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Based on the idea of radial basis functions approximation and the method of particular solutions, we

develop in this paper a new meshless computational method to solve nonhomogeneous backward heat

conduction problem. To illustrate the effectiveness and accuracy of the proposed method, we solve

several benchmark problems in both two- and three-dimensions. Numerical results indicate that this

novel approach can achieve an efficient and accurate solution even when the final temperature data is

almost undetectable or disturbed with large noises. It has also been shown that the proposed method is

stable to recover the unknown initial temperature from scattered final temperature data.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper we develop a new computational method for
solving nonhomogeneous backward heat conduction problem
(NBHCP). Backward heat conduction problem (BHCP) arises in the
modeling of heat propagation in thermophysics and mechanics of
continuous media. The determination of the unknown initial
temperature from observable scattered final temperature data is
required in many real applications. The solution process for BHCP,
however, is in nature ‘‘unstable’’ because the unknown solutions/
parameters have to be determined from indirect observable data
which contain measurement error. The major difficulty in
establishing any numerical algorithm for approximating the
solution is due to the severe ill-posedness of the problem and
the ill-conditioning of the resultant discretized matrix. Another
difficulty to establish any numerical solution for the BHCP is due
to the nature of its physical phenomena. Although heat conduc-
tion process is very smooth, the process is irreversible. In other
words, the characteristic of the solution (for instance, the shape of
the interior heat flow) is not affected by the observed data.

BHCP is typically ill-posed in the sense of Hadamard [10]
which means that any small error in the collected data may
induce enormous error to the solution. In general, the solution of
BHCP does not exist and even if it exists it is not continuously
dependent on the final data, see Payne [31]. Uniqueness
conditions for the BHCP have been investigated by Miranker [30].
ll rights reserved.
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Numerical methods for the ill-posed BHCP have been given in
the works of boundary element method (BEM) [11], finite
difference method (FDM) [28,32], perturbation technique [25],
iterative boundary element method [24,27], mollification method
[18], method of fundamental solutions (MFS) [19–21,29], Tikhonov
regularization [7] and quasi-boundary regularization [2]
techniques. Most of these methods are developed for solving
homogeneous BHCP or problems in one-dimensional spatial
domain. For instances, the MFS cannot be extended to solve
nonhomogeneous partial differential equations (PDEs) whereas
the BEM, FDM and mollification method are difficult to solve
BHCPs in higher dimensional space.

Recently, meshless methods based on radial basis functions
(RBFs) have been developed to solve various inverse problems
[4,35]. In comparing with the mesh dependent methods (FDM,
BEM, and finite element method (FEM)) [8], the meshless
methods have the following advantages:
�
 They can be applicable to solve more general class of problems
defined on irregular domains.

�
 They are readily extendable to solve high-dimensional pro-

blems.

In this paper we propose a new computational method to deal
with NBHCP in two- or three-dimensional spatial domains. The
main idea is to first reduce the nonhomogeneous heat conduction
equation into a series of elliptic PDEs by using the method of lines.
Each elliptic PDE is then converted into an equivalent standard
Poisson equation whose solution can be obtained by using the
RBFs as particular solutions. To tackle the ill-conditioning
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problem of the resultant system of linear equations, we adapt
the use of the standard Tikhonov regularization technique with
L-curve method [15–17] for choosing the optimal regularized
parameter.

The structure of the paper is organized as follows: In Section 2,
we first transform the original nonhomogeneous parabolic PDE
into a series of elliptic PDEs. Based on the idea of RBFs and the use
of particular solutions, we then give an approximation to the
solution of each elliptic PDE. In Section 3, the efficiency and
accuracy of the proposed method are verified by solving several
NBHCPs in two- and three-dimensional spatial domains. Numer-
ical examples are also given to illustrate the stability of the
proposed method.
2. Methodology

Let u(x,t) satisfy the following heat conduction equation:

@

@t
uðx,tÞþ f ðx,tÞ ¼Duðx,tÞ, ðx,tÞAO� ð0,TÞ; ð1Þ

under the final temperature condition

uðx,TÞ ¼ gðxÞ, xAO; ð2Þ

and the Dirichlet boundary condition

uðx,tÞ ¼ hðx,tÞ, xAG, 0otoT; ð3Þ

where f(x,t), g(x), h(x,t) are known functions, O�Rd,d¼ 2,3 is a
connected and bounded domain and G¼ @O is the boundary of
the domain O.

