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This paper provides a formulation for indirect BIEs in plane elasticity using single or double layer
potentials and complex variable. There are two ways to obtain two kinds of layer and the relevant
indirect BIEs. In the first way, the displacement expression at domain point is directly obtained from the
Somigliana identity with necessary modification. In the second way, after placing some density
functions, for example, the body force or the dislocation doublet, along the layers, one can obtain the
displacement expression at domain point. For both single and double layers, the continuous or
discontinuous properties for the displacement and traction are studied in detail when a moving point is
passing through the boundaries. Formulations of the Dirichlet and the Neumann problems are
proposed. The ranges for solving the boundary value problem by using the single or double layer
potentials are clearly indicated. For the case of single layer, the degenerate scale problems for the finite
multiply connected region and infinite multiply connected region are studied. For the case of double
layer, a hypersingular BIE for crack can be formulated by assuming that the density functions are

vanishing along a portion of boundary.
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1. Introduction

The boundary integral equations (BIEs) attracted many
researchers in the recent fifty years. Some statistics shows that
papers based on BIEs rank third among all main computational
methods [1]. In old years, researchers could derive some BIEs.
However, the relevant integral equations are difficult to solve
numerically. Nowadays, computers can compute all formulated
BIEs without any difficulties. A particular advantage of the BIE
method is that the method can considerably reduce the
dimensionality of unknowns in the solution, if one compares it
with the finite element method (FE). Some pioneer works were
proposed by some researches [2,3]. Some basic formulation of
BIEs can be found in the literature [4,5]. In the meantime, the
development of BIEs was summarized [1].

The direct BIEs in plane elasticity are generally formulated on
Simigliana’s identity [1,5]. In the direct BIEs, the involved
functions are the displacements and tractions defined on the
domain and the boundaries. Among direct BIEs, the dual
integration formulation is significant [6-8]. The first BIE relates
the displacement along the boundary to two integrals with the
displacement and traction density functions along the boundary.
The second BIE relates the traction along the boundary to two
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integrals with the displacement and traction density functions
along the boundary.

In boundary element terminology, the single and double layer
methods are referred to as the ‘indirect methods’. The formulation
of relevant potentials for the Laplace equation is compactly
addressed [1]. For the indirect BIEs in plane elasticity, some
source density is placed along the layer. An elasticity solution for
displacement is defined on the entire plane by an expression of
integration operator. Depending on the structure of the integra-
tion operator, there are two kinds of layers, or the single layer and
the double layer.

An interpretation was carried out for the layers of elastic
potentials, which are used to solve elastic boundary value
problems of bodies [9]. The solution of a Dirichlet boundary
value problem of plane isotropic elasticity by the boundary
integral equation (BIE) of the first kind obtained from the
Somigliana identity is considered. The logarithmic function
appearing in the integral kernel leads to the possibility of this
operator being non-invertible, the solution of the BIE either being
non-unique or not existing [10,11].

Some researchers formulated the direct and indirect BIEs using
complex variable [12-17]. Some researchers derived the complex
BIE using the holomorphity theorem [16]. The theorem for a
holomorphic analytic function ¢(z) takes the form
@(to) = (1/mi) [ (p(t)dt/t — t,), where I' is the boundary of a finite
region or an infinite region. Clearly, this theorem is only valid for
holomorphic analytic function ¢(z). In the boundary value


www.elsevier.com/locate/enganabound
dx.doi.org/10.1016/j.enganabound.2009.10.009
mailto:chens@ujs.edu.cn

338 Y.Z. Chen et al. / Engineering Analysis with Boundary Elements 34 (2010) 337-351

problem of finite region, the relevant complex potentials must be
some holomorphic analytic functions. However, in the infinite
region bounded by many contours, the relevant complex
potentials may contain a logarithmic function if the boundary
tractions applied on contours are not in equilibrium. This is a
reason why the holomorphity theorem is difficult to use in the
exterior boundary value problem for two cases: (a) the boundary
tractions applied on contours are not in equilibrium, (b) the
Dirichlet problems with arbitrary displacements assumed on the
boundary. For the problem (a), one can introduce a particular
complex potential and the original problem can be reduced to a
complementary problem that the tractions on contours are in
equilibrium [18]. However, this procedure will make the solution
more complicated.

This paper provides a formulation of indirect BIEs in plane
elasticity using single or double layer potentials and complex
variable. There are two ways of obtaining two kinds of layers and
the relevant indirect BIEs.

In the first way, after using the Somigliana identity and the
complex variable, the displacement expression at domain point is
expressed by two integrals. In addition, one deletes one integral
on the right hand side of the displacement expression, and
renames the density function in the preserved integral. Thus, the
displacement expression at domain point is expressed by one
integral. The next step is to prove the displacement expression at
domain point is an elasticity solution. In this way, the single and
double layers can be obtained in the form of complex potential.

