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a b s t r a c t

This paper provides a formulation for indirect BIEs in plane elasticity using single or double layer

potentials and complex variable. There are two ways to obtain two kinds of layer and the relevant

indirect BIEs. In the first way, the displacement expression at domain point is directly obtained from the

Somigliana identity with necessary modification. In the second way, after placing some density

functions, for example, the body force or the dislocation doublet, along the layers, one can obtain the

displacement expression at domain point. For both single and double layers, the continuous or

discontinuous properties for the displacement and traction are studied in detail when a moving point is

passing through the boundaries. Formulations of the Dirichlet and the Neumann problems are

proposed. The ranges for solving the boundary value problem by using the single or double layer

potentials are clearly indicated. For the case of single layer, the degenerate scale problems for the finite

multiply connected region and infinite multiply connected region are studied. For the case of double

layer, a hypersingular BIE for crack can be formulated by assuming that the density functions are

vanishing along a portion of boundary.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The boundary integral equations (BIEs) attracted many
researchers in the recent fifty years. Some statistics shows that
papers based on BIEs rank third among all main computational
methods [1]. In old years, researchers could derive some BIEs.
However, the relevant integral equations are difficult to solve
numerically. Nowadays, computers can compute all formulated
BIEs without any difficulties. A particular advantage of the BIE
method is that the method can considerably reduce the
dimensionality of unknowns in the solution, if one compares it
with the finite element method (FE). Some pioneer works were
proposed by some researches [2,3]. Some basic formulation of
BIEs can be found in the literature [4,5]. In the meantime, the
development of BIEs was summarized [1].

The direct BIEs in plane elasticity are generally formulated on
Simigliana’s identity [1,5]. In the direct BIEs, the involved
functions are the displacements and tractions defined on the
domain and the boundaries. Among direct BIEs, the dual
integration formulation is significant [6–8]. The first BIE relates
the displacement along the boundary to two integrals with the
displacement and traction density functions along the boundary.
The second BIE relates the traction along the boundary to two
ll rights reserved.

fax: +86 0511 88791739.
integrals with the displacement and traction density functions
along the boundary.

In boundary element terminology, the single and double layer
methods are referred to as the ‘indirect methods’. The formulation
of relevant potentials for the Laplace equation is compactly
addressed [1]. For the indirect BIEs in plane elasticity, some
source density is placed along the layer. An elasticity solution for
displacement is defined on the entire plane by an expression of
integration operator. Depending on the structure of the integra-
tion operator, there are two kinds of layers, or the single layer and
the double layer.

An interpretation was carried out for the layers of elastic
potentials, which are used to solve elastic boundary value
problems of bodies [9]. The solution of a Dirichlet boundary
value problem of plane isotropic elasticity by the boundary
integral equation (BIE) of the first kind obtained from the
Somigliana identity is considered. The logarithmic function
appearing in the integral kernel leads to the possibility of this
operator being non-invertible, the solution of the BIE either being
non-unique or not existing [10,11].

Some researchers formulated the direct and indirect BIEs using
complex variable [12–17]. Some researchers derived the complex
BIE using the holomorphity theorem [16]. The theorem for a
holomorphic analytic function f(z) takes the form
jðtoÞ ¼ ð1=piÞ

R
CðjðtÞdt=t � toÞ, where G is the boundary of a finite

region or an infinite region. Clearly, this theorem is only valid for
holomorphic analytic function f(z). In the boundary value
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problem of finite region, the relevant complex potentials must be
some holomorphic analytic functions. However, in the infinite
region bounded by many contours, the relevant complex
potentials may contain a logarithmic function if the boundary
tractions applied on contours are not in equilibrium. This is a
reason why the holomorphity theorem is difficult to use in the
exterior boundary value problem for two cases: (a) the boundary
tractions applied on contours are not in equilibrium, (b) the
Dirichlet problems with arbitrary displacements assumed on the
boundary. For the problem (a), one can introduce a particular
complex potential and the original problem can be reduced to a
complementary problem that the tractions on contours are in
equilibrium [18]. However, this procedure will make the solution
more complicated.

This paper provides a formulation of indirect BIEs in plane
elasticity using single or double layer potentials and complex
variable. There are two ways of obtaining two kinds of layers and
the relevant indirect BIEs.

In the first way, after using the Somigliana identity and the
complex variable, the displacement expression at domain point is
expressed by two integrals. In addition, one deletes one integral
on the right hand side of the displacement expression, and
renames the density function in the preserved integral. Thus, the
displacement expression at domain point is expressed by one
integral. The next step is to prove the displacement expression at
domain point is an elasticity solution. In this way, the single and
double layers can be obtained in the form of complex potential.

In the second way, based on a solution for the concentrated
force in an infinite plate [18,19], the single layer potentials using
complex variable can be formulated. Secondly, based on a solution
for the dislocation doublet in an infinite plate [19], the double-
layer potentials using complex variable can also be formulated.

For both single and double layers, the continuous or dis-
continuous properties for the displacement and traction are
studied in detail when a moving point is passing through the
boundaries. The simple-valued condition of displacement is
examined, and the properties for the tractions applied on the
contours are studied in detail. Formulations of the Dirichlet and
the Neumann problems are studied. The ranges for solving the
boundary value problem by using the single or double layer
potentials are clearly indicated.

For the case of single layer, the degenerate scale problems for
the finite multiply connected region and infinite multiply
connected region are studied. From the double layer, a hypersin-
gular BIE for the curved crack can be formulated by assuming that
the density functions are vanishing along a portion of the
boundary.
2. Preliminary knowledge

2.1. Some preliminary knowledge in complex variable method of

plane elasticity

The complex variable function method plays an important role
in plane elasticity. Fundamental of this method is introduced. In
the method, the stresses (sx;sy;sxy), the resultant forces (X, Y)
and the displacements (u, v) are expressed in terms of complex
potentials f(z) and c(z) such that [18]

sxþsy ¼ 4ReFðzÞ

sy � sxþ2isxy ¼ 2½zF0ðzÞþCðzÞ�
or

sy � sx � 2isxy ¼ 2½zF0ðzÞþCðzÞ�
ð1Þ
f ¼ � Yþ iX ¼jðzÞþzj0ðzÞþcðzÞ ð2Þ

2Gðuþ ivÞ ¼ kjðzÞ � zj0ðzÞ � cðzÞ ð3Þ

where FðzÞ ¼j0ðzÞ, CðzÞ ¼c0ðzÞ, a bar over a function denotes the
conjugated value for the function, G is the shear modulus of
elasticity, k¼ ð3� nÞ=ð1þnÞ in the plane stress problem, k¼ 3�
4n in the plane strain problem, and v is Poisson’s ratio.
Sometimes, the displacements u and v are denoted by u1 and u2,
the stresses sx, sy and sxy by s1, s2 and s12, the coordinates x and
y by x1 and x2.

For the sake of the following derivations, an equation for
finding derivative is introduced as follows:

d

dz
f ðzÞgðzÞ
� �

¼ f 0ðzÞ gðzÞþ
dz

dz
ðf ðzÞg0ðzÞÞ ð4Þ

In Eqs. (4) and (5), f(z) and g(z) denote some analytic function.
The derivative in Eq. (4) is named the derivative in a specified
direction (abbreviated as DISD).

Except for the physical quantities mentioned above, from
Eqs. (2) and (3) two derivatives in specified direction (abbreviated
as DISD) are introduced as follows [19,20]:

J1ðzÞ ¼
d

dz
�Yþ iX
� �

¼FðzÞþFðzÞþ
dz

dz
ðzF0ðzÞþCðzÞÞ ¼ sNþ isNT

ð5Þ

J2ðzÞ ¼ 2G
d

dz
uþ iv
� �

¼ kFðzÞ �FðzÞ �
dz

dz
ðzF0ðzÞþCðzÞÞ

¼ ðkþ1ÞFðzÞ � J1 ð6Þ

It is easy to verify that J1 ¼ sNþ isNT denotes the normal and
shear tractions along the segment z; zþdz. Secondly, the J1 and J2

values depend not only on the position of a point z but also on the
direction of the segment dz=dz.

In plane elasticity, the following integrals are useful [18–20]:

FðzÞ ¼
1

2pi

Z
L

f ðtÞdt

t � z
ð7Þ

GðzÞ ¼
1

2pi

Z
L

gðtÞdt

t � z
ð8Þ

Hðz; zÞ ¼
1

2pi

Z
L

t � z

ðt � zÞ2
hðtÞdt ð9Þ

where L is a smooth curve or a closed contour G. Also, we assume
that the functions f(t), g(t) and h(t) satisfy the Hölder condition [18].
Sometimes, the functions f(t), g(t) and h(t) are called the density
functions hereafter. Clearly, the two integrals defined by Eqs. (7) and
(8) are analytic functions, and one defined by Eq. (9) is not. The
integral (7) is precisely the well-known Cauchy type integral.

Generally speaking, these integrals take different values when
z-tþ0 and z-t�0 , (t0AL). The limit values of these functions from
the upper and lower sides of the curve L are found to be [18–20]

F 7 ðtoÞ ¼ 7
f ðtoÞ

2
þ

1

2pi

Z
L

f ðtÞdt

t � to
ð10Þ

G7 ðtoÞ ¼ 7
gðtoÞ

2

dto

dto
þ

1

2pi

Z
L

gðtÞdt

t � to
ð11Þ

H7 ðto; toÞ ¼ 7
hðtoÞ

2

dto

dto
þ

1

2pi

Z
L

t � to

ðt � toÞ
2

hðtÞdt ð12Þ

In Eqs. (10)–(19), all the integrals should be understood in the
sense of principal value of the integral. Note that the notations of
f(t), g(t), h(t), F(z), G(z) and Hðz; zÞ used in Eqs. (10)–(12) have no
relation with those mentioned in other places.
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2.2. Formulation of BIE using real variable or complex variable

In the following analysis, the a-field shown by Fig. 1(a) relates
to the fundamental field caused by concentrated force at the point
z=t. After using Betti’s reciprocal theorem, or the Somigliana
identity, between the fundamental field (or the a-field shown by
Fig. 1(a)) and the physical field (or the b-field shown by Fig. 1(b)),
for the plan strain case we have

uiðtÞ ¼ �
R

BP�ijðt; xÞujðxÞdsðxÞþ
R

BU�1ij ðt; xÞpjðxÞdsðxÞ;

ði¼ 1;2; tASþ ; B¼ B0þB1þ � � � þBNÞ
ð13Þ

where region S+ is a finite multiplied region bounded by contours
Bj (j=0,1,2, y, N).