In practical application, the final temperature condition (2)
and the Dirichlet boundary condition (3) are given only at some
discrete points, say, ðxi,TÞ, i¼1,y,nI on O� fTg which satisfy the
final condition (2) and ðxi,tiÞ, i¼nI+1,y,nI+nB on G� ð0,TÞ which
satisfy the boundary condition (3). The NBHCP to be investigated
in this paper is then to determine the unknown initial tempera-
ture u(x,0) from the given discrete data.

To illustrate how to apply the RBFs and particular solutions as
a spatial meshless collocation scheme to solve the NBHCP, we first
reduce the above nonhomogeneous parabolic PDE into a series of
elliptic PDEs using the method of lines in the following section.
We note here that there are other reduction techniques such as
Laplace transform and Fourier transform that can achieve the
same purpose.

Let dt¼ T=nT be the time step size and tl ¼ ldt, l¼0,y,nT

denote the discretization of the time interval (0,T]. For any
tA ½tl,tlþ1Þ, we approximate u(x,t) and @uðx,tÞ=@t by:

uðx,tÞIuðx,tlÞ, ð4Þ

and

@uðx,tÞ

@t
I

uðx,tlþ1Þ�uðx,tlÞ

dt
, ð5Þ

respectively.
For simplicity, we denote ulðxÞ � uðx,tlÞ, hlðxÞ � hðx,tlÞ and

f lðxÞ � f ðx,tlÞ. Substituting (4) and (5) into Eqs. (1)–(3), we obtain
the following series of elliptic PDEs:

ulþ1ðxÞ�ulðxÞ

dt
¼DulðxÞ�f lðxÞ, ð6Þ

where l¼0,y,(nT�1). Each of these elliptic PDEs will be solved
iteratively starting from the final condition (2) which gives
unT ðxÞ ¼ gðxÞ. Eq. (6) can be rewritten as

DulðxÞþ
1

dt
ulðxÞ ¼ f lðxÞþ

1

dt
ulþ1ðxÞ: ð7Þ

From Eq. (7) it can be seen that the original NBHCP has been
reduced to a series of nonhomogeneous elliptic PDEs in which
each of these elliptic PDEs is in fact a Helmholtz equation. It is
well known that the ill-conditionedness of solving the Helmholtz
equation increases as the coefficient 1=dt increases. Therefore, the
step size dt cannot be too small for obtaining stable solution. This
restriction on the time step size will be verified in the next section
on numerical examples.

To obtain a solution to each of the elliptic PDEs (7) under
boundary condition:

ulðxÞ ¼ hlðxÞ, ð8Þ

we first rewrite (7) as

DulðxÞ ¼ f lðxÞþ
1

dt
ulþ1ðxÞ�

1

dt
ulðxÞ: ð9Þ

By expressing the right-hand side of Eq. (9) as a function with
respect to x, we obtain the following standard Poisson-type
equations: For each l¼0,y,(nT�1),

DulðxÞ ¼ FlðxÞ: ð10Þ

If the fictitious function FlðxÞ is known, then Eq. (1) is
equivalent to the Poisson-type Eq. (10) under the same boundary
condition.

Based on the idea of RBFs method, we approximate the
function FlðxÞ by RBFs ffjg

n
j ¼ 1 as:

FlðxÞC
Xn

j ¼ 1

al
jfjðxÞ, ð11Þ

where n¼nI+nB. From Eq. (10), each of the solutions ul(x) can then
be approximated by

ulðxÞC
Xn

j ¼ 1

al
jFjðxÞ, ð12Þ

where F is called particular solution obtained by analytically
solving

DFðxÞ ¼fðxÞ: ð13Þ

If we choose f to be the multiquadric basis function (MQ),
f¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2
p

, r¼ Jx��J, xARd, d¼2,3, then the particular solution
F is given by:

FðrÞ ¼

1

9
ð4c2þr2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2
p

�
c3

3
lnðcþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2
p

Þ, d¼ 2,

c3

3
, r¼ 0

ð5c2þ2r2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2
p

24
þ

c4

8r2
ln

r2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2
p

c

 !
, r40, d¼ 3,

8>>><
>>>:

8>>>>>>>><
>>>>>>>>:

ð14Þ

where c is called the shape parameter of MQ. It is well known that
the value of c is crucial to the exponential convergence property of
using MQ for solving partial differential equations. Formula for an
optimal shape parameter c by reducing residual errors has
recently been given by Huang et al. [22]. For numerical
verification of the proposed method, we simply use MQ with
constant c¼1 in all of the numerical computations given in this
paper. Other radial basis functions f, such as smoothing spline
r2m�1 that does not contain a shape parameter, can also be chosen
and their corresponding F can be derived similarly. Denote

fjðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

j þc2
q

, ð15Þ

where rj ¼ Jx�xjJ, xARd, d¼2,3. We then have DFjðxÞ ¼fjðxÞ for
each 1r jrn.