In the second way, based on a solution for the concentrated
force in an infinite plate [18,19], the single layer potentials using
complex variable can be formulated. Secondly, based on a solution
for the dislocation doublet in an infinite plate [19], the double-
layer potentials using complex variable can also be formulated.

For both single and double layers, the continuous or dis-
continuous properties for the displacement and traction are
studied in detail when a moving point is passing through the
boundaries. The simple-valued condition of displacement is
examined, and the properties for the tractions applied on the
contours are studied in detail. Formulations of the Dirichlet and
the Neumann problems are studied. The ranges for solving the
boundary value problem by using the single or double layer
potentials are clearly indicated.

For the case of single layer, the degenerate scale problems for
the finite multiply connected region and infinite multiply
connected region are studied. From the double layer, a hypersin-
gular BIE for the curved crack can be formulated by assuming that
the density functions are vanishing along a portion of the
boundary.

2. Preliminary knowledge

2.1. Some preliminary knowledge in complex variable method of
plane elasticity

The complex variable function method plays an important role
in plane elasticity. Fundamental of this method is introduced. In
the method, the stresses (ox, 0y, 0xy), the resultant forces (X, Y)
and the displacements (u, v) are expressed in terms of complex
potentials ¢(z) and y(z) such that [18]

ox+0y =4Red(2)

Oy — Ox+2i0xy = 2[ZP'(2)+ V(2)]
or (1)
Gy — Ox — 2i0yy = 2[z20'(2) + P(2)]

f=-Y+iX=0@+29' @+ (@) )

2G(U+iv) = K@2) — 20'2) — (@) 3

where ®(2) = ¢'(2), ¥(z) =/ (2), a bar over a function denotes the
conjugated value for the function, G is the shear modulus of
elasticity, k = (3 — v)/(1+V) in the plane stress problem, x =3 —
4v in the plane strain problem, and v is Poisson’s ratio.
Sometimes, the displacements u and v are denoted by u; and u,,
the stresses o, oy and o, by 01, 0, and o5, the coordinates x and
y by x; and x;.

For the sake of the following derivations, an equation for
finding derivative is introduced as follows:

d __ ___ dz .
i {fog@} =f(2g@+ d—i(f(Z)g’(Z)) 4)

In Egs. (4) and (5), f{z) and g(z) denote some analytic function.
The derivative in Eq. (4) is named the derivative in a specified
direction (abbreviated as DISD).

Except for the physical quantities mentioned above, from
Egs. (2) and (3) two derivatives in specified direction (abbreviated
as DISD) are introduced as follows [19,20]:

h@= Ly 4iX) = 0@+ B+ L@@+ F@) = o +iom
5)

Jo(2) = ZG% {utiv} =x®@2) - &) - Z—i(zd’(Z) +¥(2))
=K+1D)P@2) -1 ©6)

It is easy to verify that J; = oy +ionr denotes the normal and
shear tractions along the segment z, z+dz. Secondly, the J; and J»
values depend not only on the position of a point z but also on the
direction of the segment dz/dz.

In plane elasticity, the following integrals are useful [18-20]:

1 [fbdt

F(Z)ZE.L — (7)
1 g(tdt

G(Z)—m Ay 3
_ 1 [ t-Z

H(z,2) = Tm/L mh(t)dt 9

where L is a smooth curve or a closed contour I'. Also, we assume
that the functions f{(t), g(t) and h(t) satisfy the Hélder condition [18].
Sometimes, the functions f{t), g(t) and h(t) are called the density
functions hereafter. Clearly, the two integrals defined by Egs. (7) and
(8) are analytic functions, and one defined by Eq. (9) is not. The
integral (7) is precisely the well-known Cauchy type integral.
Generally speaking, these integrals take different values when
z—ty and z—tg, (toel). The limit values of these functions from
the upper and lower sides of the curve L are found to be [18-20]

fty | 1 [fmde
+ — J o) . J\BHE
FE(to)=+— tom ) o, (10
" &ty dt, 1 g(t)ydt
CFl)=2%5 dty ' 2mi ) t—t, an
_ h(t,)dt, 1 Tt
+ —
H=(to,to) = £ — dto+27Ti./L(t—to)2h(t)dt (12)

In Egs. (10)-(19), all the integrals should be understood in the
sense of principal value of the integral. Note that the notations of
ft), g(t), h(t), F(z), G(z) and H(z,Z) used in Egs. (10)-(12) have no
relation with those mentioned in other places.
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2.2. Formulation of BIE using real variable or complex variable

In the following analysis, the a-field shown by Fig. 1(a) relates
to the fundamental field caused by concentrated force at the point
z=71. After using Betti's reciprocal theorem, or the Somigliana
identity, between the fundamental field (or the a-field shown by
Fig. 1(a)) and the physical field (or the f-field shown by Fig. 1(b)),
for the plan strain case we have

ui(t) = — fBP;‘j(r,x)uj(x)ds(x)+,]'BU;;-](r,x)pj(x)ds(x),

13
(i=1,2, t©eS*, B=By+Bi+---+By) (13

where region S* is a finite multiplied region bounded by contours
B; (j=0,1,2, ..., N).