Letting the domain point t (tAS+) approach a boundary point
x(xAG), the following BIE is formulated [5]:

1

2
uiðxÞ ¼ �

Z
B
P�ijðx; xÞujðxÞdsðxÞþ

Z
B
U�1ij ðx; xÞpjðxÞdsðxÞ;

ði¼ 1;2; xAB; B¼ B0þB1þ � � � þBNÞ ð14Þ

In the case of t-x (tAS+ , xAG), a jump value ui(x)/2 is found
on the right hand side of Eq. (13).

In Eq. (14), the kernel P�ijðx; xÞ is defined by [5]

P�ijðx; xÞ ¼ �
2H1

r
ðr;1n1þr;2n2Þðð1� 2nÞdijþ2r;ir;jÞ
�

þð1� 2vÞðnir;j � njr;iÞ
�

ð15Þ

H1 ¼
1

8pð1� vÞ
¼

1

2pðkþ1Þ
ðin plane strain caseÞ ð16Þ

where Kronecker delta dij is defined as dij=1 for i= j, dij=0 for ia j,
and

r;1 ¼
x1 � x1

r
¼ cosa; r;2 ¼

x2 � x2

r
¼ sina ð17Þ

and n(n1,n2) is a unit normal to the boundary at the field point
x(x1,x2).

In Eq. (14), the kernel U�1ij ðx; xÞ is defined by [21]

U�1ij ðx; xÞ ¼
H1

G
�ð3� 4nÞlnðrÞdijþr;ir;j � 0:5dij

� �
ð18Þ

In addition, the following kernel was suggested in the
literature [5]:

U�2ij ðx; xÞ ¼
H1

G
�ð3� 4nÞlnðrÞdijþr;ir;j
� �

ð19Þ
Py

Px

y (x2) y (x

x (x1)

Fig. 1. (a) the a-field caused by concentrated forc
It is proved that the kernel shown by Eq. (19) cannot be used to
the exterior problem in case the tractions on the contour are not
in equilibrium [21].

Alternatively, the BIE can be derived by using the complex
variable. In the following analysis, the a-field shown by Fig. 1(a)
relates to the fundamental field caused by concentrated force at
the point z=t. The relevant complex potentials are as follows
[18–20]:

jðzÞ ¼ F lnðz� tÞ; j0ðzÞ ¼FðzÞ ¼
F

z� t ; j00ðzÞ ¼ � F

ðz� tÞ2
ð20Þ

cðzÞ ¼ � kF lnðz� tÞ � Ft
z� t ; c0ðzÞ ¼ �

kF

z� t þ
Ft

ðz� tÞ2
ð21Þ

where

F ¼ �
Pxþ iPy

2pðkþ1Þ
ð22Þ

In Eq. (22), Px+ iPy is the concentrated force applied at the point
z=t in Fig. 1(a). Note that the complex potentials shown by
Eqs. (20) and (21) are expressed in a pure deformable form [21].

The complex potentials shown by Eqs. (20) and (21) are
defined in a fully infinite plane. From Eqs. (3), (20) and (21), we
can evaluate the relevant displacement at the point t as follows
(Fig. 1):

2Gðuþ ivÞ� ¼ 2kF ln9t � t9� F
t � t
t � t

ð23Þ

Similarly, from Eqs. (4), (20) and (21) we can evaluate the
relevant boundary traction at the point t as follows (Fig. 1):

ðsNþ isNT Þ� ¼
F

t � t þ
F

t � t
þ

dt

dt
�

kF

t � t
�

Fðt � tÞ
ðt � tÞ2

 !
ð24Þ

In Eqs. (23) and (24), the subscript ‘‘n’’ denotes that the
arguments are derived from the fundamental solution.

After using Betti’s reciprocal theorem, or the Somigliana
identity, between the fundamental field (or the a-field in
Fig. 1(a)) and the physical field (or the b-field in Fig. 1(b)), we have

PxuðtÞþPyvðtÞþRe
R

Bðu� ivÞðdXþ idYÞ�
� �

¼ Re
R

Bðu� ivÞ�ðdXþ idYÞ
� �

;

ðtASþ ; B¼ B0þB1þ � � � þBNÞ

ð25Þ

where the left hand term represents the work done by traction in
the fundamental field (the a-field) to the displacement of the
physical field (the b-field). In addition, the right hand term
represents the work done by traction in the physical field (the
b-field) to the displacement of the fundamental field (the a-field).
Bo n

B1 dt δ

S+

B2 z = τ

BN                           dt   

t or x (x1, x2)

 or ξ(ξ1, ξ2)

2)

x (x1)

to

es, (b) the b-field defined by a physical field.



ARTICLE IN PRESS

Y.Z. Chen et al. / Engineering Analysis with Boundary Elements 34 (2010) 337–351340
In Eq. (25), dX+ idY denotes the force applied on the segment dt

(Fig. 1). From Eq. (2) and Fig. 1, we can find

dXþ idY ¼ ðsNþ isNT Þe
idds; dt¼ ieidds;

dXþ idY ¼ � iðsNþ isNT Þdt
ð26Þ

where d denotes an inclined angle for the normal at a boundary
point (Fig. 1).

Thus, Eq. (25) can be rewritten as

PxuðtÞþPyvðtÞþRe

Z
B
ð�iÞðsNþ isNT Þ�ðu� ivÞdt

¼ Re

Z
B
ð�iÞðu� ivÞ�ðsNþ isNT Þdt ðtASþ Þ ð27Þ

Substituting the explicit form for ðsNþ isNT Þ� and (u–iv)n into
Eq. (27) yields

PxuðtÞþPyvðtÞþRe
R

Bð�iÞ
F

t � t þ
F

t � t
þ

dt

dt
�

kF

t � t
�

Fðt � tÞ
ðt � tÞ2

 ! !
ðu� ivÞdt

¼
1

2G
Re

Z
B
ð�iÞ 2kF ln9t � t9� F

t � t
t � t

� �
ðsNþ isNT Þdt ðtASþ Þ ð28Þ

In the following analysis, one can let

UðtÞ ¼ uðtÞþ ivðtÞ;

Q ðtÞ ¼ dð�YðtÞþ iXðtÞÞ=dt¼ sNðtÞþ isNT ðtÞ

ðtAB; B¼ B0þB1þ � � � þBNÞ

ð29Þ

In Eq. (28), if we let Px=1, Py=0 and F ¼ � 1=2pðkþ1Þ, we can
find an equation for u(t). Similarly, if we let Px=0, Py=1 and
F ¼ � i=2pðkþ1Þ, we can find an equation for v(t). Thus, we will
find

uðtÞþ ivðtÞ ¼H1i
R

B �
1

t � t
þ

dt

dt

ðt � tÞ
ðt � tÞ2

 !
UðtÞdt

þH1i
R

B

1

t � t
�

dt

dt

k
t � t

� �
UðtÞdt

þ
H1i

2G

Z
B
k½lnðt � tÞþ lnðt � tÞ�Q ðtÞdt

þ
H1i

2G

Z
B

t � t
t � t

Q ðtÞdt ðtASþ Þ

ð30Þ

Eq. (30) can be rewritten as

UðtÞ ¼ uðtÞþ ivðtÞ

¼H1i
R

B �
ðk� 1Þ

t � t UðtÞdtþL1ðt; tÞUðtÞdt � L2ðt; tÞUðtÞdt

� �

þ
H1i

2G

Z
B
k½lnðt � tÞþ lnðt � tÞ�Q ðtÞdt

þ
H1i

2G

Z
G

t � t
t � t

Q ðtÞdt ðtASþ Þ

ð31Þ

where

L1ðt; tÞ ¼ �
d

dt
ln

t � t
t � t

� 	
¼ �

1

t � t þ
1

t � t
dt

dt
ð32Þ

L2ðt; tÞ ¼
d

dt

t � t
t � t

� 	
¼

1

t � t
�

t � t
ðt � tÞ2

dt

dt
ð33Þ

An expression similar to Eq. (31) was suggested in [14,
Eq. (14)], where the term for traction Q(t) is replaced by the
resultant force function f=�Y+ iX. It will be discussed in Appendix
A that the formulation suggested in [14, Eq. (14)] has an
inconvenient point, which can only be used in case the tractions
on contour are in equilibrium in the exterior boundary value
problem (BVP).

The kernel functions in Eq. (31) are expressed in an explicit
form. Thus, the expression is more convenient in derivation when
a domain point t approaches the boundary point to, or t-to

(tAS+ , toAB in Fig. 1).
In Eq. (31), letting t-to (tAS+ , toAB ) and using the general-

ized Sokhotski–Plemelj formulae shown by Eqs. (10)–(12) and
some results in Appendix B, yields

UðtoÞ

2
¼H1i

Z
B
�
k� 1

t � to
UðtÞdtþL1ðt; toÞUðtÞdt � L2ðt; toÞUðtÞdt

� �

þ
H1i

2G

Z
B

2k ln9t � to9Q ðtÞdtþ
t � to

t � to
Q ðtÞdt

� �
ðtoAGBÞ

ð34Þ

It is noted here that, when taking the limit process t-to for
the first integral on the right hand side of Eq. (31), an additional
term U(to)/2 was found. Thus, the left hand term in Eq. (34)
becomes U(to)/2 (note that U(to)/2=U(to)�(U(to)/2)). In the real
variable BIE, this property has been obtained previously [5].
However, the property is obtained in a more explicit way in this
paper, by using the generalized Sokhotski–Plemelj formulae
shown by Eqs. (10)–(12) and some results in Appendix B. It is
easy to prove that the complex BIE shown by (34) is equivalent to
its counterpart in a real variable form shown by Eq. (14).
3. Indirect BIEs based on single layer potential using complex
variable

3.1. Formulation of indirect BIEs based on single layer potential

using complex variable

After taking the following steps: (1) deleting one term
containing the function U(t) on the right hand side of Eq. (31),
(2) the function Q(t) is replaced by q(t) and (3) t is rewritten as z,
we can propose a displacement expression:

uðzÞþ ivðzÞ ¼
XN

j ¼ 0

ðuðzÞþ ivðzÞÞj ð35Þ

where

ðuðzÞþ ivðzÞÞj ¼
H1i

2G

Z
Bj

k½lnðt � zÞþ lnðt � zÞ�qjðtÞdt

þ
H1i

2G

Z
Bj

t � z

t � z
qjðtÞdt

ð36Þ

Now the function qj(t) (j=0,1,2, y, N) in Eq. (36) is the body
force density function rather than the traction on the boundary
(Fig. 2).