Since the fictitious function Fl(x) is unknown at each time step
l, we substitute the unknown solution ulðxÞ ¼

Pn
j ¼ 1 al

jFjðxÞ into
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Eqs. (7) and (8) to obtain: For each l¼0,y,(nT�1),

Xn

j ¼ 1

al
j fjðxÞþ

1

dt
FjðxÞ

� �
¼ f lðxÞþ

1

dt
ulþ1ðxÞ, xAO, ð16Þ

Xn

j ¼ 1

al
jFjðxÞ ¼ hlðxÞ, xAG: ð17Þ

For numerical verification of the proposed method in the next
section, we uniformly choose nI collocation points fxig

nI

i ¼ 1 in the
interior of domain O and nB collocation points fxig

nB

i ¼ nI þ1 on the
boundary G, where n¼nI+nB. At each time level tl, we need to
solve the following system of linear equations for the undeter-
mined coefficients al

j:Xn

j ¼ 1

al
j fjðxiÞþ

1

dt
FjðxiÞ

� �
¼ GlðxiÞ, i¼ 1, . . . ,nI , ð18Þ

Xn

j ¼ 1

al
jFjðxiÞ ¼ hlðxiÞ, i¼ nIþ1, . . . ,n, ð19Þ

where GlðxiÞ ¼ f lðxiÞþð1=dtÞulþ1ðxiÞ.
In matrix form, the values of the unknown coefficients

al ¼ ðal
1al

2, . . . ,al
nÞ

tr can be obtained from solving the following
matrix equation:

Aal ¼ bl, ð20Þ

where A is a n�n coefficient matrix

A¼
fjðxiÞþ

1

dt
FjðxiÞ

FjðxkÞ

0
B@

1
CA

n�n

,

here, j¼1,y,n, i¼1,y,nI, k¼nI+1,y,n and bl is the n�1 vector:

bl ¼ ðGlðx1Þ, . . . ,G
lðxnI
Þ,hlðxnI þ1Þ, . . . ,h

lðxnÞÞ:

Since the original problem (1)–(3) is highly ill-posed, the ill-
conditioning of the matrix A in Eq. (20) still persists. In other
words, most standard numerical methods cannot achieve good
accuracy in solving the matrix Eq. (20) due to the bad condition-
ing of the matrix A. In fact, the condition number of the matrix A

increases dramatically with respect to the total number of
collocation points. Several regularization methods have been
developed for solving these kinds of ill-conditioning problems
[15–17]. In our computation we adapt the Tikhonov regulariza-
tion technique [34] to solve the matrix Eq. (20). The Tikhonov
regularized solution al for Eq. (20) is defined to be the solution to
the following penalized least square problem:

min
al
fJAal�blJ2

þl2
JalJ2
g, ð21Þ

where l is called the regularization parameter.
The determination of a suitable value of the regularization

parameter l is crucial and is still under intensive research (refer
[33,34]). In our computation we use the L-curve method, which is
a kind of noise-free rule, to determine a suitable value of l. The
L-curve method was firstly developed by Lawson and Hanson [26]
and applied by Chen et al. [3] for solving deconvolution problem.
Hansen and O’Leary [17] investigated the properties of regular-
ized systems under different values of the regularization para-
meter l. The L-curve method is sketched in the following:

Define a curve

L¼ fðlogðJalJ2
Þ, logðJAal�bJ2

ÞÞ,l40g: ð22Þ

The curve is known as L-curve and a suitable regularization
parameter l is one that corresponds to a regularized solution near
the ‘‘corner’’ of the L-curve [13–15].
In our computation, we used the Matlab code developed by
Hansen [16] for solving the discrete ill-conditioned system (20).
Denote the regularized solution of (20) by al

�
with the parameter

l� chosen by above L-curve method when l¼nT�1. The
approximate solution ~ul� ðx,0Þ for the problem (1)–(3) is then
given as

~ul� ðx,0Þ ¼
Xn

j ¼ 1

al
�

j FjðxÞ: ð23Þ

3. Numerical verification

The maximum error (Maxerror) and the root-mean-square
error (RMSE) are used in the computations to compare the
accuracy of the approximated solutions with the exact solutions.
The Maxerror and RMSE are defined as follows:

Maxerror¼ max
1r jrN

j ~uj�ujj, RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

j ¼ 1

ð ~uj�ujÞ
2

vuut ,

where N is the total number of testing nodes chosen randomly
within the domain O and ûj denotes the approximate solution at
the jth node.