Letting the domain point 7 (teS™) approach a boundary point
E(&eT), the following BIE is formulated [5]:

1 )k *
2=~ [ Picaouedsw+ [ UflExpeodseo.
(i=

=12, {eB B=Bo+Bi+ - +Bn) (14)

In the case of t— ¢ (teS*, éeI'), a jump value u;(¢)/2 is found
on the right hand side of Eq. (13).
In Eq. (14), the kernel P;‘j(é,x) is defined by [5]

2H .
PiEX) = = = {ram +7anm)((1 — 20)3;+2r,1))
+(1 = 2v)(nyrj — ) } (15)

1
T8rn(1—v) 2n(k+1)

where Kronecker delta ¢;; is defined as 6;;=1 for i=j, ;=0 for i #j,
and

X1 — X2 —
I R
r ’ r

H; (in plane strain case)

(16)

=sina

rJ (1 7)

and n(nq,n,) is a unit normal to the boundary at the field point
X(xleZ)-
In Eq. (14), the kernel Ui*jJ (&,x) is defined by [21]
; H
Uil&x = fl {=3 —4v)In(nd;+1,;r; — 0.55;} (18)
In addition, the following kernel was suggested in the
literature [5]:

U0 =" (-3~ avinsy +1r) 19
a
y (Xp)

-----
. .
.....

....

.....

., -t
-----
-------

b
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It is proved that the kernel shown by Eq. (19) cannot be used to
the exterior problem in case the tractions on the contour are not
in equilibrium [21].

Alternatively, the BIE can be derived by using the complex
variable. In the following analysis, the o-field shown by Fig. 1(a)
relates to the fundamental field caused by concentrated force at
the point z=t. The relevant complex potentials are as follows
[18-20]:

7 _ — F " —_ F
¢@)=FInz-1), @'@=D@2)= 7 ¢ (2)= 7(2 e (20)
_ FT , KF FT
lP(Z)=*KF]H(Z*T)*Z_ir, '//(Z)=*Z_,E 17 (21)
where
_ Py+iPy
T T 2n(k+1) @2

In Eq. (22), Px+iPy is the concentrated force applied at the point
z=7 in Fig. 1(a). Note that the complex potentials shown by
Egs. (20) and (21) are expressed in a pure deformable form [21].

The complex potentials shown by Eqgs. (20) and (21) are
defined in a fully infinite plane. From Egs. (3), (20) and (21), we
can evaluate the relevant displacement at the point t as follows
(Fig. 1):

. —t—7
2G(u+iv), =2xFIn|t — 7| — Fﬁ

Similarly, from Egs. (4), (20) and (21) we can evaluate the
relevant boundary traction at the point t as follows (Fig. 1):

(23)

F +d_f _kF Ft-1)
-7 dt\ t-T (t-7)
In Egs. (23) and (24), the subscript “%” denotes that the
arguments are derived from the fundamental solution.
After using Betti’s reciprocal theorem, or the Somigliana

identity, between the fundamental field (or the «-field in
Fig. 1(a)) and the physical field (or the -field in Fig. 1(b)), we have

Pau(t)+Pyv(t)+Re([5(u — iv)(dX +idY),) = Re( [z(u — iv),(dX+idY)),
(teS*, B=Bop+Bi+---+By)

(ON+1i0NT), = +

-t @9

(25

where the left hand term represents the work done by traction in
the fundamental field (the «-field) to the displacement of the
physical field (the p-field). In addition, the right hand term
represents the work done by traction in the physical field (the
p-field) to the displacement of the fundamental field (the o-field).

y (%)

A

ot
RS

torx (x, X;)

o or&E;. &)

>

>

X (x})

Fig. 1. (a) the o-field caused by concentrated forces, (b) the -field defined by a physical field.
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In Eq. (25), dX+idY denotes the force applied on the segment dt
(Fig. 1). From Eq. (2) and Fig. 1, we can find

dX+idY = (on+ior)e®ds,  dt =iePds,

AX+idY = — i(oy+ior)dt (26)

where 6 denotes an inclined angle for the normal at a boundary
point (Fig. 1).
Thus, Eq. (25) can be rewritten as

qu(r)+Pyv(r)+Re/(—i)(o‘N+i0'NT)*(u —iv)dt
B

= Re/(fi)(u —iv),(on+ionr)dt (TeST) 27)
JB

Substituting the explicit form for (on+ionr), and (u-iv), into

Eq. (27) yields
F dt kF  F({t—71) .
ﬁ*&( i (f_f)2>>(”*”)‘”

