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For the interpolation of continuous functions and the solution of partial differential equation (PDE) by

radial basis function (RBF) collocation, it has been observed that solution becomes increasingly more

accurate as the shape of the RBF is flattened by the adjustment of a shape parameter. In the case of

interpolation of continuous functions, it has been proven that in the limit of increasingly flat RBF, the

interpolant reduces to Lagrangian polynomials. Does this limiting behavior implies that RBFs can

perform no better than Lagrangian polynomials in the interpolation of a function, as well as in the

solution of PDE? In this paper, arbitrary precision computation is used to test these and other

conjectures. It is found that RBF in fact performs better than polynomials, as the optimal shape

parameter exists not in the limit, but at a finite value.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

To explore the efficiency of scattered data interpolation,
Franke [1] compared 29 interpolation algorithms on a set of
continuous functions. He concluded that Hardy’s [2,3]
multiquadric radial basis function collocation ‘‘yields consistently

good result, often giving the most accurate results of all tested

methods.’’ This finding has stimulated a growing interest in using
radial basis functions (RBFs) for interpolating continuous func-
tions. Based on the similar idea, Kansa [4,5] was the first to apply
RBF collocation for solving partial differential equations (PDEs).
RBF collocation method has since become a popular tool for
solving a wide range of engineering problems, including shallow
water equation [6], biphasic mixtures [7], convective–diffusive
solid–liquid phase change [8], plate theory [9], and ill-posed
boundary value problems [10].

As observed by Kansa [4,5] for solving PDE, and Tartwater [11]
for interpolating functions, the accuracy of the approximated
solution/function significantly improves when the multiquadric
function is made increasingly flat, by increasing the value of its
shape parameter c. Madych [12] provided an error estimates that
states e�Oðeaclc=h

Þ, where h is the distance between collocation
nodes (mesh size), a is a positive constant, and 0olo1, for the
interpolation of band limited functions. The above expression
suggests exponential convergence for error, and as c-1, the
error e-0. This conjecture was tested for the solution of partial
ll rights reserved.
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differential equation, first by Cheng et al. [13], and later by Huang
et al. [14] using arbitrary precision computation.

On another line of research, Baxter [15], Driscoll and Fornberg
[16], Fornberg et al. [17], Larsson and Fornberg [18], and Schaback
[19], studied the limiting behavior of the multiquadric and
Gaussian interpolants. They proved mostly for univariate
functions, and conjectured for multivariate functions, that in the
limit of A-0 ðA ¼ 1=cÞ, the interpolants reduce to polynomials
with finite number of terms. With such observation, it seems
natural to ask: does this type of limiting behaviors implies that
RBFs can perform no better than polynomials in the interpolation
of function, and in the solution of PDE?

Analogous to RBF collocation for solution of PDE, the method of
fundamental solutions (MFS) [20] uses fundamental solutions,
instead of RBF, as the basis function. It was observed that as the
radius of the circle for distributing the fundamental solutions, R,
becomes larger and larger, thus making the portion of the
fundamental solution used for interpolation increasingly flat, the
solution accuracy increases. It was also proven that as R-1, the
interpolant degenerates into a harmonic polynomial [21–23],
which are the basis functions used in Trefftz method [24,25]. Due
to this limiting behavior, it has been suggested that MFS can be no
better than the Trefftz method.

In this paper, we shall examine the RBF collocation method
and the theoretically predicted degeneracy behavior of
multiquadric and Gaussian basis functions associated with their
flatness. As mentioned above, the theories are proven mostly for
interpolation of univariate functions. Their behavior in multiple
dimensions, and for the solution of partial differential equations,
remains a speculation or conjecture. Hence in this paper we are
dial basis function and optimal shape parameter for the solution
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interested in testing the following conjectures by numerical
evidences:
�
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In the multivariate interpolation and the solution of PDE, as
the basis function becomes infinitely flat ðc-1Þ, does the
error diverge, approach to zero, or approach to a finite limit by
degenerating into a finite term polynomial?

�
 When a finite limit for the error exists as c-1, is this limit the

optimal error bound, or does there exist a minimum error at a
finite, optimal value of c?

It is well known that, as the basis function becomes increasingly
flat, the error generally reduces exponentially. At the same time,
however, it is observed that the matrix condition number
increases exponentially. Using a traditional, finite precision
computer program, the computation will break down when the
condition number becomes too large. For this reason, these
theories and conjectures stated above remain largely untested. In
this paper, such difficulty is overcome by using the arbitrary
precision computation technique pioneered in Huang et al. [14].

