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a b s t r a c t

This note is to present a simple approach to derive the analytical formula of the diagonal elements of the

interpolation matrix of the regularized meshless method (RMM) for regular domain problems, which is

a very new boundary-type numerical discretization technique. In literature, these diagonal elements are

mostly calculated numerically by the desingular technique, except for the circular domain problems.

Our numerical experiments show that the analytical diagonal elements can improve the solution

accuracy of the RMM for some regular domain problems, and the diagonal elements are critical to the

solution accuracy of the RMM. Thus, a searching process is employed to find the optimal diagonal

elements for RMM.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In recent decades, meshless methods [1–6] have attracted a
growing attention from mathematics and engineering commu-
nities. Generally speaking, these methods can be divided into the
domain-type or boundary-type techniques, depending on if their
basis functions satisfy the governing equation of interest. The
regularized meshless method is one kind of the boundary type
meshless collocation methods, proposed very recently by Young
et al. (RMM) [7], as an alternative approach of the well-known
method of fundamental solutions (MFS) [8,9]. The fictitious
boundary and severely ill-conditioning interpolation matrix of
the MFS are avoided in the RMM via the desingularization
technique of subtracting and adding-back. Numerical results
show that the RMM is very efficient in the solution of Laplace
problems [7,10–12], the exterior acoustics problem [13], the
acoustic eigenproblem [14], and the antiplane shear problem [15].

Because the interpolation basis functions of the RMM
encounter singularity, the finite diagonal elements of its inter-
polation matrix have to be numerically calculated, except for the
circular domain case [7]. In this study, we derive the analytical
diagonal elements of the RMM for the other regular domains
problems, such as polygonal domain, etc. The accuracy of RMM
solution using such analytical diagonal elements is found
improved in some examples than that using the traditional
numerical diagonal elements. It also shows that the RMM solution
accuracy is closely related to the accuracy of diagonal elements.
ll rights reserved.
A searching process is then proposed to improve the accuracy of
RMM solution further.
2. Regularized meshless method

We consider Laplace equation with the Dirichlet boundary
conditions

r2uðx; yÞ ¼ 0 in D; ð1Þ

uðx; yÞ ¼ f on G; ð2Þ

where f is a known function, D the arbitrary domain, and G ¼ @D

the boundary.
The solution of Eqs. (1) and (2) at t ¼ ðx; yÞ is approximated in

the RMM by

uðtÞ ¼
XN

j¼1

ajAðt; sjÞ; t 2 D; ð3Þ

where Aðt; sjÞ is the chosen basis function, sj represents the jth
source node, and fajg

N
j¼1 denote the unknown coefficients. Note

that the basis functions of the RMM satisfy the governing
equation.

Eq. (3) is forced to satisfy the boundary condition (2) on N

points ftig
N
i¼1 on G. Then fajg

N
j¼1 can be solved from the resulting

linear system.
In the RMM, Aðti; sjÞ is the so-called double layer potential,

namely,

Aðti; sjÞ ¼
/ðti � sjÞ;njS

r2
ij

;
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where rij ¼ jsj � tij, the symbol /;S denotes the inner product of
vectors, and nj is the outward normal vector of interior problem at
sj. Notice that the sign of Aðti; sjÞ here maybe opposite to some
known results [12]. But it does not affect the solution accuracy of
RMM. So it keeps the above form hereafter.

Aðti; sjÞ is singular at origin when ti approaches to sj. And the
RMM employs the desingularization technique of subtracting and
adding-back to derive the finite diagonal elements. The reduced
null-fields equation [7,16]Z
G

AðeÞðti; sÞdGðsÞ ¼ 0; ti 2 De ð4Þ

is directly discretized by

XN

j¼1

AðeÞðti; sjÞjljj ¼ 0 ð5Þ

in the original RMM formulation, where AðeÞ is related to A by the
opposite normal direction, jljj is the half distance of the source
nodes sj�1 and sjþ1, and De represents the exterior domain of D.

This note employs Eq. (4) to derive analytical diagonal
elements without the direct discretization. The details are shown
in Section 3.
3. Analytical diagonal elements

The line integral in Eq. (4) is divided intoZ
G

AðeÞðti; sÞdGðsÞ ¼
Z

li

AðeÞðti; sÞdGðsÞ þ
Z
G\li

AðeÞðti; sÞdGðsÞ ¼ 0; ð6Þ

see Fig. 1, where si is the ith source node, li the short curve
between si�1=2 and siþ1=2, and G\li the long complementary curve
of li.