Pyu(t)+Pyv(t)+Re f5(—i) <£ +

1 . - [ .
= ERe/B(—l)<21cFln\t— 7| —F%)(O’N—HGNT)(# (teSh) (28)

In the following analysis, one can let
Uy =u(t)+iv(e),
Q(t) = d(=Y(O)+iX(£))/dt = on(t)+ionr (L) (29)
(teB, B=By+Bi+---+By)

In Eq. (28), if we let Px=1, P,=0 and F = — 1/2n(x+1), we can
find an equation for u(t). Similarly, if we let P,=0, P,=1 and

F= —i/2n(x+1), we can find an equation for v(t). Thus, we will
find
e 1 dt (t—1) \oe
wr)+1iv(r) = Hll.]B (—ﬁ + E(E — ‘[)2> u() dt
e 1 dt K
+Hiify (E_ &m) Uyt 0)
Hqi
+ =L [ k[Int — ) +In@E — D]Q(t)dt
2G Jp
iﬂ t—T~— i
+ ZG_Bif—fQ(t)dt(Tes )

Eq. (30) can be rewritten as
U(t) = u(t) +iv(t)

—Hiif, <7 ®= Dude+ L U - Ly, r)%dr)
+H—1i K[In(t — 7)+In(f — 7)]Q(t)dt 31
2G Js
H]i t—T~—— +
+36 [ F=Q0dr @es?)
where
d t— 11 dt
weo= g {5} = -5+ e 62
d (t—1 1 t—1 dt
neo= i =g ora o2

An expression similar to Eq. (31) was suggested in [14,
Eq. (14)], where the term for traction Q(t) is replaced by the
resultant force function f= — Y+iX. It will be discussed in Appendix
A that the formulation suggested in [14, Eq. (14)] has an

inconvenient point, which can only be used in case the tractions
on contour are in equilibrium in the exterior boundary value
problem (BVP).

The kernel functions in Eq. (31) are expressed in an explicit
form. Thus, the expression is more convenient in derivation when
a domain point 7 approaches the boundary point t,, or T—t,
(teS*, t,eB in Fig. 1).

In Eq. (31), letting T—t, (teS", t,eB ) and using the general-
ized Sokhotski-Plemelj formulae shown by Eqgs. (10)-(12) and
some results in Appendix B, yields

@ = Hyi /B (— H Utdt+Li (t, t)U(t) dt — Ly(t, to)Wdt)

Hyi
+i/ﬂ<2kln\t—to\Q(t)dt+

Ceamd) (el

(34

It is noted here that, when taking the limit process 7 —t, for
the first integral on the right hand side of Eq. (31), an additional
term U(t,)/2 was found. Thus, the left hand term in Eq. (34)
becomes U(t,)/2 (note that U(t,)/2=U(t,)—(U(t,)/2)). In the real
variable BIE, this property has been obtained previously [5].
However, the property is obtained in a more explicit way in this
paper, by using the generalized Sokhotski-Plemelj formulae
shown by Eqgs. (10)-(12) and some results in Appendix B. It is
easy to prove that the complex BIE shown by (34) is equivalent to
its counterpart in a real variable form shown by Eq. (14).

3. Indirect BIEs based on single layer potential using complex
variable

3.1. Formulation of indirect BIEs based on single layer potential
using complex variable

After taking the following steps: (1) deleting one term
containing the function U(t) on the right hand side of Eq. (31),
(2) the function Q(t) is replaced by g(t) and (3) 7 is rewritten as z,
we can propose a displacement expression:

N

u@)+ivz)= > (U@)+iv(2); (35)
j=0
where
U@ +iv2); = % /B k[In(t — 2)+In(f — 2)]q;(t)dt
- (36)
Hi [t—z——
+ ﬁ b, E qj(t) dt

Now the function gj(t) (j=0,1,2, ..., N) in Eq. (36) is the body
force density function rather than the traction on the boundary
(Fig. 2).

It is easy to see that the displacement expression shown by
Eq. (35) corresponds to the following complex potentials:

N N
P@)=>_ 9@ @)= Y@ 37
i=0 i=0
where
(pj(z):Hli/ Int - 2g;tydt (=0,1,2,....N) 38)
B;

Yi(2)=H; ifBjxln(t — 2)q;(t)dt

. , 39
+H1lijmq](t)dt (]:0,],2,...,N)
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If one substitutes the complex potentials Egs. (38) and (39)
into Eq. (3), the displacement (u(z)+iv(z)); (j=0,1,2,...,N) is
exactly expressed by Eq. (36). Thus, the displacement expression
shown by Eq. (36) is an elasticity solution.