A conclusion of this study is that, as c-1, the RBF interpolant
can either converge to a polynomial limit, or it can diverge.
Whether a finite error bound exists or not is dependent on
the basis function used, the interpolation node pattern, and the
function interpolated. Another conclusion is that the minimum
error for the interpolant is not located at c-1. Rather, there
exists a finite, optimal value of c, where the error is minimum.
2. Radial basis function collocation method

2.1. Radial basis functions

A radial function is a multivariate function F such that

F : Rd-R in the sense that Fðx1, . . . ,xdÞ-fðJðx1, . . . ,xdÞJ2Þ: ð1Þ

Here the 2-norm of x¼ ðx1, . . . ,xdÞ is

JxJ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiXd

i ¼ 1

x2
i

vuut ¼ r, ð2Þ

i.e., the Euclidean distance of x to the origin (radial distance).
RBF collocation method is an ‘‘element-free’’, or a ‘‘meshless’’,

technique for generating data-dependent spaces of multivariate
functions. The spaces are spanned by shifted and scaled radial
functions. The shifting is accomplished by using a set of scattered
centers, y1,y,yn in Rd, sometimes called basis points, as the origin
of the RBFs. Reconstruction of functions is then made by trial
functions which are linear combinations

uðxÞ :¼
XN

j ¼ 1

ljFðx,yjÞ ¼
XN

j ¼ 1

ljfðJx�yjJ2Þ: ð3Þ

Some of the commonly used RBFs are given in Table 1. All of these
RBFs can be scaled by a shape parameter c, or A ¼ 1=c, that
le 1
e examples of radial basis functions.

finitely smooth RBFs

BF fðrÞ

aussian (GA) e�r2

ultiquadric (MQ)
ffiffiffiffiffiffiffiffiffiffiffiffi
r2þ1
p

verse multiquadric (IMQ) 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
r2þ1
p

verse quadric (IQ) 1=ðr2þ1Þ

lease cite this article as: Huang C-S, et al. On the increasingly flat ra
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controls the flatness (or steepness) of the RBF. This is done in such

a way that fðrÞ is replaced by fðArÞ, or fðr=cÞ. For example, the

MQ is scaled as f¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðArÞ2þ1

q
, or f¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=cÞ2þ1

q
. The effect of

the scaling is that as A gets smaller, or c gets larger, the RBF
becomes flatter. In the present paper, we only utilize Gaussian
(GA) and inverse multiquadric (IMQ) as our basis functions. These
basis functions are positive definite, such that no augmentation
by polynomial terms is needed. Further detail on RBF can be found
in two excellent books, by Buhmann [26] and Wendland [27].
2.2. Interpolation

A typical interpolation problem has the following form: Given
scattered data points yj, j¼1,y,N, and data values uj¼u(yj), find
an interpolant

sðxÞ ¼
XN

j ¼ 1

ljfðJx�yjJ2Þ: ð4Þ

The interpolation at collocation points gives

sðyiÞ �
XN

j ¼ 1

ljfðJyi�yjJ2Þ ¼ ui, i¼ 1, . . . ,N: ð5Þ

The above can be summarized into a system of equations for the
unknown coefficients lj,

AL¼ u, ð6Þ

where A is an N�N matrix with elements Aij ¼fðJyi�yjJ2Þ,
L¼ ðl1, . . . ,lNÞ

T , and u¼(u1,y,uN)T. The solvability of such
system, with distinct centers, was proven by Micchelli [28].
2.3. Partial differential equation

For simplicity, we shall discuss only the solution of Dirichlet
boundary value problem of Poisson’s equation here. Let O�Rd be
a d-dimensional domain and let @O be the boundary of the
domain. Given the following Poisson’s equation:

DuðxÞ ¼ f ðxÞ, xAO, ð7aÞ

uðxÞ ¼ gðxÞ, xA@O, ð7bÞ

we seek its approximate solution in the form of (4). Now take a set
of N1 distinct points yiAO, and a set of N�N1 distinct points
yiA@O, as centers, as well as collocation points, and we enforce

DsðyiÞ �
XN

j ¼ 1

ljDfðJyi�yjJ2Þ ¼ f ðyiÞ, i¼ 1, . . . ,N1, ð8aÞ

sðyiÞ �
XN

j ¼ 1

ljfðJyi�yjJ2Þ ¼ gðyiÞ, i¼N1þ1, . . . ,N: ð8bÞ

This corresponds to a system of equations with an unsymmetric
coefficient matrix, schematically structured as

Df
f

� �
½L� ¼

f

g

� �
: ð9Þ

Similar to the interpolation problem, we shall have an unique
solution for this system.