Since the length of li is small (when N is large), the singular
integral in Eq. (6) is approximated byZ

li

AðeÞðti; sÞ dGðsÞ � AðeÞðti; siÞjlij: ð7Þ

From Eqs. (6) and (7), we get

AðeÞðti; siÞ ¼ �
1

jlij

Z
G\li

AðeÞðti; sÞdGðsÞ: ð8Þ

Then

Aðti; siÞ ¼ AðeÞðti; siÞ ¼
1

jlij

Z
G\li

Aðti; sÞdGðsÞ: ð9Þ

The relationships of kernel functions for interior and exterior
problems are used in the above formula, namely,

Aðti; sÞ ¼ �AðeÞðti; sÞ; tias;
Fig. 1. The sketch of integration.
Aðti; siÞ ¼ AðeÞðti; siÞ; ti ¼ si;

see Ref. [7]. Eq. (9) can also be derived by the technique of
subtracting and adding-back. This note calls the RMM with Eq. (9)
as the analytical RMM. It is different from the RMM in Ref. [18],
which is called the numerical RMM in this study with the diagonal
elements

Aðti; siÞ ¼ AðeÞðti; siÞ ¼
1

jlij

XN

jai

Aðti; sjÞjljj: ð10Þ

It can be seen Eq. (10) is obtained by discretizing the integration in
Eq. (9).

To be concise, Aðti; sjÞ is denoted as Aði; jÞ hereafter. The
integrand AðeÞðti; sÞ is non-singular on the curve G\=i. In some
special cases, such as the circular or polygonal domains, Aði; iÞ can
be solved analytically from Eq. (9). We list two cases as follows.

Case 1: The circular domain. To consider the circular domain, we
force the nodes fðxi; yiÞg

N
i¼1 on G to satisfy

xi ¼ RcosðyiÞ; yi ¼ RsinðyiÞ; ð11Þ

where R is the radius of the circle, N the number of nodes, and
yi ¼ p=N þ 2p=Nði� 1Þ for i ¼ 1;2; . . . ;N.

It is easy to get the diagonal elements from Eq. (9),

Aði; iÞ ¼ �
N

2R
þ

1

2R
; i ¼ 1;2; . . . ;N: ð12Þ

It is found that Aði; iÞ in Eqs. (9) and (10) are equal on circular
domains, since the integrand is constant in this case.

As known, the analytical diagonal elements given in Ref. [7] are

Aði; iÞ ¼ �
N

2R
�

1

2R
; i ¼ 1;2; . . . ;N: ð13Þ

Numerical comparison will be done to show the accuracy of the
two different diagonal elements for circular domain problems.

Case 2: The square domain. For the square domain, let the nodes
fðxj; yjÞg

N
j¼1 on its four boundaries satisfy

ðxi; yiÞ ¼
i

K
�

1

2K
;0

� �
; i ¼ 1;2; . . . ;K ;

ðxi; yiÞ ¼ 1;
i� K

K
�

1

2K

� �
; i ¼ K þ 1;K þ 2; . . . ;2K;

ðxi; yiÞ ¼ 1�
i� 2K

K
þ

1

2K
;1

� �
; i ¼ 2K þ 1;2K þ 2; . . . ;3K;

ðxi; yiÞ ¼ 0;1�
i� 3K

K
þ

1

2K

� �
; i ¼ 3K þ 1;3K þ 2; . . . ;N;

where K is the number of nodes on each boundary and N ¼ 4K .
Then, by using Eq. (9), we obtain the analytical diagonal

elements:

Aði; iÞ ¼ K arctan
1

xi � 1

� �
þ arctanð�1þ xiÞ � arctanðxiÞ � arctan

1

xi

� �� �

for i ¼ 1;2; . . . ;K;

Aði; iÞ ¼ K arctan
1

yi � 1

� �
þ arctanðyi � 1Þ � arctanðyiÞ � arctan

1

yi

� �� �

for i ¼ K þ 1;K þ 2; . . . ;2K;

Aði; iÞ ¼ K �arctan
1

xi

� �
þ arctanð�1þ xiÞ � arctanðxiÞ þ arctan

1

xi � 1

� �� �

for i ¼ 2K þ 1;2K þ 2; . . . ;3K;

Aði; iÞ ¼ K �arctan
1

yi

� �
þ arctanðyi � 1Þ � arctanðyiÞ þ arctan

1

yi � 1

� �� �

for i ¼ 3K þ 1;3K þ 2; . . . ;N.
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It is noted that the above derivation of the analytical diagonal
elements, unfortunately, is not feasible for the Neumann bound-
ary problem. We know