It can be proved that the complex potentials shown by
Egs. (38) and (39) correspond to a body force layer placed along
the contour B; (j=0,1,2,...,N). In fact, if a concentrated body
force with the intensity “F’ is applied at the point z=t (Fig. 3), the
relevant complex potentials are as follows [18-20]:

Ft

@) =FIn(t — 2), Y(2) = — kFIn(t — 2)+ =2 (40)
where

Py, — iPy
F=F+iF, = m 41

We make a substitution F=Higj(t) and F= — Hyig;(t) in
Egs. (40) and (41), and an integration with respect to dt, and the
complex potentials shown by Eqgs. (38) and (39) are obtained.
Thus, the assertion is proved.

Assuming z—t} and z—t; (t,€B;), and using the generalized
Sokhotski-Plemelj formulae Egs. (10)-(12) and some results in
Appendix B, from Eq. (36) we will find
(W) + V) = 5 [ KlIn(e — to)+In — Elg0)de
J K (42)

Hiqi bo——rk = .
5C ij_quj(t)dt (G=0,1,2,..,N)
[(u(to)JriV(to))j]é: - [(u(to)+iv(to))j]gj =0, (=0,1.2,...N) 43

Body force layer

v

(o] X

Fig. 2. Multiply connected region with body force layers along B=By+
Bi+ --- +By.

Ay P

v

o X

Fig. 3. Concentrated forces in an infinite plate.

From Eqs. (42) and (43), we see that the displacements are
continuous in case of a moving point t, across the boundary B;
(j=0,1,2,...N).

Substituting Eqs. (38) and (39
force function

) into (2) yields the resultant

~Y(@2)+iX(2) = Z( Y(@)+iX(2)); (44)

where

(=Y(@)+iX(2));
= — H1i]i3 (rx — DIn(t — 2)q;(H)dt

+Hyi /B k[In(t — z) — In(f — 2)]g;(t)dt (45)

—HﬂfB = q](t)tf (Gi=0,1,2,..,N)

or

(=Y@)+iX(2)); =H, ifBJ(;c+l)ln(t — 2)g;(H)dt
—Hli['B K[In(t — 2)+In(f — 2)]q;(t)dt

—H] lfB

From Egs. (5), (44) and (45), the traction on(z)+ion7(2) at a
domain point can be evaluated as follows:

(46)
q](f)ff (=0.1,2,....N)

N
ON@) +i0NT(2) = Y (ON(@) + i0NT(2)); (47)
j=0
where
. d .
(ON@)+ionr@) = L (-Y@+iX@))

—Hyi / Kol derHy / KKy (£, 2)g;(t) dt
B l—Z B;

+H1i/B Ka(t, 2)q;(t) dt (48)

In Eq. (48), two kernels are defined by

d z 1 1 dz

Kq(t,2) = {IHE}: _:juﬁd_zj
Ko(t.2) = d t— _ 1 t-z E (49)

’ dz T t-Z (f-2P%dz

Similarly, assuming z—t; and z—t; (t,eB;), and using the
generalized Sokhotski-Plemelj formulae Egs. (10)-(12) and some
results in Appendix B, from Eq. (48) we will find

[(on(to)+ionT(to));l5;
QJ(to) H, K—
+Hyi / =

+Hll/ KK (¢, to)qj(f) dt

i

1
0

+H; i/Bsz(f, tg)m dt, (Lt e Bj) (50)

[(UN(fo)+i0NT(fo))j]Ej — [(on(to)+iont(to));ls, = gj(to), (ta € B))  (51)

From Eq. (51) we find that the tractions are discontinuous
when a moving point £, across the boundary B; (j=0,1,2,...,N).

In addition, when a moving point “z” goes forward in the
clockwise direction along the contour B: (j=1,2,...,N), the
increase for a function f(z) is denoted by f(z)B inc Slmllarly, when
a moving point z goes forward in the anti-clockwise direction
along the contour B, the increase for a function f(z) is denoted by

f(z)B;,irw'
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From Eq. (36), we have
(U@ +V@)lg, inc =0 (k,j=0,1,2,...,N) (52)

From Eq. (46), properties for the resultant force functions can
be obtained as follows:

(-Y@)+X@oly, ine = — /B oy (53a)
K—W@+M@mwﬁfié%mm'U:Ll“”M (53b)
{(—Y(z)+iX(z))j}36 e = —(EY@+IX@)p o

= = [pgiOdt, (=1.2.....N) J (530
(Y@ +X@)olg, inc =0 (=1.2,...N) (53d)
K—wa+mamg“m=o G, k=1,2,...,N, j#k) (53e)