Since the condition number of the matrix system in (6) and (9)
grows rapidly as the shape factor A-0, we use the arbitrary
precision computation capability of Mathematica to evaluate the
matrices.
dial basis function and optimal shape parameter for the solution
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2.4. Error measures

To assess the solution error, we devise an L2-norm as the
normalized root mean square (RMS) error

eRMSðs,uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=nÞ

Pn
i ¼ 1½uðxiÞ�sðxiÞ�

2
q

jumaxj
, ð10Þ

where u is the exact solution (either for interpolation or PDE), s is
the approximate solution, xi, i¼1,y,n are observation points
uniformly distributed over the domain, and n is a large number,
typically taken as 100 N, with N the number of collocation nodes.
Note that eRMS is normalized by the maximum value of the exact
solution to give a sense of percentage error.
Table 3

Difference between RBF and polynomial interpolants, eðs, ~sÞ, for uðxÞ ¼ cos2px, as

function of A and N.

A N

3 5 8 18

IMQ

10�1 9.57(�03) 2.70(�03) 2.12(�04) 9.11(�12)

10�2 9.71(�05) 2.77(�05) 2.24(�06) 1.58(�13)

10�3 9.71(�07) 2.77(�07) 2.24(�08) 1.59(�15)

10�4 9.71(�09) 2.77(�09) 2.24(�10) 1.59(�17)

GA

10�1 2.48(�03) 4.97(�04) 3.08(�05) 9.96(�13)

10�2 2.48(�05) 4.99(�06) 3.10(�07) 1.03(�14)

10�3 2.48(�07) 4.99(�08) 3.10(�09) 1.03(�16)

10�4 2.48(�09) 4.99(�10) 3.10(�11) 1.03(�18)

Table 4

Difference between RBF and polynomial interpolants, eðs, ~sÞ, for u(x)¼e10x, as

function of A and N.

A N
3. One-dimensional interpolation and PDE

For a one-dimensional approximation, (4) becomes

sðx,AÞ ¼
XN

j ¼ 1

ljfðjx�yjj,AÞ, ð11Þ

where we have explicitly brought out the role of A ð ¼ 1=cÞ in the
approximation. Driscoll and Fornberg [16] pointed out that the
RBFs presented in Table 1 belong to a class of infinitely smooth
RBFs that can be expanded into a power series

fðx,A Þ ¼ a0þa1ðAxÞ2þa2ðAxÞ4þ 	 	 	 ¼
X1
i ¼ o

aiðAxÞ2i
ð12Þ

with the coefficients given in Table 2. They have also proven that,
for this class, if the interpolation system defined by (5) and (6) is
nonsingular, then the interpolant (11) satisfies

lim
A-0

sðx,AÞ ¼ LNðxÞþOðA2Þ, ð13Þ

where LN(x) is a Lagrangian interpolating polynomial of N th
degree with LN(yi)¼u(yi) on the nodes. The special cases of Nr3
were explicitly demonstrated in [16].

We shall demonstrate below that similar result as (13) exists
for the solution of one-dimensional differential equations. First,
for the special cases of Nr2, the convergence of the approximate
solution of differential equation to Lagrangian polynomial with
e�OðA2Þ has been proven by Yen [29]. In the following, we shall
test the conjecture (13) for solving one-dimensional differential
equation through numerical examples, for the cases of N43.

Given the Dirichlet boundary value problem of (1-D) Poisson’s
equation,

d2u

dx2
¼ f ðxÞ, xLrxrxR,

uðxLÞ ¼ uL, uðxRÞ ¼ uR, ð14Þ

we seek the approximate solution in the form of (11).
Table 2
Expansion coefficients for infinitely smooth RBFs.

RBF Coefficients

GA
ai ¼
ð�1Þi

i!
,

i¼0,y

MQ
a0¼1, ai ¼

ð�1Þiþ1

2i

Qi�1
k ¼ 1

2k�1

2k
,

i¼1,y

IMQ
a0¼1, ai ¼ ð�1Þi

Qi
k ¼ 1

2k�1

2k
,

i¼1,y

IQ ai¼(�1)i, i¼0,y

Please cite this article as: Huang C-S, et al. On the increasingly flat ra
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3.1. Example 3.1

For 0rxr1, two functions, u¼ cos2px and u¼e10x, as the
exact solution of (14), are tested, using IMQ and GA. The right
hand side of Poisson’s equation and the boundary conditions
in (14) are defined from the exact solution; that is,
f ðxÞ ¼�4p2cos2px and f(x)¼100 e10x, respectively. The problems
are solved using different number of interpolation terms, N, for a
range of A values; and the results are presented in Tables 3 and 4.
In order to observe the convergence of the RBF interpolants
to polynomials, in Tables 3 and 4 we presented not the RBF
error with respect to the exact solution u, but with
a polynomial interpolation using the same number of
terms, ~s, expressed in terms of the RMS error, eRMSðs, ~sÞ, as
defined in (10).

