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a b s t r a c t

This paper proposes a novel meshless boundary method called the singular boundary method (SBM).

This method is mathematically simple, easy-to-program, and truly meshless. Like the method of

fundamental solutions (MFS), the SBM employs the singular fundamental solution of the governing

equation of interest as the interpolation basis function. However, unlike the MFS, the source and

collocation points of the SBM coincide on the physical boundary without the requirement of

introducing fictitious boundary. In order to avoid the singularity at the origin, this method proposes an

inverse interpolation technique to evaluate the singular diagonal elements of the MFS coefficient

matrix. The SBM is successfully tested on a benchmark problems, which shows that the method has a

rapid convergence rate and is numerically stable.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Meshless methods and their applications have attracted con-
siderable attention in recent decades, since methods of this type
avoid the tedious mesh-generation required in the traditional mesh-
based methods such as the finite element method. In comparison
with the boundary element method, a variety of boundary-type
meshless methods have been developed. For instance, the method of
fundamental solutions (MFS) [1,2], boundary knot method [3],
boundary collocation method [4], regularized meshless method
(RMM) [5,6], and modified method of fundamental solutions [7], etc.

In this study, we propose a novel boundary-type meshless
method called the singular boundary method (SBM) [8]. This
method is mathematically simple, accurate, easy-to-program, and
truly meshless. Like the MMFS, the SBM also directly uses the
singular fundamental solution of the governing equation of
interest as the interpolation basis function. Unlike the MMFS
and all other boundary-type meshless methods, the SBM uses an
inverse interpolation technique to evaluate the diagonal elements
of the interpolation matrix to circumvent the singularity of the
fundamental solutions at the origin. In the remainder of this
paper, numerical experiments of the method are presented to
demonstrate the rapid convergence, high accuracy and stability.

2. Formulation of singular boundary method

Without loss of generality, we consider the Laplace equation
boundary value problem

DuðxÞ ¼ 0 in O; ð1Þ
ll rights reserved.

x: +86 25 83736860.

),
uðxÞ ¼ uðxÞ on G; ð2Þ

where uðxÞ is the potential, O denotes the physical solution
domain in Rd, where d denotes the dimensionality of the space,
and G represents its boundary. For the two-dimensional Laplace
equation, the fundamental solution is given by

u�Lðxi;xjÞ ¼
1

2p
lnJxi�xjJ: ð3Þ

Like the MFS, the SBM also uses the fundamental solution as
the kernel function of the approximation. Unlike the MFS, the
collocation and source points of the SBM are coincident and are
placed on the physical boundary without the need of using a
fictitious boundary. The SBM interpolation formula is given by

uNðxiÞ ¼
XN

j ¼ 1;ja i

ajlnJxi�xjJþaiqii; ð4Þ

where the aj are the unknown coefficients, the qii are defined as
the origin intensity factors. Eq. (4) manifests that the fundamental
solution at the origin is replaced by qii when the collocation point
xi and source point xj coincide ði¼ jÞ.

The MMFS also uses the fundamental solution as the inter-
polation basis function while placing the source and collocation
nodes on the same boundary [7]. The essential difference between
the SBM and MMFS is the way of evaluating the origin intensity
factors qii. The latter uses the numerical integration approach,
while the SBM develops an inverse interpolation technique as
detailed below.

The matrix form of Eq. (4) can be written as

fqijgfajg ¼ fuðxiÞg; ð5Þ

where qij ¼ lnJxi�xjJ. We can see that qii are the diagonal
elements of matrix Q ¼ fqijg. By collocating N source points on
the physical boundary to satisfy the Dirichlet boundary condition
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(2), we obtain the following discretization algebraic equations:

XN

j ¼ 1;ja i

ajlnJxi�xjJþaiqii ¼ uðxiÞ; xiAG1; i¼ 1;2; . . . ;N1; ð6Þ

where N1 denotes the number of source points placed on the
Dirichlet boundary. Obviously, we cannot simply use the funda-
mental solutions to compute qii. Instead we propose an inverse
interpolation technique (IIT) to evaluate the diagonal elements qii

of the interpolation matrix Q in the SBM.
For the boundary value problem (1)–(2), we locate source

points xj on the physical boundary and place computational
collocation points xk inside physical domain. Then we use a
simple particular solution as the sample solution of Laplace
equation (1), for example, uðx; yÞ ¼ xþy. Using the interpolation
formula (4), we can get

fbkjgfsjg ¼ fxkþykg; ð7Þ

where bkj ¼ lnJxk�xjJ. Thus, the influence coefficients sj can be
evaluated.