Finally, we have

N
Y@+ Xy, =~ > [ g0t (54)
—0'5

(Y@+X@lg, e = [ GO (=1.2...N) (55)
Egs. (53a) and (53b) reveal that the applied tractions along the

contours B; (j=0,1,2, ..., N) may not be in equilibrium in forces.
In addition, a moment function is defined as follows [18]:

N
m@z)=">»_ m) (56)
j=0
where

m;(z) = Re{y;(2) — zyj(2) — 2Zpj(2)}, with y;(z) = / Vi@dz  (57)

where z, is a fixed point, and z is variable.
From Eq. (39), we have

1@ = [Y2)dz

—H; i/ K[(t — 2)In(t — 2)+2Z]q;(t) df

i

—H; i/B..ln(t —2)tqj(tydt, (j=0,1,2,...,N) (58)

1@~ 20y =~ Hii [ itine - 2+ 250 de

B;

_ Hyi / In(t — 2)Eq(dt
J B

—Hi/
1 "

g,
Thus, from Egs. (57) and (59), we will find
— 2ntH;Re [y (1ctqo(t) dE+Eqo(t) dt)
= —Re [, tqo()dt

(i=0,1,2,...N) (59)

{mo@}p, inc= (60)

(mj(@)}g ne = 27tH; Re / , (xtq;(H)dt +tq;(t)dt) = Re / ; tq;(tHdt

(61)

where {my(2)}z inc Tepresents the moment applied on contour
B; caused by the kth density distribution along the contour B;.

From Egs. (53a), (53b), (60) and (61), we see that the boundary
loadings applied on the contours Bj(t) (j=0,1,2, ..., N) may not be
in equilibrium in forces and moment.

3.2. Formulations of boundary value problems

The Dirichlet problem is formulated first. It is assumed that the
displacements along the contours t,eBy (k=0,1,2, ..., N) have been
given beforehand

(U(to)+iv(to))g, = (ii(to) +iV(to)), (to € By, k=0,1,2, N) (62)
In Eq. (62), (Ti(to) +iV(t,)), (k=0,1,2, ..., N) are given functions.
Assuming z—t; (t,e By, k=0,1,2, ..., N) in Egs. (35), (36), using

Egs. (42) and (62) and the principle of superposition, we will find

the following integral equation:

EPMAC o]
k[In(t — to))+In( — ¢ (Hydt
Z (t — to)+In(t — o)) g G ©3)
= (Ul(to)+1V (o)),  (fo € By, k—0,1=2,---’N)
Physically, along the contours B, (k=0,1,2,...,N) we can

assume any deformation expressed by (ii(tp)+iV(t)), (to€Bx,
k=0,1,2, ...,N). Clearly, regardless of the assumed boundary
deformation (ii(t,)+iV(t,)), (toeBy, k=0,1,2, ..., N), the Dirichlet
problem governed by Eq. (63) has a definite solution, when the
degenerate scale has not been reached.

In Eq. (63), when the integration (dt) is performed along the
contour By (k=0,1,2, ..., N), and the observation point t, is also on
the contour By, a weaker kernel In(t—t,) is presented. It is known
that Eq. (63) may have non-unique solution when the degenerate
scale is reached. The degenerate scale problem arising from
Eq. (63) will be discussed below.

The Neumann problem is formulated secondly. It is assumed
that the tractions along the contours t,e By (k=0,1,2, ..., N) have
been given beforehand

(to € By, k=0,1,2, N),
(64)

(on(to) + ionr(to))g, = (G n(to) + iGNT(to))ks

In Eq. (64), (6-N(t0)+i6-NT(t0)))k (k=01,2, ...,
functions.

Similarly, letting z— t;" (t,eBy, k=0,1,2, ..., N) in Eqs. (47), (48),
using Egs. (50), (64) and the principle of superposition, we will
find the following integral equation:

N) are given

q"(t°)+H i / {( tl Zi" +Kq(t, tg)qk(t)dt+1<2(t,to)qk(t)df}
Bk -

N
sy [ {(F “1dlo | goqe, t0) )0+ Ko, )30
j=0 j

t—1t, dt
=(ON(to)+iGNr(to))r  (to € By, k=0,1,2,...N) (t, € By,
k=0,1,2,...N) (65)
In Eq. (65), the prime in Z means that the term j=k should

i=o
be excluded in the summation.

In the formulation, the individual traction &y(tg)+
iGNT(to)), (to €By, k=0,1,2,...,N) applied on kth contour may
not be in equilibrium. However, all the tractions & (o) +
iGNT(t0))k (to € By, k=0,1,2,...,N) must be in equilibrium. In
the meantime, if there is no outer boundary By, the individual
traction & n(tp) + i6 Nr(to))x (to € Bk, k=0,1,2,...,N) applied on
kth contour may not be in equilibrium.