In Table 3, we observe that the RBF interpolant does approach
the polynomial limit as A-0. In fact, the difference between
them decreases as eðs, ~sÞ �OðA2Þ, the same as that predicted by
(13). This is an indication that the error estimates for the
interpolation and for the PDE are similar. In the table, we also
observe that as N becomes larger, the difference between the RBF
and polynomial interpolants seems to decrease. Another observa-
tion from Table 3 is that the GA approaches the polynomial limit
faster than the IMQ.

In Table 4, the same error analysis is presented for the solution
u(x)¼e10x. The same observations as in Table 3 are made here.
3 5 8 18

IMQ

10�1 1.08(�03) 6.79(�04) 1.25(�04) 7.78(�10)

10�2 1.09(�05) 6.83(�06) 1.24(�06) 6.37(�12)

10�3 1.09(�07) 6.83(�08) 1.24(�08) 6.35(�14)

10�4 1.09(�09) 6.83(�10) 1.24(�10) 6.35(�16)

GA

10�1 2.91(�04) 1.28(�04) 1.71(�05) 4.17(�11)

10�2 2.91(�06) 1.28(�06) 1.71(�07) 4.11(�13)

10�3 2.91(�08) 1.28(�08) 1.71(�09) 4.11(�15)

10�4 2.91(�10) 1.28(�10) 1.71(�11) 4.11(�17)

dial basis function and optimal shape parameter for the solution
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4. Interpolation by IMQ with uniform grid

In this section we test the interpolation of smooth functions in
two dimensions using inverse multiquadric (IMQ). The functions
are defined in a unit square [0,1]� [0,1]. The RBF centers, which
are also the collocation points, are laid on an uniformly spaced
Cartesian grid. The grid spacing, that is, the Cartesian distance
between two points, is defined as h. A number of different
functions are tested. A few representative results are reported in
the following.
4.1. Example 4.1

In this first example, we use IMQ to interpolate the function
u¼ sinð2pxÞþcosð2pyÞ. A 21�21 uniform grid is laid over the unit
square domain, to give a mesh size h¼1/20. The interpolation is
performed using a whole range of c values, and the RMS error as
defined in (10) is calculated. The result is reported in Figs. 1 and 2
using different plotting ranges and scales.

In Fig. 1, we have carried out the computation for the shape
parameter c to as large as 106. We observe that the error reaches
an asymptotic value of about 10�14. This behavior suggests that
the IMQ interpolant has a limit, and possibly a bivariate
polynomial limit, as A-0. This observation is not surprising, as
the function interpolated, u¼ sinð2pxÞþcosð2pyÞ, is essentially
the linear combination of two one-dimensional functions, in the
10 100 1000 104 105 106

c

1.0×10-14

5.0×10-15

3.0×10-15

7.0×10-15

R
M

S

Fig. 1. RMS error eRMSðs,uÞ for interpolating u¼ sinð2pxÞþcosð2pyÞ using IMQ:

mesh size h¼1/20, in large c range.

2 4 6 8 10 12
c

10-15

10-13

10-11

10-9

R
M

S

Fig. 2. RMS error eRMSðs,uÞ for interpolating u¼ sinð2pxÞþcosð2pyÞ using IMQ:

mesh size h¼1/20, in smaller c range.

Please cite this article as: Huang C-S, et al. On the increasingly flat ra
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two Cartesian axes, and the grid used for interpolation is aligned
along these two axes.

With the existence of such limit, a misconception may develop
that the RBF interpolations can perform no better than polynomial
interpolation. In Fig. 1, however, we observe that the error limit is
approached from below, meaning that the error increases to that
limit. This indicates that the best performance of the interpolant
is not at c-1, but at some finite value. In Fig. 2, we plot the same
result in the smaller c range. In this plot, we observe that as c

increases, the error decreases first, before it increases. A minimum
error of about 10�16–10�17, which is two to three orders of
magnitude smaller than the polynomial error limit, occurred
between 4oco8. This observation suggests that if an optimal c

value can be located, then IMQ is much more efficient than
polynomial as a basis function for interpolation.