It is easy to see that the displacement expression shown by
Eq. (35) corresponds to the following complex potentials:

jðzÞ ¼
XN

j ¼ 0

jjðzÞ;cðzÞ ¼
XN

j ¼ 0

cjðzÞ ð37Þ

where

jjðzÞ ¼H1i

Z
Bj

lnðt � zÞqjðtÞdt ðj¼ 0;1;2; . . .;NÞ ð38Þ

cjðzÞ ¼H1i
R

Bj
k lnðt � zÞqjðtÞdt

þH1i
R

Bj

t

t � z
qjðtÞdt ðj¼ 0;1;2; . . .;NÞ

ð39Þ
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If one substitutes the complex potentials Eqs. (38) and (39)
into Eq. (3), the displacement ðuðzÞþ ivðzÞÞj (j=0,1,2, y, N) is
exactly expressed by Eq. (36). Thus, the displacement expression
shown by Eq. (36) is an elasticity solution.

It can be proved that the complex potentials shown by
Eqs. (38) and (39) correspond to a body force layer placed along
the contour Bj (j=0, 1, 2, y, N). In fact, if a concentrated body
force with the intensity ‘‘F’’ is applied at the point z=t (Fig. 3), the
relevant complex potentials are as follows [18–20]:

jðzÞ ¼ F lnðt � zÞ; cðzÞ ¼ � kF lnðt � zÞþ
Ft

t � z
ð40Þ

where

F ¼ Fxþ iFy ¼
Py � iPx

2pðkþ1Þi
ð41Þ

We make a substitution F ¼H1iqjðtÞ and F ¼ � H1iqjðtÞ in
Eqs. (40) and (41), and an integration with respect to dt, and the
complex potentials shown by Eqs. (38) and (39) are obtained.
Thus, the assertion is proved.

Assuming z-tþo and z-t_
o (toABj), and using the generalized

Sokhotski–Plemelj formulae Eqs. (10)–(12) and some results in
Appendix B, from Eq. (36) we will find

½ðuðtoÞþ ivðtoÞÞj�
7
Bj
¼

H1i

2G

Z
Bj

k½lnðt � toÞþ lnðt � toÞ�qjðtÞdt

þ
H1i

2G

Z
Bj

t � to

t � to
qjðtÞdt ðj¼ 0;1;2; . . .;NÞ

ð42Þ

½ðuðtoÞþ ivðtoÞÞj�
þ
Bj
� ½ðuðtoÞþ ivðtoÞÞj�

�
Bj
¼ 0; ðj¼ 0;1;2; . . .;NÞ ð43Þ
Body force  layer

y σN Bo

σNT

Bj B1 Bo
′

Bk

Bj

to        t                    

t BN

S+ to dt

to t

o x

′

Fig. 2. Multiply connected region with body force layers along B¼ B0þ

B1þ � � � þBN .

y Py

t Px

o x

Fig. 3. Concentrated forces in an infinite plate.
From Eqs. (42) and (43), we see that the displacements are
continuous in case of a moving point to across the boundary Bj

(j=0,1,2,yN).
Substituting Eqs. (38) and (39) into (2) yields the resultant

force function

�YðzÞþ iXðzÞ ¼
XN

j ¼ 0

ð�YðzÞþ iXðzÞÞj ð44Þ

where

ð�YðzÞþ iXðzÞÞj
¼ � H1i

R
Bj
ðk� 1Þlnðt � zÞqjðtÞdt

þH1i
R

Bj
k½lnðt � zÞ � lnðt � zÞ�qjðtÞdt

� H1i
R

Bj

t � z

t � z
qjðtÞdt; ðj¼ 0;1;2; . . .;NÞ

ð45Þ

or

ð�YðzÞþ iXðzÞÞj ¼H1i
R

Bj
ðkþ1Þlnðt � zÞqjðtÞdt

�H1i
R

Bj
k½lnðt � zÞþ lnðt � zÞ�qjðtÞdt

�H1i
R

Bj

t � z

t � z
qjðtÞ dt; ðj¼ 0;1;2; . . .;NÞ

ð46Þ

From Eqs. (5), (44) and (45), the traction sNðzÞþ isNT ðzÞ at a
domain point can be evaluated as follows:

sNðzÞ þ isNT ðzÞ ¼
XN

j¼0

ðsNðzÞ þ isNT ðzÞÞj ð47Þ

where

ðsNðzÞþ isNT ðzÞÞj ¼
d

dz
ðð�YðzÞþ iXðzÞÞjÞ

¼H1i

Z
Bj

k� 1

t � z
qjðtÞdtþH1i

Z
Bj

kK1ðt; zÞqjðtÞdt

þH1i

Z
Bj

K2ðt; zÞqjðtÞ dt ð48Þ

In Eq. (48), two kernels are defined by

K1ðt; zÞ ¼
d

dz
ln

t � z

t � z

� 	
¼ �

1

t � z
þ

1

t � z

dz

dz
;

K2ðt; zÞ ¼ �
d

dz

t � z

t � z

� 	
¼

1

t � z
�

t � z

ðt � zÞ2
dz

dz

ð49Þ

Similarly, assuming z-tþo and z-t_
o (toABj), and using the

generalized Sokhotski–Plemelj formulae Eqs. (10)–(12) and some
results in Appendix B, from Eq. (48) we will find

½ðsNðt0Þþ isNTðt0ÞÞj�
7
Bi

¼ 7
qjðtoÞ

2
þH1i

Z
Bj

k� 1

t � to
qjðtÞdt

þH1i

Z
Bj

kK1ðt; toÞqjðtÞdt

þH1i

Z
Bj

K2ðt; toÞqjðtÞ dt ; ðtoABjÞ ð50Þ

½ðsNðt0Þþ isNTðt0ÞÞj�
þ
Bj
� ½ðsNðt0Þþ isNTðt0ÞÞj�

�
Bj
¼ qjðtoÞ; ðtoABjÞ ð51Þ

From Eq. (51) we find that the tractions are discontinuous
when a moving point to across the boundary Bj (j=0,1,2,y,N).

In addition, when a moving point ‘‘z’’ goes forward in the
clockwise direction along the contour B0j (j=1,2, y, N), the
increase for a function f(z) is denoted by f ðzÞB0

j
;inc . Similarly, when

a moving point z goes forward in the anti-clockwise direction
along the contour B0o, the increase for a function f(z) is denoted by
f ðzÞB0o ;inc .
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From Eq. (36), we have

fðuðzÞþ ivðzÞÞkgB0
j
; inc ¼ 0 ðk; j¼ 0;1;2; . . .;NÞ ð52Þ

From Eq. (46), properties for the resultant force functions can
be obtained as follows:

fð�YðzÞþ iXðzÞÞ0gB0
0
; inc ¼ �

Z
B0

q0ðtÞdt ð53aÞ

fð�YðzÞþ iXðzÞÞjgB0
j
; inc
¼

Z
Bj

qjðtÞdt ðj¼ 1;2; . . .;NÞ ð53bÞ

fð�YðzÞþ iXðzÞÞjgB0
0
; inc
¼ � fð�YðzÞþ iXðzÞÞjgB0

j
; inc

¼ �
R

Bj
qjðtÞdt; ðj¼ 1;2; . . .;NÞ

ð53cÞ

fð�YðzÞþ iXðzÞÞ0gB0
j
; inc ¼ 0 ðj¼ 1;2; . . .;NÞ ð53dÞ

fð�YðzÞþ iXðzÞÞjgB0
k
; inc
¼ 0 ðj; k¼ 1;2; . . .;N; jakÞ ð53eÞ

Finally, we have

fð�YðzÞþ iXðzÞÞgB0
0
; inc ¼ �

XN

j ¼ 0

Z
Bj

qjðtÞdt ð54Þ

fð�YðzÞþ iXðzÞÞgB0
j
; inc ¼

Z
Bj

qjðtÞdt ðj¼ 1;2; . . .;NÞ ð55Þ

Eqs. (53a) and (53b) reveal that the applied tractions along the
contours B0j (j=0,1,2, y, N) may not be in equilibrium in forces.