Y.Z. Chen et al. / Engineering Analysis with Boundary Elements 34 (2010) 337-351 343

3.3. Formulation of the degenerate scale problem for finite multiply
connected region

The degenerate scale problem is a particular problem arising
from the Dirichlet problem defined by Eq. (63). Many degenerate
scale problems were studied and solved [10,11,22-25]. A physical
explanation for the existence of a degenerate scale can be referred
to [25]. It is necessary to consider the problem in two cases: (1)
with the outer boundary B, and (2) without the outer boundary B,
(Fig. 2).

For the first case, the degenerate scale problem is formulated
for the finite multiply connected region (Fig. 4). After letting the
right hand term in Eq. (63) to be zero, we will obtain the following
homogenous BIE:

N o .
];)/B} {K[ln(t — to)+ln(t — to)} q](t)dt+ i

(to € By, k=0,1,2,...,N)

ty—
2q:Odty =0
,, 40 } (66)

Clearly, for any configurations of By (k=0,1,2, ..., N), Eq. (66)
has a trivial solution (qi(t)=0, teBy, k=0,1,2, ..., N). This trivial
solution may not be interesting.

In this case, one may propose normal demand for the
degenerate scale problem. In the normal demand, one wants to
find some configurations for B, (k=0,1,2, ..., N), Eq. (66) has a non-
trivial solution (q(t) # 0, teBy, for all k=0,1,2, ..., N). In this case,
the homogenous BIE (66) may not have such a non-trivial
solution.

Alternatively, one may propose a modified demand for the
degenerate scale problem. The modified demand was suggested
by some researchers [24,26]. In the modified demand, one wants
to find some configurations for B, (k=0,1,2, ..., N), Eq. (66) has a
non-trivial solution (q.(t) # 0, teB,, qi(t)=0, teBy for k=1,2, ..., N).

In this case, because of q,(t)=0 (for teBy, k=1,2,...,N), the
homogenous BIE (66) can be reduced to
. - t—tp—— -
Kk [In(t — to)+In(f — tydt+ —=" tdt}
.]Bg{ [ ( o) ( o)] qo(t) i1, qo(t) 67)

=0, (toeBy, k=0,1,2,...,N)

We prefer writing Eq. (67) in an alternative form:

o t—to—— -
/ {x[ln(t —to)+In(t — &,)] qo(t)dt+f f" qo(t) dt} =0, (t, € By)
JB, — o
(68a)
a b c
Inner region H : Entire domain: Inner region 1 :
u;=0,0,=0 u;=0,0;=0 u,=0,0,=0
% Outer region A\: 20 ' Outer region A\ :
You 0,0;,#0 : L 20,05#0
oy A ‘Jy A Ly A
e . ;
# o X R 1 X
-------- B B

Along boundary B, :
u,=0,0,#0,q,(1)=0

Along boundary B,: Along boundary B :

q,(t)=0 ui:07(5i_]¢0,qu(t)¢0
Along boundary B,:q,(t)=0

Fig. 4. (a) The stress field caused by density function q.(t)#0 (teB,) in the

degenerate scale, (b) The stress field caused by density function q;(t)=0 (teB;) in

the degenerate scale, (c) The stress field from a superposition of two cases (a)
and (b).

I, {lc [In(t — to)+In(t — )] go(t)dt + ; —

(to € By, k=1,2...N)

to—— -\ _
to %0 df} =0 (68b)

After preserving the first equation (or Eq. (68a)) from
Egs. (68a) and (68b), we get a homogenous BIE for the single
outer contour B,:

o t—ty—
/ {K[ln(t — to)+In(t — t,)] qo(t)dtJrf ° qo(t)df} =0, (t,eB,)

J, —t

(69)

It is known that for the homogenous BIE we have two
degenerate scales such that g,(t) has a non-trivial solution, or
qo(t)#0 (teB,) [10,11] .

We will prove that for two problems: (1) the homogenous BIEs
defined by (68a) and (68b) for finite multiply connected region
and (2) the homogenous BIE defined by Eq. (69) for one contour
B,, they have the same degenerate scale. Clearly, it is sufficient to
prove the statement for case of two contours B, and B; (Fig. 4).

It is assumed that the degenerate scale for the homogenous
equation (69) for the single outer contour B, has been obtained
beforehand, and the scale is denoted by c; and the relevant non-
trivial solution is named q,(t). Let us consider the properties of the
relevant complex potentials:

®,(2)=H; i/l; In(t — 2)qo(t)dt (70)

wo(z)zHli/; Kln(t—z)Mdf—i—Hli/. t qo(t)dt (71)

g t—2

In Egs. (70) and (71), the variable z is defined in the entire
plane. When z is moving in the inner region (Fig. 4(a)), the
function In(t—2z) (or In(z—t)) is a single-valued analytic function.
This means that the displacement and stress fields derived from
Egs. (70) and (71) are continuous in the inner region. From
degenerate scale solution we have u;=0 along the boundary B,.
Therefore, the displacements must be u;=0 in the inner region
from the unique theorem of elasticity. Further, the stresses must
also be o¢y4=0 in the inner region. The structures of the
displacement and stress field are indicated in Fig. 4(a).