Bðti; sjÞ ¼
@Aðti; sjÞ

@ni
¼ 2

/ðti � sjÞ;njS/ðti � sjÞ;niS

r4
ij

�
/nj;niS

r2
ij

;
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Fig. 3. The solution contours of Example 1 ðN ¼ 60Þ: (a) exact solution, (b)
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Fig. 2. Node distribution for circular domain ðN ¼ 60Þ.
where Bðti; sjÞ is the interpolation basis function used on Neumann
boundary and ni is the outward normal vector at ti. Bðti; sjÞ has
higher degree of singularity compared with Aði; jÞ. If we derive
Bðti; siÞ in the same fashion, the analytical diagonal elements for
the Neumann boundary should be

Bðti; siÞ ¼ BðeÞðti; siÞ ¼ �
1

jlij

Z
G\li

Bðti; sÞdGðsÞ: ð14Þ

The diagonal element Bðti; siÞ in Eq. (14) is usually too large. This is
because the integration Bðti; sÞ in Eq. (14) is nearly singular at the two
ends of li. The exact value of

R
G\li

Bðti; sÞdGðsÞ is much larger than its
discrete form

PN
jai Bðti; sjÞjljj, which makes the inference impossible.
4. Numerical results and discussions

In this section, three Dirichlet boundary problems are
examined. The first problem is in the circular domain, the second
in the square domain, and the third in the elliptic domain. To
verify the validity of the analytical diagonal elements, the results
of the present analytical diagonal RMM are compared with the
numerical RMM in Ref. [18].

The error at point ðxi; yjÞ is defined as

Eij ¼ juðxi; yjÞ � ûðxi; yjÞj
2; ð15Þ

where u and û are the analytical and numerical solutions, respectively.
The total average error on the whole domain is defined as

TE ¼
1

PQ

XQ

i¼1

XP

j¼1

Eij; ð16Þ

where P and Q are the numbers of yj and xi in the domain.
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4.1. Example 1: The circular domain

The radius of the circular domain is R ¼ 1. The exact solution of
Example 1 is uðx; yÞ ¼ 2xþ 3y subjected to the Dirichlet boundary
condition

u ¼ 2cosðfÞ þ 3sinðfÞ:

The problem sketch and node distribution are shown in Fig. 2.
To see the accuracy of different diagonal elements in Eqs. (12)

and (13), the contours of RMM solutions are shown in Fig. 3. The
solution of RMM with Eq. (13) is more accurate than that of our
paper in Eq. (12). To clearly see this, the convergence curves of
RMM are shown in Fig. 4, from which it can be seen the solutions
of RMM with Eq. (13) converge more quickly than that of RMM
with Eq. (12). It indicates the accuracy of diagonal element is
critical to the solution accuracy of RMM. For the circular domain
problem, the diagonal element in Eq. (12) (which also equals to
Eq. (10) of the numerical RMM) is not optimal. The diagonal
element in Eq. (13) is more accurate.

We further show that the diagonal elements in Eq. (13) is
nearly optimal by searching the diagonal elements with a
20 40 60 80 100 120
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100
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Fig. 4. The convergence curves of Example 1.
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Fig. 5. The error curve of Example 1 with diagonal element ~Aði; iÞ ðN ¼ 60Þ.
perturbation. Namely, let ~Aði; iÞ ¼ ~Aði; iÞ þ d be the new diagonal
element, where Aði; iÞ is the diagonal element in Eq. (12) and d is a
perturbation factor varying in the interval ½�2;0� with a step 0.02.
Note that d is constant for different Aði; iÞ. The searching of a truly
optimal diagonal element by ~Aði; iÞ ¼ Aði; iÞ þ dðiÞ is a hard work,
and will not be discussed here. The error curve is shown in Fig. 5.
The minimal TE error in Eq. (16) is achieved at d ¼ �1:0 with
TE ¼ 1:822� 10�6: Similar error curves are also drawn (omitted
here for saving space) with different radius R. It is found that the
minimal error is always achieved when d ¼ �1=R. Thus,

~Aði; iÞ ¼ �
N

2R
þ

1

2R
þ �

1

R

� �
¼ �

N

2R
�

1

2R
;

which is just the diagonal element Aði; iÞ in Eq. (13).
4.2. Example 2: The square domain