In addition, a moment function is defined as follows [18]:

mðzÞ ¼
XN

j ¼ 0

mjðzÞ ð56Þ

where

mjðzÞ ¼ RefwjðzÞ � zcjðzÞ � zzj0jðzÞg; with wjðzÞ ¼

Zz

zo

cjðzÞdz ð57Þ

where zo is a fixed point, and z is variable.
From Eq. (39), we have

wjðzÞ ¼
Rz
zo

cjðzÞdz

¼ � H1i

Z
Bj

k½ðt � zÞlnðt � zÞþz�qjðtÞdt

�H1i

Z
Bj

lnðt � zÞtqjðtÞdt; ðj¼ 0;1;2; . . .;NÞ ð58Þ

wjðzÞ � zcjðzÞ ¼ � H1i

Z
Bj

k½tlnðt � zÞþz�qjðtÞdt

� H1i

Z
Bj

lnðt � zÞtqjðtÞdt

� H1i

Z
Bj

tz

t � z
qjðtÞdt; ðj¼ 0;1;2; . . .NÞ ð59Þ

Thus, from Eqs. (57) and (59), we will find

fm0ðzÞgB0o inc ¼ � 2pH1Re
R

Bo
ðktq0ðtÞdtþtq0ðtÞdtÞ

¼ � Re
R

Bo
tq0ðtÞdt

ð60Þ

fmjðzÞgBj
0 inc ¼ 2pH1 Re

Z
Bj

ðktqjðtÞdtþtqjðtÞdtÞ ¼ Re

Z
Bj

tqjðtÞdt

ð61Þ

where fmkðzÞgB0
j
; inc represents the moment applied on contour

B0j caused by the kth density distribution along the contour Bk.
From Eqs. (53a), (53b), (60) and (61), we see that the boundary
loadings applied on the contours Bj(t) (j=0,1,2, y, N) may not be
in equilibrium in forces and moment.
3.2. Formulations of boundary value problems

The Dirichlet problem is formulated first. It is assumed that the
displacements along the contours toABk (k=0,1,2, y, N) have been
given beforehand

ðuðtoÞþ ivðtoÞÞ
þ
Bk
¼ ð ~uðtoÞþ i ~vðtoÞÞk; ðtoABk; k¼ 0;1;2; NÞ ð62Þ

In Eq. (62), ð ~uðtoÞþ i ~vðtoÞÞk (k=0,1,2, y, N) are given functions.
Assuming z-tþo (toABk, k=0,1,2, y, N) in Eqs. (35), (36), using

Eqs. (42) and (62) and the principle of superposition, we will find
the following integral equation:

H1i

2G

XN

j ¼ 0

Z
Bj

k lnðt � toÞþ lnðt � toÞ

 �

qjðtÞdtþ
t � to

t � to
qjðtÞdt

� 	

¼ ð ~uðtoÞþ i ~vðtoÞÞk ðtoABk; k¼ 0;1;2; . . .;NÞ

ð63Þ

Physically, along the contours Bk (k=0,1,2, y, N) we can
assume any deformation expressed by ð ~uðtoÞþ i ~vðtoÞÞk (toABk,
k=0,1,2, y, N). Clearly, regardless of the assumed boundary
deformation ð ~uðtoÞþ i ~vðtoÞÞk (toABk, k=0,1,2, y, N), the Dirichlet
problem governed by Eq. (63) has a definite solution, when the
degenerate scale has not been reached.

In Eq. (63), when the integration (dt) is performed along the
contour Bk (k=0,1,2, y, N), and the observation point to is also on
the contour Bk, a weaker kernel ln(t�to) is presented. It is known
that Eq. (63) may have non-unique solution when the degenerate
scale is reached. The degenerate scale problem arising from
Eq. (63) will be discussed below.

The Neumann problem is formulated secondly. It is assumed
that the tractions along the contours toABk (k=0,1,2, y, N) have
been given beforehand

ðsNðt0Þ þ isNT ðt0ÞÞ
þ
Bk
¼ ð ~sNðt0Þ þ i ~sNT ðt0ÞÞk; ðt0ABk; k ¼ 0;1;2; NÞ;

ð64Þ

In Eq. (64), ð ~sNðt0Þþ i ~sNT ðt0ÞÞÞk (k=0,1,2, y, N) are given
functions.

Similarly, letting z-tþo (toABk, k=0,1,2, y, N) in Eqs. (47), (48),
using Eqs. (50), (64) and the principle of superposition, we will
find the following integral equation:

qkðtoÞ

2
þH1i

Z
Bk

k� 1

t � to

dto

dto
þK1ðt; toÞ

� �
qkðtÞdtþK2ðt; toÞqkðtÞ dt

� 	

þH1i
XN

j ¼ 0

0

Z
Bj

k� 1

t � to

dto

dto
þK1ðt; toÞ

� �
qjðtÞdtþK2ðt; toÞqjðtÞ dt

� 	

¼ ð ~sNðt0Þþ i ~sNT ðt0ÞÞk ðtoABk; k¼ 0;1;2; . . .NÞ ðtoABk;

k¼ 0;1;2; . . .NÞ ð65Þ

In Eq. (65), the prime in
PN

j ¼ 0

0

means that the term j=k should

be excluded in the summation.
In the formulation, the individual traction ~sNðt0Þ þ

i ~sNT ðt0ÞÞk ðt0ABk; k ¼ 0;1;2; . . . ;NÞ applied on kth contour may
not be in equilibrium. However, all the tractions ~sNðt0Þ þ

i ~sNT ðt0ÞÞk ðt0ABk; k ¼ 0;1;2; . . . ;NÞ must be in equilibrium. In
the meantime, if there is no outer boundary B0, the individual
traction ~sNðt0Þ þ i ~sNT ðt0ÞÞk ðt0ABk; k ¼ 0;1;2; . . . ;NÞ applied on
kth contour may not be in equilibrium.
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3.3. Formulation of the degenerate scale problem for finite multiply

connected region

The degenerate scale problem is a particular problem arising
from the Dirichlet problem defined by Eq. (63). Many degenerate
scale problems were studied and solved [10,11,22–25]. A physical
explanation for the existence of a degenerate scale can be referred
to [25]. It is necessary to consider the problem in two cases: (1)
with the outer boundary Bo and (2) without the outer boundary Bo

(Fig. 2).
For the first case, the degenerate scale problem is formulated

for the finite multiply connected region (Fig. 4). After letting the
right hand term in Eq. (63) to be zero, we will obtain the following
homogenous BIE:

XN

j ¼ 0

Z
Bj

k lnðt � toÞþ lnðt � toÞ

 �

qjðtÞdtþ
t � to

t � to
qjðtÞdt

� 	
¼ 0

ðtoABk; k¼ 0;1;2; . . .;NÞ

ð66Þ

Clearly, for any configurations of Bk (k=0,1,2, y, N), Eq. (66)
has a trivial solution (qk(t)=0, tABk, k=0,1,2, y, N). This trivial
solution may not be interesting.

In this case, one may propose normal demand for the
degenerate scale problem. In the normal demand, one wants to
find some configurations for Bk (k=0,1,2, y, N), Eq. (66) has a non-
trivial solution (qk(t)a0, tABk, for all k=0,1,2, y, N). In this case,
the homogenous BIE (66) may not have such a non-trivial
solution.

Alternatively, one may propose a modified demand for the
degenerate scale problem. The modified demand was suggested
by some researchers [24,26]. In the modified demand, one wants
to find some configurations for Bk (k=0,1,2, y, N), Eq. (66) has a
non-trivial solution (qo(t)a0, tABo, qk(t)=0, tABk for k=1,2, y, N).
In this case, because of qk(t)=0 (for tABk, k=1,2, y, N), the
homogenous BIE (66) can be reduced to

R
Bo

k lnðt � toÞþ lnðt � toÞ

 �

qoðtÞdtþ
t � to

t � to
qoðtÞdt

� 	
¼ 0; ðtoABk; k¼ 0;1;2; . . .;NÞ

ð67Þ

We prefer writing Eq. (67) in an alternative form:

Z
Bo

k lnðt � toÞþ lnðt � toÞ

 �

qoðtÞdtþ
t � to

t � to
qoðtÞdt

� 	
¼ 0; ðtoABoÞ

ð68aÞ
Fig. 4. (a) The stress field caused by density function qo(t)a0 (tABo) in the

degenerate scale, (b) The stress field caused by density function q1(t)=0 (tAB1) in

the degenerate scale, (c) The stress field from a superposition of two cases (a)

and (b).
R
Bo

k lnðt � toÞþ lnðt � toÞ

 �

qoðtÞdtþ
t � to

t � to
qoðtÞdt

� 	
¼ 0

ðtoABk; k¼ 1;2. . .NÞ
ð68bÞ

After preserving the first equation (or Eq. (68a)) from
Eqs. (68a) and (68b), we get a homogenous BIE for the single
outer contour Bo:Z

Bo

k lnðt � toÞþ lnðt � toÞ

 �

qoðtÞdtþ
t � to

t � to
qoðtÞdt

� 	
¼ 0; ðtoABoÞ

ð69Þ

It is known that for the homogenous BIE we have two
degenerate scales such that qo(t) has a non-trivial solution, or
qo(t)a0 (tABo) [10,11] .

We will prove that for two problems: (1) the homogenous BIEs
defined by (68a) and (68b) for finite multiply connected region
and (2) the homogenous BIE defined by Eq. (69) for one contour
Bo, they have the same degenerate scale. Clearly, it is sufficient to
prove the statement for case of two contours Bo and B1 (Fig. 4).

It is assumed that the degenerate scale for the homogenous
equation (69) for the single outer contour Bo has been obtained
beforehand, and the scale is denoted by cd and the relevant non-
trivial solution is named qo(t). Let us consider the properties of the
relevant complex potentials:

joðzÞ ¼H1i

Z
B0

lnðt � zÞqoðtÞdt ð70Þ

coðzÞ ¼H1i

Z
Bo

k lnðt � zÞqoðtÞdtþH1i

Z
Bo

t

t � z
qoðtÞdt ð71Þ

In Eqs. (70) and (71), the variable z is defined in the entire
plane. When z is moving in the inner region (Fig. 4(a)), the
function ln(t�z) (or ln(z�t)) is a single-valued analytic function.
This means that the displacement and stress fields derived from
Eqs. (70) and (71) are continuous in the inner region. From
degenerate scale solution we have ui=0 along the boundary Bo.
Therefore, the displacements must be ui=0 in the inner region
from the unique theorem of elasticity. Further, the stresses must
also be sij=0 in the inner region. The structures of the
displacement and stress field are indicated in Fig. 4(a).

In the meantime, when the vanishing body force q1(t)=0 (tAB1)
is placed along the contour B1, the following solution ui=0, sij=0 is
obtained in entire domain (Fig. 4(b)). For this case, the structures
of the displacement and stress field are indicated in Fig. 4(b).

The superposition of Fig. 4(a) and (b) will result in the stress field
shown by Fig. 4(c). Clearly, the stress field shown by Fig. 4(c)
represents a non-trivial solution for finite multiply connected region.