4.2. Example 4.2

As a confirmation of polynomial limit, we have tested a
number of polynomial functions, with only one example given
here as an illustration. For the case u¼x2y, we use a uniform grid
with h¼1/10 for interpolation. The resultant error is shown in
Fig. 3. We observe that as c continues to increase, the error
decreases without reaching a finite limit. In this plot, the RMS
error approaches zero at the rate e�OðA8Þ as A-0. The same
behavior is observed for a number of bivariate polynomials tested.

4.3. Example 4.3

We now use IMQ to interpolate u¼ sinð2pxÞcosð2pyÞ over the
unit square. As compared to the case u¼ sinð2pxÞþcosð2pyÞ in
Example 4.1, the current function is a true bivariate function, not
a linear combination of univariate functions.

Results of the interpolation are presented in Figs. 4 and 5. In
Fig. 4, over the smaller c range, we observe a behavior similar to
Fig. 2 in Example 4.1, with optimal c located between 4 and 8,
with a minimum error about 10�16.

For large c, however, Fig. 5 shows a very different result: the
error grows without bound as c-1. That is, the IMQ interpolant
diverges as A-0. Similar divergent behavior is observed for
several other transcendental functions tested, such as different
combinations of trigonometric and exponential functions, over
various uniform grid sizes.

Driscoll and Fornberg [16] in fact reported this result: using
MQ interpolation on a ½0,1� � ½0,1� square using a uniform grid
with h¼1/5, they found that the error diverges at the rate of
100 1000 104 105 106 107

c

10-53

10-45

10-37

10-29

10-21

10-13

R
M

S

Fig. 3. RMS error eRMSðs,uÞ for interpolating u¼x2y using IMQ: mesh size h¼1/10,

in large c range.

dial basis function and optimal shape parameter for the solution
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10 100 1000 104 105 106

c

100

1019

1036

R
M

S

1053

1070

Fig. 5. RMS error eRMSðs,uÞ for interpolating u¼ sinð2pxÞcosð2pyÞ using IMQ: mesh

size h¼1/20, in large c range.

10 1000 105 107 109

c

0.00001127

0.000011271

0.000011272

0.000011273

0.000011274

0.000011275

0.000011276

R
M

S

Fig. 6. RMS error eRMSðs,uÞ for interpolating u¼ sinð2pxÞcosð2pyÞ using GA: mesh

size h¼1/10, in large c range.

2 4 6 8 10 12 14
c

10-4

10-7

10-10

10-13

R
M

S

Fig. 4. RMS error eRMSðs,uÞ for interpolating u¼ sinð2pxÞcosð2pyÞ using IMQ: mesh

size h¼1/20, in smaller c range.
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e�OðA�2Þ as A-0, for arbitrary functions. In the current case,
with h¼1/20, the divergence rate appears to be e�OðA�17Þ.
Larsson and Fornberg [18] also reported that for IMQ, MQ and IQ,
the divergence behavior can be found on nonuniform, but
specially patterned, grids, such as along a single diagonal line.

We shall observe in Section 5 that, if this same function is
interpolated using GA instead of IMQ, the interpolant actually
converges as A-0. Also, in Section 7, we demonstrate that
convergence can be achieved using a random distribution of
collocation nodes with the IMQ interpolation.

It is of interest to observe that in the three examples, Examples
4.1–4.3, we used the same basis function (IMQ), and the same
uniform interpolation grid. This means that the interpolation
matrix A in (6) is identical for all three cases. In the limit of A-0,
the condition number for A, as well as the coefficient vector
L¼ ðl1, . . . ,lNÞ

T , diverges. However, as we already demonstrated
in Examples 4.1 and 4.2, the interpolant can converge to a finite
limit. According to Driscoll and Fornberg [16] and Larsson and
Fornberg [18], whether the interpolant has a finite limit of not is
dependent only on the choice of the basis function and the grid
arrangement. However, as observed in the cases here, the
divergent behavior of the interpolant is also dependent on the
function to be interpolated, that is, the right hand side vector u.
We observe that if the function to be interpolated is of one-
dimensional nature, aligned with the grid axes, or if the function
is a bivariate polynomial, the interpolant converges. Otherwise, it
diverges for IMQ interpolation.
Please cite this article as: Huang C-S, et al. On the increasingly flat ra
of elliptic PDEs. Eng Anal Bound Elem (2010), doi:10.1016/j.enganab
It is of interest to point out that, for practical applications, the
divergent behavior of IMQ interpolant on a uniform grid as c-1

is generally not a cause of concern. As we observe in Fig. 4 that at
smaller c values an optimal c exists, where the error is minimum.
Our goal is to seek such value and not to carry the computation
much beyond that value to c-1. Also, we shall demonstrated in
Section 7 that this divergent behavior seems to disappear if a
random distribution of collocation nodes is used.
5. Interpolation by GA with uniform grid

In the above section, we have been using the IMQ as the basis
function. In this section, we shall replace IMQ by the Gaussian
(GA) basis function.