To demonstrate the effectiveness and stability of the meshless
computation method proposed in the last section, several
examples for solving the NBHCPs in both 2D and 3D are presented
in the following subsections. Throughout this section, the noisy
data in interior collocation points and boundary collocation points
are generated by

~b ¼ bð1þrandn� dÞ, ð24Þ

where b denotes the exact right-hand side of Eq. (20), d is the
tolerated noise level and randn is Gaussian random number with
mean 0 and variance 1.

3.1. Numerical example for two-dimensional NBHCP
Example 1. Consider the following nonhomogeneous two-di-
mensional backward heat conduction equation:

@

@t
uðx,tÞþ f ðx,tÞ ¼Duðx,tÞ, ðx,tÞAO� ð0,TÞ �R2

�Rþ , x¼ ðx,yÞ, ð25Þ

with final condition

uðx,TÞ ¼ ðysinðpxÞþxcosðpyÞÞcosðTÞ, xAO, ð26Þ

and the measured Dirichlet boundary condition

uðx,tÞ ¼ ðysinðpxÞþxcosðpyÞÞcosðtÞ, xA@O, t40, ð27Þ

where

f ðx,tÞ ¼�p2ðysinðpxÞþxcosðpyÞÞcosðtÞþðysinðpxÞþxcosðpyÞÞsinðtÞ,

and the analytical solution given as:

uðx,tÞ ¼ ðysinðpxÞþxcosðpyÞÞcosðtÞ: ð28Þ

We first consider the domain O to be the unit circle:

O¼ fðx,yÞ : x¼ cosy,y¼ siny,�pryrpg

as illustrated in Fig. 1.

In the computation, we choose nI¼69, nB¼20, dt¼ 0:25, c¼1

and N¼137. The proposed method given in the previous section is

then applied to obtain an approximation to the solution. Fig. 1

gives the RMSE for different noise level d. Fig. 2 displays the

numerical solution ~u and the absolute difference between the

exact solution and the numerical solution for T¼1 and d¼ 10E�3.
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Fig. 1. The left figure displays the domain as the unit circle with boundary collocation points ð�Þ and interior collocation points (� ). The right figure gives the RMSE with

different noise level d for T¼1 and dt ¼ 0:25.
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Fig. 2. The left figure displays the numerical solution ~u and the right figure shows the absolute difference between the exact solution and the numerical solution for T¼1

and d¼ 10E�3.

Table 1

Maxerror and RMSE with different time steps dt and final time T.

dt ¼ 1 dt ¼ 1=2 dt ¼ 1=3 dt¼ 1=4

T¼1

Maxerror 1.910E�02 9.759E�03 6.839E�03 5.256E�03

RMSE 5.360E�03 3.028E�03 2.1928E�03 1.722E�03

T¼2

Maxerror 2.853E�02 1.897E�02 1.336E�02 1.001E�02

RMSE 7.953E�03 4.493E�03 3.194E�03 2.454E�03

T¼3

Maxerror 2.681E�02 2.563E�02 1.868E�02 1.470E�02

RMSE 7.476E�03 6.435E�03 4.752E�03 3.789E�03
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Fig. 3. The RMSE with various values of n.

M. Li et al. / Engineering Analysis with Boundary Elements 34 (2010) 785–792788
In addition, the Maxerror and RMSE for T¼1,2,3 are shown in

Table 1 using various time steps dt¼ 1,1=2,1=3,1=4 with noise

level d¼ 10E�3. It can be seen from Figs. 1 and 2 and Table 1 that

the proposed method performs well for solving the two-

dimensional NBHCP (Fig. 3).

For further investigations, the convergence of the numerical

solution with increasing n¼nI+nB are shown in Fig. 4. Here, we

choose T¼2, dt¼ 1=4 and noise level d¼ 10E�3. It can be seen

that the numerical solution converges very fast with increasing n.