The square domain problem is taken from [7]. Its exact solution
is uðx; yÞ ¼

P1
j¼1 Cnsinhðnpð1� yÞÞsinðnpxÞ; where Cn ¼ 2ð�1Þnþ1

=ðnpÞsinhðnpÞ. The Dirichlet boundary conditions are

uðx;0Þ ¼ x; uðx;1Þ ¼ uð0; yÞ ¼ uð1; yÞ ¼ 0: ð17Þ

The problem sketch and the node distribution are shown in Fig. 6.
The RMM solution contours are plotted in Fig. 7. We can see the

analytical and numerical RMM solutions are both quite close to
the exact ones. This is not surprising because the diagonal
elements of the two methods are almost the same except for
those of the nodes near the four right angles. The convergence
curves of the two methods are shown in Fig. 8. The errors of
the two methods decrease quickly with N, while the rate of the
analytical method is a little faster.

The numerical results show that the analytical diagonal
element in Eq. (9) is effective for the square domain problem. Its
solution accuracy is improved when the number of source nodes
increases. It is stressed that similar behaviors have also been
observed in other polygonal domains.

Finally, we also search the diagonal element by ~Aði; iÞ ¼ Aði; iÞ

þd, where Aði; iÞ is the analytical diagonal element for square
domain in our paper, and d is a perturbation factor varies in the
interval ½�0:5;0:5� with the step 0.04. The error curve is shown in
Fig. 9. The minimal error is TE ¼ 7:973� 10�8 achieved when
d ¼ �0:05. For comparison, we show that TE ¼ 1:030� 10�7 when
d ¼ 0, i.e., ~Aði; iÞ ¼ Aði; iÞ. The improvement of the solution
−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

1

Source point
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Normal vector

0.8

0.6

0.4

0.2

Fig. 6. Node distribution for square domain ðN ¼ 80Þ.
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Fig. 7. The solution contours of Example 2 ðN ¼ 80Þ: (a) exact solution, (b) numerical RMM, and (c) analytical RMM.
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accuracy by searching diagonal elements is not obvious for the
square domain problem.
4.3. Example 3: The elliptic domain

A Dirichlet elliptic domain problem is also considered. We
notice that the diagonal element in Eq. (9) cannot be integrated
analytically here. Thus, the ‘‘analytical’’ diagonal elements are
obtained by the numerical integration, i.e., the adaptive New-
ton–Cotes 8-panel rule [17]. The main purpose of this case is to
show the validity and accuracy of our analytical method in
arbitrary domains.

The major and minor semi axes of the elliptic domain are R1 ¼

1:0 and R2 ¼ 0:5, respectively. The exact solution of Example 3 is
uðx; yÞ ¼ xþ y subjected to the boundary condition

u ¼ R1cosðyÞ þ R2sinðyÞ:

The node distribution of the two methods is shown in Fig. 10.
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Notice that, for this example, Si�1
2

and Siþ1
2

in Fig. 1 are not
midpoints of curves Si�1Si and SiSiþ1. Actually, they are defined as

Si�1
2
¼ ðR1cosðyi �

p
N
Þ; R2sinðyi �

p
N
ÞÞ

Siþ1
2
¼ ðR1cosðyi þ

p
N
Þ; R2sinðyi þ

p
N
ÞÞ

here, where yi ¼
p
N þ ði� 1Þ 2p

N ; si ¼ ðR1cosðyiÞ;R2cosðyiÞÞ, and N is
the total number of nodes.

The solution contours are drawn in Fig. 11, while the con-
vergence curves are shown in Fig. 12. In the two figures, the
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Fig. 10. Node distribution of elliptic domain ðN ¼ 60Þ.
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Fig. 11. The solution contours of Example 3 ðN ¼ 60Þ: (a) exa
solution difference of the two methods is almost invisible. These
results indicate the diagonal element in Eq. (9) is also effective for
arbitrary domain problems. But the solution accuracy does not
improve by the analytical RMM for the elliptic case.