5.1. Example 5.1

The same three functions tested in Examples 4.1–4.3 are tested
here. For the two cases, u¼ sinð2pxÞþcosð2pyÞ and u¼x2y, we
observe the similar error pattern as reported in Figs. 1–3, but with
better accuracy. These results are not shown here.

For the function u¼ sinð2pxÞcosð2pyÞ, as investigated in
Example 4.3, we observe, in the smaller c range, a similar
behavior as Fig. 4; that is, an optimal c exists where the error is
minimum. In the large c range, however, the error approaches a
finite limit as c-1, as shown in Fig. 6. This behavior is different
from the divergent error shown in Fig. 5, for IMQ interpolant. In
fact, after testing several other transcendental functions
interpolated by GA, no divergent behavior was found as c-1.

The above observation is consistent with Theorem 3.2
presented in Fornberg et al. [17], which states: In the case when

the data points are laid out in a finite rectangular lattice (in any

number of dimensions), GA interpolants will not diverge as A-0.
6. Solution of PDE with uniform grid

As demonstrated in Sections 2.2 and 2.3, the approximation
processes for interpolation of a function and the solution of a PDE
are similar—the same interpolant is used to approximate the
function and the solution of PDE. The difference is, for interpola-
tion, we collocate at a set of points the values of the function;
while for the solution of PDE, the collocation is conducted for a
mixture of the function values at boundary locations (for Dirichlet
boundary condition), and second derivatives of the function
(governing equation) over the solution domain. Hence, it is of
interest to observe whether the error behavior remains the same.
In Section 3, we have demonstrated that, for univariate functions,
dial basis function and optimal shape parameter for the solution
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the error behaviors for interpolation and the solution of one-
dimensional differential equation are the same. In the following
set of examples, we shall solve two-dimensional boundary value
problems of Poisson’s equation to test these conjectures.
6.1. Example 6.1

In this example, we try to find the approximate solution of a
boundary value problem of Poisson’s equation, defined as (7), over
the unit square [0,1] � [0,1]. The exact solution of this problem is
uðx,yÞ ¼ sinð2pxÞþcosð2pyÞ, which is the same function as that
interpolated in Example 4.1. The boundary value problem is
created by substituting the exact solution into (7) to find f(x) and
g(x). For example, f(x) in this case is f ðx,yÞ ¼�4p2½sinð2pxÞ

þcosð2pyÞ�. IMQ is used as the basis function and the collocation
points are laid over the same uniform Cartesian grid as Example
4.1, with h¼1/20. The error as a function of the shape parameter c

is plotted as Figs. 7 and 8.
First, we observe that the RMS error has the same pattern as

Figs. 1 and 2; that is, it has a minimum error at a finite c, and it
approaches an asymptotic limit as c-1. However, the asympto-
tic limit of the PDE case is about two orders of magnitude larger
than the interpolation case. The minimum error is located in the
same range of c value, but its magnitude is about one order of
magnitude greater in the PDE case.
500000 1.0×106 1.5×106 2.0×106 2.5×106 3.0×106
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Fig. 7. RMS error eRMSðs,uÞ for solution of PDE with exact solution

uðx,yÞ ¼ sinð2pxÞþcosð2pyÞ using IMQ: mesh size h¼1/20, in large c range.
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Fig. 8. RMS error eRMSðs,uÞ for solution of PDE with exact solution

uðx,yÞ ¼ sinð2pxÞþcosð2pyÞ using IMQ: mesh size h¼1/20, in smaller c range.
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6.2. Example 6.2

Next we test the boundary value problem of Poisson’s equation
whose exact solution is uðx,yÞ ¼ sinð2pxÞcosð2pyÞ over the unit
square [0,1] � [0,1], corresponding to Example 4.3. The same
basis function (IMQ) and uniform grid size (h¼1/20) are used.

First, we observe in Fig. 9 that the error behavior is similar to
Fig. 4—they both show an optimal c located in the same range,
with a minimum error of about 10�16. In Fig. 10, we find that the
error diverges to infinity, similar to Fig. 5 for the interpolation
problem. The rate of error divergence is e�OðA�13Þ, as compared
to OðA�17Þ for the interpolation case.