Hence, small n is used in following examples. At the same time,
the regularization parameters l for different t are shown in

Table 2 with other parameters T¼2, dt¼ 1=4, nI¼69 and nB¼20.

Example 2. In this example, we consider the same exact u and
the same equation given in Example 1 but with a different domain
defined as the region enclosed by the Cassini curve obtained from
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Fig. 4. The left figure display the domain enclosed by the Cassini curve, the boundary collocation points ð�Þ and the interior collocation points (� ). The right figure plots the

RMSE with different noise level d for T¼1 and dt¼ 1=5.

Table 2

The regularization parameter l with respect to different t when T¼2 and d¼ 1=4.

t 0 1 2 3 4 5 6 7

l� 3.328E�09 3.328E�09 3.328E�09 3.513E�09 3.513E�09 3.328E�09 7.507E�09 5.135E�09
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x 10−3

x

Difference between exact solution
and numerical solution

y

Fig. 5. The left figure displays the numerical solution and the right figure plots the absolute difference between the exact solution and the numerical solution for T¼1 and

d¼ 10E�3.

Table 3

Maxerror and RMSE with different time steps dt and final time T.

dt¼ 1 dt¼ 1=2 dt¼ 1=3 dt ¼ 1=4 dt¼ 1=5

T¼1

Maxerror 2.007E�02 1.021E�02 6.895E�03 5.152E�03 4.573E�03

RMSE 4.555E�03 2.536E�03 1.770E�03 1.369E�03 1.124E�03

T¼2

Maxerror 1.975E�02 1.021E�02 6.866E�03 5.439E�03 2.944E�01

RMSE 3.788E�03 2.035E�03 1.394E�03 1.063E�03 3.108E�02

T¼3

Maxerror 1.978E�02 1.031E�02 7.752E�03 6.462E�03 1.501E+02

RMSE 4.060E�03 2.207E�03 1.515E�03 1.177E�03 1.313E+01

M. Li et al. / Engineering Analysis with Boundary Elements 34 (2010) 785–792 789
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the parametric equation:

@O¼ fðx,yÞ : x¼ rcosy,y¼ rsiny,�pryrpg, ð29Þ

where

r¼ ðcosð4yÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�sin2

ð4yÞ
q

Þ
1=4: ð30Þ

In this computation, we choose nI¼37, nB¼40, dt¼ 1=5, c¼1

and N¼74. Fig. 4 displays the domain and gives the RMSE with

different noise level d with final time T¼1. The numerical solution

and the absolute difference between the exact solution and the

numerical solution for T¼1 and dt¼ 1=5 are plotted in Fig. 5. In

addition, the Maxerror and RMSE for T¼1,2,3 are shown in Table 3

using various time steps dt¼ 1,1=2,1=3,1=4,1=5. It can again be

seen from Fig. 5 and Table 3 that the proposed method performs

well when the time step sizes are dt¼ 1=3,1=4. Besides, it is

observed that the Maxerror and RMSE do not decrease as the time

step dt decreases due to the reason we mentioned in Section 2.

Example 3. To further explore the application of the proposed
method for solving two-dimensional NBHCPs, we consider the
following severe example:

@

@t
uðx,tÞþ f ðx,tÞ ¼Duðx,tÞ, ðx,tÞAO� ð0,TÞ �R2

�Rþ , x¼ ðx,yÞ, ð31Þ

with final condition

uðx,TÞ ¼ sinðpðxþyÞÞe�p
2T , xAO, ð32Þ
10−
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10−1

100

R
M

S
E

Fig. 6. The left figure displays the unit square domain, boundary collocation points ð�Þ

noise level d for T¼1 and dt¼ 0:1.
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Fig. 7. The left figure displays the numerical solution and the right figure shows the abso

d¼ 10E�3.
and measured Dirichlet boundary condition

uðx,tÞ ¼ sinðpðxþyÞÞe�p
2t , xA@O, t40, ð33Þ

where f ðx,tÞ ¼ 0 and the analytical solution given as follows:

uðx,tÞ ¼ sinðpðxþyÞÞe�p
2t : ð34Þ

The case when the domain is the unit square domain [0,1]� [0,1]
is a typical benchmark example for testing the efficiency and
accuracy of any numerical method for solving two-dimensional
BHCP.