Replacing the computational collocation points xk with the
boundary source points xj, we have the diagonal elements

qii ¼
1

si
xiþyi�

XN

j ¼ 1;ja i

qijsj

0
@

1
A; i¼ 1;2; . . . ;N ð8Þ

and the off-diagonal elements of the interpolation matrix Q ¼ fqkjg

can be computed by qkj ¼ lnJxk�xjJ for the Dirichlet boundary
condition. It is noted that the influence coefficients of Eq. (7) are
the same as in Eq. (8). Therefore, Eq. (8) can be solved to calculate
the unknown diagonal elements qii of the matrix Q.

With the calculated origin intensity factor, the SBM can be
used to compute arbitrary Laplace problems with the same
geometry by using interpolation formula (4).

As discussed in Section 3, the diagonal elements for the Laplace
equation in a circular physical domain do not require the use of
the inverse interpolation technique to be evaluated numerically.
They are simply a summation of the corresponding off-diagonal
elements, that is,

Q ði; iÞ ¼
XN

ia j;j ¼ 1

qij: ð9Þ

However, this is an exceptional case.
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Fig. 1. Average relative error curves for Case 1.
3. Numerical results and discussions

Based on the above-mentioned numerical formulation, we
examine a benchmark example. The known sample solutions
uðx; yÞ ¼ xþy is chosen which yields better numerical results than
the other sample solutions. The average relative error (root mean
square relative error: RMSRE) is defined as follows [9]:

RMSRE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K

XK

j ¼ 1

Rerr2

vuut ; ð10Þ

where Rerr¼ jðuðxjÞ� ~uðxjÞÞ=uðxjÞj for juðxjÞjZ10�3 and
Rerr¼ juðxjÞ� ~uðxjÞj, for juðxjÞjo10�3, respectively, j is the index
of the inner point of interest, uðxjÞ and uðxjÞ denote the analytical
and numerical solutions at the j-th inner point, xj, respectively,
and K represents the total number of test points used.

For convenience, the boundary points are distributed uni-
formly on a unit circle. The exact solution of this case is
uðx; yÞ ¼ x2�y2. To examine the resulting solution accuracy, the
number of testing points scattered over the region of interest is
chosen to be K ¼ 620.
Here, the diagonal elements of the SBM interpolation matrix
are evaluated by two different approaches: (1) By using Eq. (13), a
summation of the corresponding off-diagonal elements and (2)
the inverse interpolation technique introduced in Section 2.

The average relative error versus boundary point numbers for
this problem is illustrated in Fig. 1. It is noted that the SBM error
curves using the approach of a summation of the corresponding off-
diagonal elements (called the summation approach in Fig. 1) and the
inverse interpolation technique for the diagonal elements are very
close. It should be stressed that the summation of the corresponding
off-diagonal elements to evaluate the diagonal elements only works
for Laplace problems in a circular domain. On the other hand, it is
observed that the error curves of both the SBM and the RMM are
decreasing with increasing boundary points, while the SBM
converges faster than the RMM. When the boundary point number
N¼ 100, the SBM solution accuracy is of order 10�5, which is three
orders of magnitude less than the RMM which is of order 10�2.

For the SBM, we find that the condition numbers are smaller
than the MFS and the BKM cases which is well-conditioned.
Meanwhile, we find that the SBM condition number is the smallest
among the known boundary-type meshless methods, which may
be an attractive advantage for solving large-scale problems.
4. Conclusions

This paper introduces a novel meshless singular boundary
method. Like the MFS, RMM and MMFS, the SBM uses the
fundamental solution as the interpolation basis function. Unlike
the MFS, the source and collocation points coincide and the
fictitious boundary in the MFS is no longer required. Also, unlike
the RMM and MMFS, the SBM uses a new inverse interpolation
technique to remedy the singularity at origin of the fundamental
solutions. The numerical solutions obtained with the SBM agree
well with the analytical solutions. From the presented figures of
the average relative error versus the increasing number of
boundary points, we can see that numerical results for both the
SBM and RMM exhibit a stable convergence trend in all tested
cases, while the SBM converges faster than the RMM. However, it
is also observed that the RMM condition number is in general
much smaller than the SBM one.

Compared to the MFS, a disadvantage of the SBM is the fact
that one needs to solve the two systems of linear algebraic
equations. The mathematical analysis of the SBM is now under
study and will be reported in a subsequent paper.
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