From the above-mentioned results, we see the following facts.
For two problems: (1) the BIEs defined by Eqs. (68a) and (68b) and
for finite multiply connected region and (2) the BIE defined by
Eq. (69) for one contour, they have the same degenerate scale.
Secondly, the configurations of the inner contours Bk (k=1,2,3, y, N)
do not play any role in the derivation, or they can be arbitrary. This
point was pointed out by many researchers [10,11,26].

3.4. Formulation of the degenerate scale problem for infinite

multiply connected region

For the second case, the degenerate scale problem is
formulated for infinite multiply connected region. After deleting
the term for Bo and letting the right hand term in Eq. (63) to be
zero, we will obtain the following homogenous BIE:

XN

j ¼ 1

Z
Bj

k lnðt � toÞþ lnðt � toÞ

 �

qjðtÞdtþ
t � to

t � to
qjðtÞdt

� 	
¼ 0

ðtoABk; k¼ 1;2. . .NÞ

ð72Þ
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Clearly, it is sufficient to make a statement for the case of two
contours B1 and B2 with no boundary Bo (Fig. 5).

In this case, one may propose normal demand for the
degenerate scale problem. In the normal demand, one wants to
find some configurations for Bk (k=1,2, y, N), Eq. (72) has a non-
trivial solution (qk(t)a0, (tABk), for all k=1,2, y, N).

Contrary to the normal demand in the first case (the finite
multiply connected region), the degenerate scale problem for
Eq. (72) has a solution. It is sufficient to make a statement for the
case of two contours B1 and B2. First, contours B1 and B2 are in an
equivalent position. Secondly, the body force density qk(t) (tABk,
k=1,2) causes continuous displacement and stress in the entire
plane with the exception at the contours Bk (k=1,2). Thus, once
the boundary values of displacements from inner regions are
equal to zero along the boundaries Bk (k=1,2), the ui and sij

components must be vanishing in the inner regions bounded by
the boundaries Bk (k=1,2). Clearly, the obtained solution has a
property qk(t)a0 (k=1,2). For this case, the structures of the
displacement and stress field are indicated in Fig. 5. Thirdly, the
degenerate scale problem for case of two contours B1 and B2 is
simply an extension of the same problem for one contour case, say
only one contour B1. Using the coordinate transformation
technique [4,27], the degenerate scale problem for the case of
two contours B1 and B2 was solved recently [28].

Alternatively, one may propose a modified demand for the
degenerate scale problem. In the demand, we need to find some
configurations for Bk (k=1,2), Eq. (72) has a non-trivial solution
(q1(t)a0, tAB1, q2(t)=0, tAB2). In this case, because of q2(t)=0,
tAB2, the homogenous BIE (72) can be reduced toZ

B1

k lnðt � toÞþ lnðt � toÞ

 �

q1ðtÞdtþ
t � to

t � to
q1ðtÞdt

� 	
¼ 0;

ðtoABk; k¼ 1;2Þ ð73Þ

We prefer writing Eq. (73) in an alternative formZ
B1

k lnðt � toÞþ lnðt � toÞ

 �

q1ðtÞdtþ
t � to

t � to
q1ðtÞdt

� 	
¼ 0; ðtoAB1Þ

ð74aÞ

Z
B1

k lnðt � toÞþ lnðt � toÞ

 �

q1ðtÞdtþ
t � to

t � to
q1ðtÞdt

� 	
¼ 0; ðtoAB2Þ

ð74bÞ

It is possible to obtain a solution for degenerate scale problem
defined by Eq. (74a). However, after substituting the obtained
Outer region :

ui ≠ 0, σij ≠ 0 ui = 0, σij = 0

y

B2

cd

o

B1

Along boundary B1
Along boundary B2:

ui = 0, σij ≠ 0, q1 (t) ≠ 0 ui = 0, σij ≠ 0, q2 (t) ≠ 0

Inner region :

x

Fig. 5. Stress field for infinite multiply connected region in degenerate scale case.
solution q1(t) (tAB1) into the left hand side of (74b), Eq. (74b) may
not be satisfied. Thus, the modified demand (assume q1(t)a0,
tAB1, q2(t)=0, tAB2) is not a reasonable assumption in the
formulation. This situation is quite different to his counterpart
in the finite multiply connected case (see some statements after
Eq. (67)).
4. Indirect BIEs based on double layer potential using complex
variable

4.1. Formulation of indirect BIEs based on double layer potential

using complex variable

After taking the following steps: (1) deleting one term
containing the function Q(t) on the right hand side of Eq. (31),
(2) the function U(t) is replaced by g(t) and (3) t is written as z, we
can propose a displacement expression:

uðzÞþ ivðzÞ ¼
XN

j ¼ 0

ðuðzÞþ ivðzÞÞj ð75Þ

where

ðuðzÞþ ivðzÞÞj ¼H1i

Z
Bj

�
k� 1

t � z
gjðtÞdtþL1ðt; zÞgjðtÞdt � L2ðt; zÞgjðtÞdt

� �

ð76Þ

L1ðt; zÞ ¼ �
d

dt
ln

t � z

t � z

� 	
¼ �

1

t � z
þ

1

t � z

dt

dt
ð77Þ

L2ðt; zÞ ¼
d

dt

t � z

t � z

� 	
¼

1

t � z
�

t � z

ðt � zÞ2
dt

dt
ð78Þ

Note that the functions gj(t) (j=0,1,2, y, N) in Eq. (76) are the
density functions assumed along the contours Bj (j=0,1,2, y, N),
rather than the displacement on the boundaries (Fig. 6).

It is easy to see that the displacement expression shown by
Eq. (75) corresponds to the following complex potentials:

jðzÞ ¼
XN

j ¼ 1

jjðzÞ; cðzÞ ¼
XN

j ¼ 1

cjðzÞ ð79Þ
y σN
Bo

σNT

Bj
′ B1 Bo′

Bk

Bj

to        t                    

t BN

S+ to dt

 t

o x

to

Fig. 6. Multiply connected region with dislocation doublet layers along

B¼ B0þB1þ � � � þBN .
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where

jjðzÞ ¼ � 2GH1i

Z
Bj

1

t � z
gjðtÞdt; ðj¼ 0;1;2; . . .;NÞ ð80Þ

cjðzÞ ¼ 2GH1i
R

Bj
�

1

t � z
þ

dt

dt

t

ðt � zÞ2

 !
gjðtÞdt

þ2GH1i
R

Bj

1

t � z
gjðtÞdt ðj¼ 0;1;2; . . .;NÞ

ð81Þ

If one substitutes the complex potentials (80) and (81) into
Eq. (3), the displacement ðuðzÞþ ivðzÞÞj (j=0,1,2, y, N) is exactly
expressed by Eq. (76). Thus, the displacement expression shown
by Eq. (76) is an elasticity solution.

At this stage, one may find some differences between two
formulations based on the single layer and the double layer. In
fact, in the single layer formulation, the complex potential fj(z)
shown by Eq. (38) has a term ln(t�z) (lnðt � zÞ ¼ lndþ iy) in the
integrand. The distance between two points t and z is denoted by
d. Thus, the influence at point z has a factor proportional to ln(d)
in the single layer formulation. However, in the double layer
formulation, the complex potential fj(z) shown by Eq. (80) has a
term 1/(t�z) in the integrand. Therefore, the relevant influence at
point z is proportional to 1/d in the double layer formulation. This
situation also exists in the formulation of the 2D Laplace equation
based on the single layer or double layer.

It can be proved that the complex potentials shown by
Eqs. (80) and (81) correspond to a dislocation doublet layer
placed along the contour Bj (j=0,1,2, y, N). In fact, if a dislocation
doublet with the intensity D¼Dxþ iDy (�D) is applied at the
point z=t (z=t+dt) (Fig. 7), the complex potentials for the
dislocation doublet are available [19] as

jðzÞ ¼D logðz� tÞ � logðz� t � dtÞ

 �

¼ � D
dt

t � z
ð82Þ

cðzÞ ¼D logðz� tÞ � logðz� t � dtÞ

 �

� D
t

z� t
�

tþdt

z� t � dt

� 


¼ � D
dt

t � z
� D

dt

t � z
þD

tdt

ðt � zÞ2

ð83Þ

In fact, if we make the substitutions D¼ 2GH1igjðtÞ and D¼ �

2GH1igjðtÞ in Eqs. (82) and (83), and perform an integration with
respect to dt, the complex potentials shown by Eqs. (80) and (81)
are obtained. Thus, the mentioned assertion is proved.

Assuming z-tþo and z-t_
o (toABj) and using the generalized

Sokhotski–Plemelj formulae and some results in Appendix B, from
Eq. (76) we will find

½ðuðtoÞþ ivðtoÞÞj�
7
Bj

¼ 7
gjðtoÞ

2
þH1i

Z
Bj

�
ðk� 1Þ

t � to
gjðtÞdtþL1ðt; toÞgjðtÞdt � L2ðt; toÞgjðtÞdt

� �

ðtoABj; j ¼ 0;1;2; . . .;NÞ ð84Þ
y

-D

t+dt
D

t

o x

Fig. 7. Dislocation doublet with the intensity D¼Dxþ iDy (�D) applied at the

point z=t (z=t+dt).
½ðuðtoÞþ ivðtoÞÞj�
þ
Bj

� ½ðuðtoÞþ ivðtoÞÞj�
�
Bj
¼ gjðtoÞ ðtoABj; j¼ 0;1;2 . . . ;NÞ ð85Þ

From Eqs. (84) and (85), we see that the displacements are
discontinuous in case of a moving point to across the boundary Bj

(j=0,1,2, y, N).
Substituting Eqs. (80) and (81) into Eq. (2) yields the resultant

force function

�YðzÞþ iXðzÞ ¼
XN

j ¼ 0

ð�YðzÞþ iXðzÞÞj ð86Þ

where

ð�YðzÞþ iXðzÞÞj ¼ 2GH1iR
Bj
�

2

t � z
gjðtÞdt � L1ðt; zÞgjðtÞdtþL2ðt; zÞgjðtÞdt

� �
ð87Þ

Similarly, letting z-tþo and z-t_
o (toABj) and using the

generalized Sokhotski–Plemeljs formulae and some results in
Appendix B, from Eq. (87) we will find

½ð�YðtoÞþ iXðtoÞÞj�
þ
Bj
¼ ½ð�YðtoÞþ iXðtoÞÞj�

�
Bj

¼ 2GH1i
R

Bj
�

2

t � to
gjðtÞdt � L1ðt; toÞgjðtÞdtþL2ðt; toÞgjðtÞdt

� �
ðtoABj; j¼ 0;1;2; . . .;NÞ

ð88Þ

½ð�YðtoÞþ iXðtoÞÞj�
þ
Bj
� ½ð�YðtoÞþ iXðtoÞÞj�

�
Bj
¼ 0

ðtoABj; j¼ 0;1;2; . . .;NÞ
ð89Þ

From Eqs. (88) and (89) we see that the resultant force
function is continuous in case of a moving point to across the
boundary Bj.