Finally, we also search the diagonal element by ~Aði; iÞ ¼ Aði; iÞ

þd, where Aði; iÞ is the analytical diagonal element in Eq. (9)
(obtained by numerical integration for this example), and
d is a perturbation factor varying in the interval ½�5:0;2:0�
with a step 0.07. The error curve is shown in Fig. 13. The
minimal error is TE ¼ 1:509� 10�4 achieved when d ¼ �1:22.
For comparison, it is shown that TE ¼ 4:449� 10�4 when d ¼ 0,
i.e., ~Aði; iÞ ¼ Aði; iÞ. It indicates the accuracy of RMM solution
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Fig. 12. The convergence curves of Example 3.
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for this problem improves a little by searching the diagonal
elements.
5. Conclusions

Numerical experiments have verified the present analytical
diagonal elements of the RMM for the regular domain Dirichlet
problems. We also find that the solution accuracy of the RMM is
closely related to the diagonal elements of its interpolation
matrix. Thus a searching process is employed to find the optimal
diagonal elements for the RMM. As seen in the examples, the
accuracies of the RMM solutions are improved with varying
degrees for different domain problems. And an accurate subtract-
ing and adding-back technique is essential to the RMM, which is a
subject still under study.
Acknowledgments

The authors would like to thank the reviewers for their
valuable suggestions to improve this paper. The work described
in this paper was partially supported by Natural Science
Foundation of China (Project no. 10672051).
References

[1] Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. Int J Numer
Methods Eng 1994;37:229–56.

[2] Atluri SN, Zhu T. A new meshless local Petrov–Galerkin (MLPG) approach in
computational mechanics. Comput Mech 1998;22:117–27.

[3] Liu GR, Gu YT. A local radial point interpolation method (LRPIM) for free
vibration analyses of 2-D solids. J Sound Vib 2001;246:29–46.

[4] Hu HY, Li ZC, Cheng AHD. Radial basis collocation methods for elliptic
boundary value problems. Comput Math Appl 2005;50:289–320.

[5] Chen W, Hon YC. Numerical investigation on convergence of boundary knot
method in the analysis of homogeneous Helmholtz, modified Helmholtz,
and convection diffusion problems. Comput Method Appl Mech 2003;192:
1859–75.

[6] Chen JT, Chen IL, Chen KH, Yeh YT, Lee YT. A meshless method for free
vibration analysis of circular and rectangular clamped plates using radial
basis function. Eng Anal Bound Elem 2004;28:535–45.

[7] Young DL, Chen KH, Lee CW. Novel meshless method for solving the
potential problems with arbitrary domain. J Comput Phys 2005;209:
290–321.

[8] Golberg MA, Chen CS. The method of fundamental solutions for potential,
Helmholtz and diffusion problems. In: Boundary integral methods: numerical
and mathematical aspects. Boston, MA: WIT Press, Computational Mechanics
Publications; 1999. p. 103–76.

[9] Fairweather G, Karageorghis A. The method of fundamental solutions for
elliptic boundary value problems. Adv Comput Math 1998;9:69–95.

[10] Chen KH, Kao JH, Chen JT, Young DL, Lu MC. Regularized meshless method for
multiply-connected-domain Laplace problems. Eng Anal Bound Elem
2006;30:882–96.

[11] Young DL, Chen KH, Liu TY, Shen LH, Wu CS. Hypersingular meshless method
for solving 3D potential problems with arbitrary domain. Comp Model Eng Sci
2009;40(3):225–69.

[12] Chen KH, Kao JH, Chen JT, Wu KL. Desingularized meshless method for solving
Laplace equation with over-specified boundary conditions using regulariza-
tion techniques. Comput Mech 2009;43:827–37.

[13] Young DL, Chen KH, Lee CW. Singular meshless method using double layer
potentials for exterior acoustics. J Acoust Soc Am 2006;119:96–107.

[14] Chen KH, Chen JT, Kao JH. Regularized meshless method for solving acoustic
eigenproblem with multiply-connected domain. Comput Model Eng Sci
2006;16:27–40.

[15] Chen KH, Chen JT, Kao JH. Regularized meshless method for antiplane
shear problems with multiple inclusions. Int J Numer Methods Eng 2008;73:
1251–73.

[16] Chen JT, Chen PY. Null-field integral equations and their applications. In:
Boundary elements and other mesh reduction methods XXIX. Southampton:
WIT Press; 2007. p. 88–97.

[17] Forsythe GE, Malcolm MA, Moler CB. Computer methods for mathematical
computations. New Jersey: Prentice-Hall; 1977.

[18] Song RC, Chen W. An investigation on the regularized meshless method
for irregular domain problems. Comput Model Eng Sci 2009;42(1):
59–70.


	Analytical diagonal elements of regularized meshless method for regular domains of 2D Dirichlet Laplace problems
	Introduction
	Regularized meshless method
	Analytical diagonal elements
	Numerical results and discussions
	Example 1: The circular domain
	Example 2: The square domain
	Example 3: The elliptic domain

	Conclusions
	Acknowledgments
	References