In this example, we choose nI¼81, nB¼40, dt¼ 0:1, c¼1 and

N¼361. Fig. 6 displays the domain O and the RMSE with different

noise level d with the final time T¼1. Fig. 7 displays the numerical

solution and its absolute difference between the exact solution for

T¼1 and nT¼15. In addition, the Maxerror and RMSE for T¼1,2,3

are shown in Table 4. It can be seen that the proposed method

also performs well in this benchmark problem.

3.2. Numerical example for three-dimensional NBHCP

In this subsection, it will be shown that the proposed method
is also applicable to solve three-dimensional NBHCP.
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RMSE with different noisy level δ

and interior boundary points (� ). The right figure shows the RMSE with different
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Fig. 8. The domain with uniform boundary collocation points.

Table 4

Maxerror and RMSE with different time steps size dt and final time T.

dt¼ 1=11 dt¼ 1=12 dt ¼ 1=13 dt¼ 1=14 dt¼ 1=15

T¼1

Maxerror 1.009E�01 9.472E�02 8.919E�02 8.426E�02 7.984E�02

RMSE 1.063E�02 9.704E�03 8.921E�03 8.253E�03 7.677E�03

T¼2

Maxerror 9.775E�02 9.188E�02 8.666E�02 8.200E�02 9.958E�02

RMSE 7.338E�03 6.709E�03 6.178E�03 5.724E�03 5.736E�03

T¼3

Maxerror 9.672E�02 9.098E�02 8.585E�02 8.138E�02 2.740E+02

RMSE 5.943E�03 5.438E�03 5.011E�03 4.644E�03 1.414E+01

Table 5

Maxerror and RMSE with different time step size dt and final time T.

dt¼ 1 dt¼ 1=2 dt ¼ 1=3 dt¼ 1=4 dt¼ 1=5

T¼1

Maxerror 8.042E�04 6.064E�04 6.314E�04 6.894E�04 7.871E�04

RMSE 2.082E�04 1.319E�04 1.235E�04 1.247E�04 1.282E�04

T¼2

Maxerror 8.001E�04 6.378E�04 6.350E�04 7.102E�04 8.024E�05

RMSE 1.743E�04 1.085E�04 9.848E�05 9.800E�05 9.954E�05

T¼5

Maxerror 8.294E�04 6.040E�04 6.302E�04 7.108E�04 7.707E�04

RMSE 2.019E�04 1.172E�04 1.045E�04 1.037E�04 1.050E�04
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Example 4. Consider the following nonhomogeneous heat con-
duction equation

@

@t
uðx,tÞþ f ðx,tÞ ¼Duðx,tÞ, ðx,tÞAO� ð0,TÞ �R3

�Rþ , x¼ ðx,y,zÞ,

ð35Þ

with final condition

uðx,TÞ ¼ sinðxÞsinðyÞsinðzÞcosðTÞ, xAO, ð36Þ

and measured Dirichlet boundary condition

uðx,tÞ ¼ sinðxÞsinðyÞsinðzÞcosðtÞ, xA@O, t40, ð37Þ

where

f ðx,tÞ ¼ sinðxÞsinðyÞsinðzÞðsinðtÞ�3cosðtÞÞ

and the analytical solution given by:

uðx,tÞ ¼ sinðxÞsinðyÞsinðzÞcosðtÞ: ð38Þ
The domain O is the sphere defined by:

O¼ fðx,y,zÞ : x2þy2þz2r1g ð39Þ

as shown in Fig. 8.

In the computation, we choose nI¼485, nB¼40, d¼ 10�4, c¼1

and N¼485. It can be seen that the proposed method produces an

accurate numerical solution where the Maxerror and RMSE are

shown in Table 5 using various time step sizes dt¼ 1,1=2,

1=3,1=4,1=5.
4. Conclusion

Based on the idea of radial basis functions approximation and
the method of particular solutions, we develop in this paper a new
meshless computational method to solve nonhomogeneous back-
ward heat conduction problems. Numerical examples are given in
both two- and three-dimensional spatial spaces to indicate the
efficiency and accuracy of the proposed method. For illustration
purpose, we simply use the multiquadric basis function with
constant shape parameter for all the numerical computations.
Better numerical approximation to the solution is expected from
using some recent works on deriving an optimal shape parameter.
Finally, the proposed method is truly meshless and hence can be
extended to solve problems in higher dimension under compli-
cated and irregular domains.
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