From Eqs. (5), (80) and (81), the traction sNðzÞþ isNT ðzÞ at a
domain point can be evaluated as follows:

sNðzÞþ isNT ðzÞ ¼
XN

j ¼ 0

ðsNðzÞþ isNT ðzÞÞj ð90Þ

where

ðsNðzÞþ isNTðzÞÞj

¼
d

dz
ðð�YðzÞþ iXðzÞÞjÞ

¼H1i

Z
Bj

�
2

ðt � zÞ2
gjðtÞdt�M1ðt; zÞgjðtÞdtþM2ðt; zÞgjðtÞ dt

 !

ð91Þ

In Eq. (91), two kernels are defined by

M1ðt; zÞ ¼
d

dz

(
L1ðt; zÞ

)
¼ �

d

dz

d

dt
ln

t � z

t � z

� 	� 	

¼ �
1

ðt � zÞ2
þ

1

ðt � zÞ2
dt

dt

dz

dz
ð92Þ

M2ðt; zÞ ¼
d

dz

(
L2ðt; zÞ

)
¼

d

dz

d

dt

t � z

t � z

� 	� 	

¼
1

ðt � zÞ2
dt

dt
þ

dz

dz

� �
�

2ðt � zÞ

ðt � zÞ3
dt

dt

dz

dz

ð93Þ

Similarly, assuming z-tþo and z-t_
o (toABj) and using results

for jump values for three integrals in Eq. (91) (see Appendix B),
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from Eq. (91) we will find

½ðsNðt0Þþ isNTðt0ÞÞj�
þ
Bj

¼ ½ðsNðt0Þþ isNTðt0ÞÞj�
�
Bj

¼H1i

Z
Bj

�
2

ðt � toÞ
2

gjðtÞdt�M1ðt; toÞgjðtÞdtþM2ðt; toÞgjðtÞdt

 !

ðtoABjÞ ð94Þ

½ðsNðt0Þþ isNTðt0ÞÞj�
þ
Bj
� ½ðsNðt0Þþ isNTðt0ÞÞj�

�
Bj
¼ 0 ðtoABjÞ ð95Þ

In the derivation of Eq. (94), the jump values from the first
integral and second integral on the right hand side of Eq. (91) are
just compensated, and the third integral has no contribution to
the jump value (see Appendix B). From Eq. (95) we see that the
tractions are continuous in case of a moving point to across the
boundary Bj. In addition, the first term on the right hand side of
Eq. (94) is a hypersingular integral.

Thus, from Eqs. (76) and (87) we have

fðuðzÞþ ivðzÞÞkgB0
j
; inc ¼ 0 ðk; j¼ 0;1;2; . . .;NÞ ð96Þ

fð�YðzÞþ iXðzÞÞkgB0
j
;inc ¼ 0 ðk; j¼ 0;1;2; . . .;NÞ ð97Þ

Eq. (96) represents the single-valued condition of displace-
ments, which has been satisfied in the present formulation.
Eq. (97) shows that the tractions applied on contour Bj must be in
equilibrium in resultant forces. This is a disadvantage in the
formulation based on dislocation doublet layer.

From Eq. (81) we have

wjðzÞ ¼
Rz
zo

cjðzÞdz¼ 2GH1i
R

Bj
lnðz� tÞþ

dt

dt

t

t � z

� �
gjðtÞdt

�2GH1i
R

Bj
lnðz� tÞgjðtÞdt ðj¼ 0;1;2; . . .;NÞ

ð98Þ

Therefore, substituting Eq. (98) into (57) yields

fm0ðzÞgB0
0
; inc ¼ 4pGH1Re

Z
B0

ðg0ðtÞdt � g0ðtÞdtÞ ¼ 0 ð99Þ

fmjðzÞgB0
j
; inc
¼ � 4pGH1Re

R
Bj
ðgjðtÞdt � gjðtÞdtÞ ¼ 0;

j¼ 1;2; . . .;Nð Þ
ð100Þ

fmkðzÞgB0
j
; inc ¼ 0; ðk; j¼ 0;1;2; . . .;NÞ ð101Þ

where fmkðzÞgB0
j
; inc represents the moment applied on contour B0j

caused by the kth density distribution along the contour Bk.
Eqs. (97) and (101) reveal that the tractions applied on the
contour Bj (j=0,1, y, N) must be in equilibrium in forces and
moment. This is a disadvantage in the formulation based on
dislocation doublet layer.

4.2. Formulations of boundary value problems

The Dirichlet problem is formulated first. It is assumed that the
displacement along the contours toABk (k=0,1,2, y, N) has been
given beforehand, which is as follows:

ðuðtoÞþ ivðtoÞÞ
þ
Bk
¼ ð ~uðtoÞþ i ~vðtoÞÞk ðtoABk; k¼ 0;1;2; . . .;NÞ ð102Þ

In Eq. (102), ð ~uðtoÞþ i ~vðtoÞÞk (k=0,1,2, y, N) are given functions.
Using Eqs. (75), (76), (84) and (102), and the principle of

superposition, we will find the following integral equation:

gkðtoÞ

2
þH1i

Z
Bk

�
ðk� 1Þ

t � to
gkðtÞdtþL1ðt; toÞgkðtÞdt� L2ðt; toÞgkðtÞ dt

� �

þH1i
XN

j ¼ 0

0

Z
Bj

�
ðk� 1Þ

t � to
gjðtÞdtþL1ðt; toÞgjðtÞdt� L2ðt; toÞgjðtÞ dt

� �

¼ ð ~uðtoÞþ i ~vðtoÞÞk ðtoABk; k¼ 0;1;2; . . . ;NÞ ð103Þ
In Eq. (103), the prime in
PN

j ¼ 0

0

means that the term j=k should

be excluded in the summation.
As claimed previously, the tractions applied on the contour Bj

(j=0,1,2, y, N) must be in equilibrium in forces and moment.
However, an arbitrary assumed boundary condition for
ð ~uðtoÞþ i ~vðtoÞÞk (k=1,2, y, N) may not satisfy this condition. Thus,
the singular integral equation (103) cannot be used in the general
case. It can be only used in some particular case, for example, a
symmetric elliptic ring region with symmetric deformation as
indicated in Fig. 8(a).

Clearly, if (1) the inner contour is fixed, or u+ iv=0 for inner
contour, and (2) the outer contour has a translation in x-direction,
or u+ iv=c (c-real), there must be a resultant force applied on the
contour (Fig. 8(b)). Thus, the integral equation must have no
solution in this case (Fig. 8(b)). Clearly, the formulation based on
dislocation doublet potentials cannot be used in the Dirichilet
problem in general.

The Neumann problem is formulated secondly. It is assumed
that the tractions along the contours toABk (k=0,1,2, y, N) have
been given beforehand

ðsNðt0Þþ isNT ðt0ÞÞ
þ
Bk
¼ ð ~sNðt0Þþ i ~sNT ðt0ÞÞk ðtoABk; k¼ 0;1;2; . . .;NÞ

ð104Þ

In Eq. (104), ð ~sNðt0Þþ i ~sNT ðt0ÞÞk, (k=0,1,2, y, N) are given
functions.

Using Eqs. (90), (91), (94), (95) and (104), and the principle of
superposition, we will find the following hypersingular integral
equation:

H1i

Z
Bk

�
2

ðt � toÞ
2

gkðtÞdt�M1ðt; toÞgkðtÞdtþM2ðt; toÞgkðtÞ dt

 !

þH1i
XN

j ¼ 0

0

Z
Bj

�
2

ðt � toÞ
2

gjðtÞdt�M1ðt; toÞgjðtÞdtþM2ðt; toÞgjðtÞ dt

 !

¼ ð ~sNðt0Þþ i ~sNTðt0ÞÞk ðtoABk; k¼ 0;1;2; . . . ;NÞ ð105Þ

In Eq. (105), the prime in
PN

j ¼ 0

0

means that the term j=k should

be excluded in the summation.
As claimed previously, the tractions applied on the contour Bj

(j=0,1,2, y, N) must be in equilibrium in forces and moment.
However, the arbitrary assumed boundary tractions for
ð ~sNðt0Þþ i ~sNT ðt0ÞÞk (k=0,1,2, y, N) may not satisfy this condition.
Thus, the presented hypersingular integral equation cannot be
used in the general case. It can be only used to some particular
case, for example, a ring region with tractions on contours in
equilibrium in forces and moment (Fig. 9(a)). This is a
disadvantage in the formulation based on dislocation doublet
layer.
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Clearly, Eq. (105) cannot be used in the loading condition
shown by Fig. 9(b). Previously, a particular complex potential was
introduced [18]. After introducing this complex potential, the
problem shown by Fig. 9(b) can be reduced to a complementary
problem that the tractions on contours are in equilibrium. Later,
the integral equation (105) is used to solve the complementary
problem. However, this procedure will make the solution more
complicated.

Clearly, the above-mentioned boundary value problems are
defined for multiply connected region for a finite region. If there is
no outer boundary B0, we simply delete the relevant term in the
formulation. In this case, the boundary value problem is defined
for multiply connected region for an infinite region.

