2 that the present results agree with results by other
researchers.

It is interesting to note that solutions of plate vibration,
membrane vibration, and acoustic problems by the boundary
element method [9] and the method of fundamental solutions
lindrical container and hemispherical, (b) cylindrical quadrant, and (c) cylindrical
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Table 1
Natural frequencies of the first five non-degenerate modes of free-surface vibration in four types of partially-filled liquid container

Mode Container

Cylindricala Cylindrical quadranta Cylindrical equilateral triangleb Sphericalc

1 4.144 (4.108) 5.465 (5.462) 6.414 3.908 (3.912)

2 5.461 (5.462) 6.132 (6.128) 8.440 5.251 (5.259)

3 6.128 (6.128) 7.225 (7.222) 9.066 6.056 (6.062)

4 6.418 (6.418) 8.112 (8.111) 10.424 6.248

5 7.222 (7.222) 8.297 (8.296) 11.092 7.077 (7.194)

Numbers without parenthesis indicate results from the method of fundamental solutions. Numbers in parentheses indicate analytical results.
a Analytical results in parentheses.
b Only results from the method of fundamental solutions shown.
c Analytical results in parentheses, except result for mode 4.

H

R

r

h

Fig. 6. Partially filled cylindrical containers with annular ring baffle for which

modal analysis by the method of fundamental solutions is performed.

Table 2
Sloshing frequency parameters of the first mode of free-surface vibration in

partially filled liquid cylindrical container with baffle as illustrated in Fig. 5

h/H r/R

0.2 0.4 0.6 0.8

0.1 0.596 0.672 0.852 1.140

(0.60)a (0.69) (0.89) (1.19)

(0.61)b (0.70) (0.88) (1.15)

0.3 0.971 1.021 1.133 1.235

(0.97) (1.03) (1.15) (1.28)

(0.99) (1.06) (1.15) (1.25)

Numbers without parenthesis indicate results from the method of fundamental

solutions. Numbers in parentheses indicate numerical results from Biswal et al. [2]

and Gedikli and Erguven [3].
a Result from Biswal et al. [2] in the second row of each cell.
b Result from Gedikli and Erguven [3] in the third row of each cell.
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[10,11] may produce spurious eigensolutions. Governing equa-
tions of such problems are the Helmholtz equation or the bi-
Helmholtz equation. On the other hand, the governing equation of
the free vibration of liquid in rigid container is the Laplace
equation. No spurious eigensolutions have been observed in this
study and previous studies of free vibration of liquid in rigid
container by the finite element method [2] and the boundary
element method [4].
5. Conclusions

Modal analysis of free vibration of liquid in a rigid container
requires the solution of an eigenvalue problem derived from the
Laplace problem having Neumann and kinematic boundary
conditions. The method of fundamental solutions is suitable for
this type of problem due to its meshless nature and its accuracy.
This paper shows that the method of fundamental solutions can
be effectively used to find natural frequencies and mode shapes of
free vibration of liquid in cylindrical container, cylindrical
quadrant container, cylindrical equilateral triangle container,
hemispherical container, and cylindrical container with baffle. It
is perceivable that this method is capable of computing natural
frequencies for container of arbitrary shape. Results from this
paper, therefore, confirm the superiority of the method of
fundamental solutions in solving linear problems.
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