In this and the preceding examples, we again show that the
existence of a finite limit for the interpolant as c-1 is dependent
on the function to be interpolated. We also observe that such
error behavior, whether it is divergent or convergent, seems to be
not affected by its collocation algorithm, either directly collocated
for function values, or for a combination of function values and its
derivatives.
6.3. Example 6.3

We now use GA to solve Poisson’s equation over the unit
square domain with the same exact solution u¼ sinð2pxÞcosð2pyÞ

as the preceding example. As demonstrated in Fig. 11, an
asymptotic error toward a finite limit is observed. This is similar
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Fig. 9. RMS error eRMSðs,uÞ for solution of PDE with exact solution

uðx,yÞ ¼ sinð2pxÞcosð2pyÞ using IMQ: mesh size h¼1/20, in smaller c range.
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Fig. 10. RMS error eRMSðs,uÞ for solution of PDE with exact solution

uðx,yÞ ¼ sinð2pxÞcosð2pyÞ using IMQ: mesh size h¼1/20, in large c range.
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Fig. 11. RMS error eRMSðs,uÞ for solution of PDE with exact solution

uðx,yÞ ¼ sinð2pxÞcosð2pyÞ using GA: mesh size h¼1/10, in large c range.

Table 5
RMS error in the limit of c-1, optimal c, and minimum error for five different

collocation sets with d¼ h=1000.

Collocation set eRMS as c-1 optimal c optimal eRMS

Oo
h=1000,1

2.526(�2) 2.70 5.221(�6)

Oo
h=1000,2

2.721(�2) 2.50 3.050(�6)

Oo
h=1000,3

7.296(�3) 3.44 3.804(�6)

Oo
h=1000,4

6.608(�2) 2.56 4.054(�6)

Oo
h=1000,5

9.793(�3) 2.56 4.543(�6)

Table 6
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to the interpolation problem using GA, i.e., Example 5.1, but
dissimilar to the solution of PDE using IMQ, Example 6.2, which
diverges. As compared to Fig. 6 for the interpolation case, the
asymptotic limit is a few fold larger for the PDE case.

We have also tested a few other bivariate transcendental
functions, involving exponential functions, such as
expð10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
Þ, and the product of trigonometric functions, such

as uðx,yÞ ¼ sinðpx=6Þsinð7px=4Þsinð3py=4Þsinð5py=4Þ, using IMQ
and GA as basis functions. We observe that as A-0, the IMQ
interpolants diverge on uniform grid, while the GA interpolants
converge. This suggests that the theorem of Fornberg et al. [17],
which states that for interpolation, GA interpolants will always
converge as A-0, whatever the grid arrangement, may be
extended to the PDE solution case.
RMS error in the limit of c-1, optimal c, and minimum error for five different

collocation sets with d¼ h=10.

Collocation set eRMS as c-1 Optimal c optimal eRMS

Oo
h=10,1

2.528(�2) 4.00 1.104(�6)

Oo
h=10,2

2.527(�4) 2.38 2.452(�6)

Oo
h=10,3

6.772(�4) 2.87 1.105(�6)

Oo
h=10,4

5.271(�3) 2.43 7.473(�7)

Oo
h=10,5

2.867(�4) 2.77 7.149(�7)
7. Random grid

Driscoll and Fornberg [16] suggested that for two-dimensional
interpolation problems, irregular grid layout for collocation points
always results in polynomial interpolation. This motivates us to
test the same conjecture for PDE solution. However, rather than
using a random selection of collocation nodes from a regular grid
system, we randomly disturb the node locations from a regular
grid layout. This is described as the following:
Table 7
(1)

RMS error in the limit of c-1, optimal c, and minimum error for five different

collocation sets with d¼ h=2.

Collocation set eRMS as c-1 Optimal c Optimal eRMS

Oo
h=2,1

1.903(�4) 2.70 4.374(�7)

Oo
h=2,2

2.134(�4) 4.00 3.466(�7)

Pl
of
Given a uniform layout of collocation point set Oo
¼

fðxi,yjÞj1rði,jÞrNg, along the Cartesian coordinates, with

spacing h, we choose a positive real number, drh=2, to

perturb each (xi, yj) within a disk Dðxi,yj,dÞ ¼ fðx,yÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xiÞ

2
þðy�yjÞ

2
q

odg. Note that the adjacent disks will not

intersect each other, since drh=2.

Oo

h=2,3
3.820(�5) 4.00 5.158(�7)
(2)
Oo
h=2,4

6.187(�5) 3.84 5.392(�7)

Oo
h=2,5

1.349(�3) 4.00 4.814(�7)
We then create N random numbers, 0rmijr1, and N random

angles 0ryijr2p, and set our new random collocation points

to be Oo
d ¼ fðx



i ,y
j Þjx



i ¼ xiþmijdcosðyijÞ,y



j ¼ yjþmijdsinðyijÞg.
Table 8
RMS errors and optimal c and optimal RMS errors of RBF interpolation with r¼h/2,

h/10, h/100, h/1000.