As stated in Ref. [22], no general proof has been done for the
degenerate scale problem. A physical background for the problem
is introduced below. Typically, the degenerate scale problem
arises from the exterior BVP when the vanishing displacement is
imposed on the boundary. For a single contour case of the exterior
BVP (only k=1 in Eq. (103)), one may assume vanishing
displacement on the right hand side of Eq. (103). In this case,
one may obtain a non-zero solution for g1(t) [26]. However, this
non-trivial solution represents a rigid rotation of the inner portion
to the exterior portion, and no stress was initiated in the exterior
region. Note that the complex potentials can be defined in the
interior and exterior regions with respect to contour B1. That is to
say, we have a unique solution for the stresses for the BIE defined
by Eq. (103). Thus, no degenerate scale problem can be found
from the double layer formulation.

4.3. Formulation of hypersingular integral equation for a curved

crack

A particular case is introduced below. Assume that there is
only one contour Bo, which is composed of curves L and L1, or
Bo=L+L1 (Fig. 10). The stress field is defined on the entire plane
with the exception of the boundary Bo. In this case, the density
function is denoted by go(t). In addition, we assume that

goðtÞa0; ðtALÞ and goðtÞ ¼ 0; ðtAL1Þ ð106Þ

In this case, Eq. (105) is reduced to

H1i

Z
L
�

2

ðt � toÞ
2

g0ðtÞdt�M1ðt; toÞg0ðtÞdtþM2ðt; toÞg0ðtÞ dt

 !

¼ ð ~sNðt0Þþ i ~sNTðt0ÞÞ0 ðtoALÞ ð107Þ

where ð ~sNðt0Þþ i ~sNT ðt0ÞÞ0 is the traction applied on the crack
face. From (85) we see that the density function represents the
following COD (crack opening displacement) function:

g0ðtoÞ ¼ ðuðtoÞþ ivðtoÞÞ
þ
L � ðuðtoÞþ ivðtoÞÞ

�
L ðtoALÞ ð108Þ
Eq. (108) represents a hypersingular integral equation for the
curved crack problem. The hypersingular integral equation for the
curved crack was suggested by many researchers [6,14,29–31].

At this stage, we can summarize the particular behaviors of the
single and double layers in the formulation of the crack problem.
In fact, in the single layer formulation, a relation is shown by
Eq. (43): ½ðuðtoÞþ ivðtoÞÞj�

þ
Bj
� ½ðuðtoÞþ ivðtoÞÞj�

�
Bj
¼ 0, (j=0.1,2, y, N).

This means that the formulation cannot provide the COD behavior
in the crack problem. On the contrary, in the double layer
formulation, a relation is shown by Eq. (85): ½ðuðtoÞþ ivðtoÞÞj�

þ
Bj
�

½ðuðtoÞþ ivðtoÞÞj�
�
Bj
¼ gjðtoÞ (toABj, j=0,1,2, y, N). This means that the

formulation can provide the COD behavior in the crack problem.
As stated previously, only assuming gj(to)=0 on some portion of
contour, and also assuming gj(to)a0 on the other portion of
contour, the BIE for the curved crack problem is naturally
formulated.

As stated in Ref. [22], no general proof has been done for the
degenerate scale problem. A physical background for the problem
is introduced below. Physically, the degenerate scale problem
arises from the logarithmic kernel involved in the integrand. In
the BIE shown by Eq. (107), one kernel involved on the left hand
side is a hypersingular integral with the form

R
Lðg0ðtÞdt=ðt � toÞ

2
Þ.

We may propose a coordinates transformation x2=hx1, y2=hy1

(h—a positive value) between (x1,y1) and (x2,y2). In this case, we
can obtain the relevant matrix after discretization for the integral.



ARTICLE IN PRESS

σx  = σy  = p∞∞

y

B

α

e
d

C

x

Fig. 11. A V-shaped crack with rounded corner.

0.0

0.5

0.6

0.7

0.8

0.9

1.0

5π/12

4π/12

3π/12

2π/12

N
on

-d
im

en
si

on
al

 s
tre

ss
 in

te
ns

ity
 fa

ct
or

e/d

α = π/12

f1(α, e/d)

0.2 0.4 0.6 0.8 1.0
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Clearly, all elements of matrix in the coordinates (x2,y2) will be
proportional to those in the coordinates (x1,y1). That is to say the
adopted different scales have no essential influence on the
resulting algebraic equation, and only influence with a constant
multiplied factor h. Thus, there is no degenerate scale problem for
BIE (107). Clearly, this is a physical statement for the degenerate
scale problem of the curved crack.

4.4. A numerical example for a curved crack using hypersingular

integral equation

A numerical example is carried out for a curved crack problem
using the hypersingular equation shown by Eq. (107). The curved
crack has a V-shaped configuration with a rounded corner
(Fig. 11). The arm length is denoted by d, and the length of the
rounded portion is denoted by e. The arm of V-shape has an
inclined angle a with respect to the x-axis. The remote loading is
s1x ¼ s1y ¼ p. A quadrature rule for the hypersingular integral
equation proposed in [32] is used. In addition, the curve length
coordinate technique is suggested in the solution [33]. Therefore,
the hypersingular integral equation (107) can be solved
numerically. The computed results for SIFs at the right tip are
expressed as

K1 ¼ f1ða; e=dÞp
ffiffiffiffiffiffi
pa
p

; K2 ¼ f2ða; e=dÞp
ffiffiffiffiffiffi
pa
p

ð109Þ

where

a¼ dþe
a

tan a� 1
� �

ð110Þ

The 2a is equal to the length of the curved crack after
expanding.

The computed results for f1(a,e/d) and f2(a,e/d), under condi-
tions a=p/12, y, 5p=12, and e/d=0.1,0.2, y, 1.0, are plotted
in Figs. 12 and 13, respectively. From the plotted results
we see that, the influence of the rounded corner (or the
ratio e/d) is not significant. However, the influence caused
by the inclined angle a is significant. For example,
in the case of e/d=0.5, we have f1ða; e=dÞ a ¼ p=12 ¼ 0:9645

�� ,
f1ða; e=dÞ a ¼ 5p=12 ¼ 0:5380

�� , f2ða; e=dÞ a ¼ p=12 ¼ 0:1253
�� ,

f1ða; e=dÞ a ¼ 5p=12 ¼ 0:2392
�� , respectively.
5. Conclusions

For two kinds of potentials, it is important to study the
properties of potentials in detail. The continuous or discontinuous
properties for the displacements and tractions for a moving point
across the boundary play an important role in the study. For this
point, in addition to the generalized Sokhotski–Plemelj formulae
shown by Eqs. (10)–(12), this paper provides some results in
Appendix B. Those results represent some extension of the
generalized Sokhotski–Plemelj formulae. Clearly, the results
shown in Appendix B are difficult to obtain using real variable
analysis.

Previously, when a moving point z goes forward in the
clockwise direction along the contour B0j (j=1,2, y, N), the
increase for a function f(z) is defined by f ðzÞB0

j
; inc. The analysis

for behaviors of f ðzÞB0
j
;inc also plays an important role in the study.

Clearly, only after studying those behaviors, we can know the
range of the solution for the formulated BIE. It can be seen from
analysis in the fourth section that the BIEs based on double layer
for exterior problem (shown by Eqs. (103) or (105)) can only be
used in the cases where the tractions along the individual contour
are in equilibrium. Particularly, it is not easy to overcome the
inconvenient points in the formulation, e.g., for the boundary
value problem shown by Fig. 8(b).
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In addition, the limitation for the indirect BIEs based on the
single layer is minor. Only one demand in the single layer
formulation is that the total tractions applied on the all boundaries
for finite multiply connected region must be in equilibrium. When
using the indirect BIEs based on single layer, one may meet the
degenerate scale problem. However, people have sufficient knowl-
edge of the degenerate scale. Thus, it is easy to avoid meeting
unsatisfying conditions arising from the degenerate scale.

A significant feature in the direct BIE is that all functions
involved are the tractions or the displacements on the boundary.
However, in the indirect BIE, the free terms are the tractions or
the displacements on the boundary, and all involved functions in
the integrals are not the tractions or the displacements.

A variety of indirect BIEs in plane elasticity could be suggested.
At least, we can point out six of them.
(1)
 Previously, a fundamental solution based on a point disloca-
tion was suggested [19, Eqs. (1.51) and (1.52)]. Based on this
fundamental solution, an indirect BIE was formulated [20,26].
The detailed computations are presented in [26]. The
particular feature of this BIE is that the applied tractions on
contour should be equilibrated in forces and moment.
(2)
 Secondly, a fundamental solution based on a dislocation
doublet was suggested [19, Eqs. (1.58) and (1.59)]. Based on
this fundamental solution, an indirect BIE can be formulated.
In fact, the BIEs shown by Eqs. (103) and (105) represent this
type of BIE, which is based on the dislocation doublet
distribution along the contours. In fact, the mentioned
dislocation doublet distribution is equivalent to a COD
distribution. Since the BIE of second type can be obtained
from the first type from integration by part, the demand that
the applied tractions on contour should be equilibrated in
forces and moment remains.
(3)
 Thirdly, a fundamental solution based on a point concentrated
force was suggested [19, Eqs. (1.54) and (1.55)]. Based on this
fundamental solution, an indirect BIE can be formulated. In fact,
the BIEs shown by Eqs. (63) and (65) represent this type of BIE,
which is based on the body force distribution long the contours.
The particular feature of this BIE is that the applied tractions on
the individual contours may not be equilibrated in forces and
moment. However, the applied tractions on all contours for finite
multiply connected region must be equilibrated in forces and
moment. Therefore, the limitation for this BIE (type (3)) is minor.
(4)
 Fourthly, a fundamental solution based on a force doublet was
suggested [19, Eqs. (1.60) and (1.61)]. Based on this funda-
mental solution, an indirect BIE can be formulated. The BIE of
fourth type can be obtained from the third type from
integration by part.
(5)
 Previously, the boundary value of an analytic function, or f(t),
is taken as the density function; Muskhelishvili proposed an
indirect BIE for plan elasticity [18,&98].
(6)
 Alternatively, an intermediate function, or o(t), is taken as the
density function; an indirect BIE for plan elasticity was
suggested [18,&101].
Obviously, varieties of formulation of indirect BIEs can provide
many ways to solve BVP. However, it is not easy to determine
which one is better among them.
Appendix A

About different displacement expressions at domain point in exterior BVP

The exterior BVP is considered in the following analysis. It is
sufficient to consider an infinite plate bounded by contour B1

(Fig. 14). If t is rewritten as z, from Eq. (31), the displacement
expression at a domain point z (zAS+, exterior to B1) can be
expressed as

UðzÞ ¼ uðzÞþ ivðzÞ ¼ ðuðzÞþ ivðzÞÞ1þðuðzÞþ ivðzÞÞ2 ða1Þ

where

ðuðzÞþ ivðzÞÞ1 ¼H1i

Z
B1

�
ðk� 1Þ

t � z
UðtÞdtþL1ðt; zÞUðtÞdt

�

�L2ðt; zÞUðtÞdt
�
ðzASþ Þ ða2Þ

ðuðzÞþ ivðzÞÞ2 ¼
H1i

2G

Z
B1

k½lnðt � zÞþ lnðt � zÞ�Q ðtÞdt

þ
H1i

2G

Z
B1

t � z

t � z
Q ðtÞdt ðzASþ Þ

ða3Þ

In the following derivation, from Eq. (2) we have

df ðtÞ ¼ dð�YðtÞþ iXðtÞÞ ¼ ðsNðtÞþ isNT ðtÞÞdt¼Q ðtÞdt

df ðtÞ ¼ dð�YðtÞ � iXðtÞÞ ¼Q ðtÞdt
ða4Þ

We can perform the integration from t0s to t00s along the contour
B1 (Fig. 14), where t0s to t00s are two points very near the point ts.
Thus, an integration by part for Eq. (a3) yields

ðuðzÞþ ivðzÞÞ2

¼
H1i

2G
k lnðts � zÞþ lnðts � zÞ

 �

fincþ
ts � z

ts � z
f inc

� �

þ
H1i

2G

Z
B1

�f ðtÞ
d

dt

t � z

t � z

� 	
dt �

k
t � z

f ðtÞdt �
k

t � z
f ðtÞdt

� �
ðzASþ Þ

ða5Þ

where the value finc is defined by

finc ¼ f ðtÞ t ¼ t00 s�f ðtÞ t ¼ t0s

���� ða6Þ

Thus, if and only if finc=0, or the tractions applied along
contour B1 are in equilibrium in forces, Eq. (a5) can be reduced to

ðuðzÞþ ivðzÞÞ2 ¼
H1i

2G

Z
B1

�f ðtÞ
d

dt

t � z

t � z

� 	
dt �

k
t � z

f ðtÞdt

�

�
k

t � z
f ðtÞdt

�
ðzASþ Þ ða7Þ

Eq. (a7) is exactly one term in Eq. (14) of [14].
The above-mentioned derivation reveals that Eq. (14) in [14]

cannot be used in the exterior BVP with tractions on contour B1

not in equilibrium. This is a disadvantage for Eq. (14) in [14].
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Appendix B

Properties for some integrals with kernel functions L1(t,z), L2(t,z),

K1ðt; zÞ; K2(t,z), M1(t,z) and M2(t,z) defined by Eqs. (77), (78), (49),

(92) and (93)

Two integrals with the kernel functions L1(t,z), L2(t,z) shown by
Eqs. (77) and (78) are defined as follows:

W1ðzÞ ¼
1

2pi

Z
G

L1ðt; zÞf ðtÞdt ðzASþ or zAS�Þ ðb1Þ

W2ðzÞ ¼
1

2pi

Z
G

L2ðt; zÞf ðtÞdt ðzASþ or zAS�Þ ðb2Þ

where

L1ðt; zÞ ¼ �
d

dt
ln

t � z

t � z

� 	
¼ �

1

t � z
þ

1

t � z

dt

dt
ðb3Þ

L2ðt; zÞ ¼
d

dt

t � z

t � z

� 	
¼

1

t � z
�

t � z

ðt � zÞ2
dt

dt
ðb4Þ

In Eqs. (b1) and (b2), G denotes a closed contour and f(t)
is an arbitrary function. If dt goes forward in an anti-clockwise
direction, S+ and S� are the inside finite region and the
outside infinite region, respectively. In addition, if dt goes
forward in a clockwise direction, S+ and S� are the outside
infinite region and the inside finite region, respectively (refer to
Fig. 2).

In Eqs. (b1) and (b2), assuming z-to (zAS+ , toAG) and
assuming z-to (zAS� , toAG), and using the generalized Sokhots-
ki–Plemelj formulae shown by Eqs. (10)–(12), we will find

W 7
1 ðtoÞ ¼ 8 f ðtoÞþ

1

2pi

Z
G

L1ðt; toÞf ðtÞdt ðtoAGÞ ðb5Þ

W 7
2 ðtoÞ ¼

1

2pi

Z
G

L2ðt; toÞf ðtÞdt ðtoAGÞ ðb6Þ

We can prove the assertion shown by Eq. (b5) as follows. In
fact, we can rewrite W1(z) as

W1ðzÞ ¼ I1þ I2 ðzASþ or zAS�Þ ðb7Þ

where

I1ðzÞ ¼
1

2pi

Z
G
�

1

t � z

� �
f ðtÞdt ðzASþ or zAS�Þ ðb8Þ

I2ðzÞ ¼
1

2pi

Z
G

1

t � z

dt

dt

� �
f ðtÞdt ðzASþ or zAS�Þ ðb9Þ

For convenience in derivation, we can define

I3ðzÞ ¼ � I2ðzÞ ¼
1

2pi

Z
G

1

t � z
f ðtÞdt ðzASþ or zAS�Þ ðb10Þ

In Eqs. (b8) and (b10), assuming z-to (zAS+ , toAG) and
assuming z-to (zAS� , toAG) , and using the generalized
Sokhotski–Plemelj formulae shown by Eqs. (10)–(12), we will find

I71 ðtoÞ ¼ 8
f ðtoÞ

2
þ

1

2pi

Z
G
�

1

t � z

� �
f ðtÞdt ðtoAGÞ ðb11Þ

I73 ðtoÞ ¼ � I72 ðtoÞ ¼ 7
f ðtoÞ

2
þ

1

2pi

Z
G

1

t � to
f ðtÞ dt ðtoAGÞ ðb12Þ

I72 ðtoÞ ¼

� I73 ðtoÞ ¼ 8
f ðtoÞ

2
þ

1

2pi

Z
G

1

t � to

dt

dt

� �
f ðtÞdt ðtoAGÞ ðb13Þ

From Eqs. (b7), (b11) and (b13), the validity of Eq. (b5) is
proved. Similarly, we can prove the validity of Eq. (b6).
In addition, other two integrals with the kernel functions
K1(t,z), K2(t,z) shown by Eq. (49) are defined as follows:

W3ðzÞ ¼
1

2pi

Z
G

K1ðt; zÞf ðtÞdt ðzASþ or zAS�Þ ðb14Þ

W4ðzÞ ¼
1

2pi

Z
G

K2ðt; zÞf ðtÞdt ðzASþ or zAS�Þ ðb15Þ

where

K1ðt; zÞ ¼
d

dz
ln

t � z

t � z

� 	
¼ �

1

t � z
þ

1

t � z

dz

dz
ðb16Þ

K2ðt; zÞ ¼ �
d

dz

t � z

t � z

� 	
¼

1

t � z
�
ðt � zÞ

ðt � zÞ2
dz

dz
ðb17Þ

As before, we can prove the following equalities:

W 7
3 ðtoÞ ¼ 8 f ðtoÞþ

1

2pi

Z
G

K1ðt; toÞf ðtÞdt ðtoAGÞ ðb18Þ

W 7
4 ðtoÞ ¼

1

2pi

Z
G

K2ðt; toÞf ðtÞdt ðtoAGÞ ðb19Þ

If in all above-mentioned integrals, the integration is per-
formed along the curve L (Fig. 10), all equations (b5), (b6), (b18)
and (b19) are still valid.

In the following, some formulae relating to the hypersingular
integrals are introduced. We can define a Cauchy type integral as
follows:

FðzÞ ¼
1

2pi

Z
G

f ðtÞdt

t � z
ðzASþ or zAS�Þ ðb20Þ

From Eq. (b20), we can define

F 0ðzÞ ¼
dF

dz
¼

1

2pi

Z
G

f ðtÞdt

ðt � zÞ2
ðzASþ or zAS�Þ ðb21Þ

In Eq. (b21), assuming z-to (zAS+ , toAG) and assuming z-to

(zAS� , toAG), dz=dto and using the generalized Sokhotski–Plemelj
formulae, we will find

F 07 ðtoÞ ¼
d

dt0
7

f ðtoÞ

2
þ

1

2pi

Z
G

f ðtÞdt

t � to
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2
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1
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ðt � toÞ
2
ðtoAGÞ

ðb22Þ

where the second term in the right hand of Eq. (b22) represents a
hypersingular integral. This equation was obtained in an alter-
native way [30].

From Eqs. (b1) and (b2), we can define the following integrals:
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d
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2pi

Z
G
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In Eq. (b23), letting z-to (zAS+ , toAG) and letting z-to (zAS� ,
toAG), dz=dto and using Eq. (b5), we will find

V 7
1 ðtoÞ ¼

d

dto
W 7

1 ðtoÞ
� �

¼
d

dto
8 f ðtoÞþ

1

2pi

Z
G

L1ðt; toÞf ðtÞdt

� 	

¼ 8 f 0ðtoÞþ
1

2pi
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G

M1ðt; toÞf ðtÞdt ðtoAGÞ ðb27Þ

Similarly, from Eqs. (b6), (b24), we can obtain

V 7
2 ðtoÞ ¼

1

2pi

Z
G

M2ðt; toÞf ðtÞdt ðtoAGÞ ðb28Þ
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