Collocation set eRMS as c-1 optimal c optimal eRMS

Oo
h=1000,1

7.868(�3) 2.6 3.781(�7)

Oo
h=100,1

7.702(�4) 2.8 4.771(�7)

Oo
h=10,1

1.904(�4) 2.9 2.504(�7)

Oo
h=2,1

3.833(�5) 2.7 1.026(�7)
7.1. Example 7.1

Using this random grid generation process, and a uniform grid
size h¼1/10, we select four different perturbation radius, d¼ h=2,
h/10, h/100, h/1000. For each of the perturbation radius, we create
five random collocation node data sets, and denote them by
fOo

d,i, i¼ 1, . . . ,5g. Now we take Oo
d,i as our collocation points

and solve the boundary value problem of Poisson’s equation
over [0,1]� [0,1], with the exact solution uðx,yÞ ¼ sinðpx=6Þ
ease cite this article as: Huang C-S, et al. On the increasingly flat ra
elliptic PDEs. Eng Anal Bound Elem (2010), doi:10.1016/j.enganab
sinð7px=4Þsinð3py=4Þsinð5py=4Þ, using IMQ as the basis function.
A summary of the results is reported in Tables 5–7. In these tables,
we report only the limit of the RMS error as c-1 (if it exists), the
optimal c value, and the minimum error associated with it.

First, we observe from these tables that the RMS error
converged to finite limits for all these random collocation node
cases. Here we are reminded that for a uniform grid, it will
diverge. From Table 5, we observe that a convergence can be
achieved with a very small perturbation of nodes, with perturba-
tion radius of only d¼ h=1000.

From Tables 5–7, we observe that, if we locate the optimal c

value, the minimum error can be 2 to 4 orders of magnitude
smaller than the polynomial limit. We also find from Tables 6
and 7 that, as the perturbation radius grows to a significant size,
the minimum error decreases. This fact is further illustrated in
dial basis function and optimal shape parameter for the solution
ound.2010.03.002
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Table 8, where we compile cases of different perturbation
radius, with Oo

0 representing the uniform grid case ðd¼ 0Þ.
We observe that the optimal c value largely remains a
constant, while both the polynomial error limit and the
optimal error generally decrease when the perturbation
radius is increased.
8. Conclusions

Based on the above numerical study, we may draw the
following conclusions/conjectures:
�

P
o

For one-dimensional interpolation problems, as well as for the
solution of boundary value problems of ordinary differential
equations, using a class of infinitely smooth basis functions
that can be expanded into a power series (12), the interpolant
(4) converges to a polynomial limit as the basis functions are
continuously flattened by taking A-0. The asymptotic error is
of the order OðA2Þ. This class of basis functions includes the
IMQ, GA, MQ and IQ, as presented in Tables 1 and 2, as well as
other basis functions. For the interpolation case, the above
conclusion is in fact the theoretical result of Driscoll and
Fornberg [16].

�
 When such a finite error limit exists, the minimum error is

generally not found at this limit; rather, the minimum error
can be located at some finite c value. This statement is true for
one- and multi-dimensional problems, and for interpolation as
well as for solution of PDE.

�
 The error pattern, which includes the convergent/divergent

behavior as c-1 and the existence of an optimal c associated
with minimum error, is generally the same for the interpola-
tion and for the solution of PDE problems, for the
same type of function approximated, and the same basis
function used.

�
 The error associated with the solution of PDE is

generally larger than that associated with interpolation of
function.

�
 For IMQ, the interpolant can diverge or converge on uniform

grid or certain regular node pattern, as A-0. Whether the
interpolant diverges or not is dependent on the function
interpolated. Based on the observation in this paper, the
interpolant converges for essentially one-dimensional
functions and multivariate polynomials. In the latter case,
the error converges to zero. Divergent behavior is observed for
all other functions tested.

�
 The IMQ interpolant becomes convergent as A-0 for all

functions, when the nodes are randomly perturbed from a uniform
grid.

�
 For the interpolation and the solution of PDE problems, GA

interpolant converges for all functions and all interpolation
node arrangement, as A-0. The case for interpolation is a
conjecture of Fornberg et al. [17].

�
 The GA interpolant can typically achieve somewhat better

accuracy than the IMQ.
lease cite this article as: Huang C-S, et al. On the increasingly flat ra
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