In the meantime, when the vanishing body force q;(t)=0 (teB;)
is placed along the contour Bj, the following solution u;=0, ;=0 is
obtained in entire domain (Fig. 4(b)). For this case, the structures
of the displacement and stress field are indicated in Fig. 4(b).

The superposition of Fig. 4(a) and (b) will result in the stress field
shown by Fig. 4(c). Clearly, the stress field shown by Fig. 4(c)
represents a non-trivial solution for finite multiply connected region.

From the above-mentioned results, we see the following facts.
For two problems: (1) the BIEs defined by Eqs. (68a) and (68b) and
for finite multiply connected region and (2) the BIE defined by
Eq. (69) for one contour, they have the same degenerate scale.
Secondly, the configurations of the inner contours By (k=1,2,3, ..., N)
do not play any role in the derivation, or they can be arbitrary. This
point was pointed out by many researchers [10,11,26].

3.4. Formulation of the degenerate scale problem for infinite
multiply connected region

For the second case, the degenerate scale problem is
formulated for infinite multiply connected region. After deleting
the term for B, and letting the right hand term in Eq. (63) to be
zero, we will obtain the following homogenous BIE:

tf
T —
(to By, k=1,2...N)

N
Z/ {K[ln(t — to)+In(f — To)] gj(t)dt +

EO q]‘(t) df} =0
=178 fo

(72)
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Clearly, it is sufficient to make a statement for the case of two
contours By and B, with no boundary B, (Fig. 5).

In this case, one may propose normal demand for the
degenerate scale problem. In the normal demand, one wants to
find some configurations for By (k=1,2, ..., N), Eq. (72) has a non-
trivial solution (q(t) # 0, (teBy), for all k=1,2, ..., N).

Contrary to the normal demand in the first case (the finite
multiply connected region), the degenerate scale problem for
Eq. (72) has a solution. It is sufficient to make a statement for the
case of two contours B; and B,. First, contours B; and B, are in an
equivalent position. Secondly, the body force density qi(t) (teBy,
k=1,2) causes continuous displacement and stress in the entire
plane with the exception at the contours By (k=1,2). Thus, once
the boundary values of displacements from inner regions are
equal to zero along the boundaries By (k=1,2), the u; and oy
components must be vanishing in the inner regions bounded by
the boundaries By (k=1,2). Clearly, the obtained solution has a
property qi(t)#0 (k=1,2). For this case, the structures of the
displacement and stress field are indicated in Fig. 5. Thirdly, the
degenerate scale problem for case of two contours B; and B, is
simply an extension of the same problem for one contour case, say
only one contour B;. Using the coordinate transformation
technique [4,27], the degenerate scale problem for the case of
two contours B; and B, was solved recently [28].

Alternatively, one may propose a modified demand for the
degenerate scale problem. In the demand, we need to find some
configurations for By (k=1,2), Eq. (72) has a non-trivial solution
(q1(t) #0, teBy, qo2(t)=0, teB,). In this case, because of g(t)=0,
teB,, the homogenous BIE (72) can be reduced to

/B' {K[ln(t — to)+In(t — £)] qu(6)dt+ i - ; mdf} —o,

(to €By, k=1,2) (73)

We prefer writing Eq. (73) in an alternative form

/B. {x[ln(t —to)+In(t — t)]q1(H)dt + ; : ;" Wdf} =0, (t,€B))
(74a)
/B {K[ln(t —to)+In(t — )| qi () dt+ ; :;" mdf} =0, (toeBy)
(74b)

It is possible to obtain a solution for degenerate scale problem
defined by Eq. (74a). However, after substituting the obtained

A\ Outer region : H Inner region :

ui¢(),o'ij¢0 ui:O,cij:()
y
i
"""" PARREETPEE
s B
/
4
/
Along boundary B, Along boundary B,:

u;=0,0;#0,q; (=0 Ui:(),ciji(),(]z(t)io

Fig. 5. Stress field for infinite multiply connected region in degenerate scale case.

solution q4(t) (teBy) into the left hand side of (74b), Eq. (74b) may
not be satisfied. Thus, the modified demand (assume q;(t)# 0,
teBy, qx(t)=0, teBy) is not a reasonable assumption in the
formulation. This situation is quite different to his counterpart
in the finite multiply connected case (see some statements after
Eq. (67)).

4. Indirect BIEs based on double layer potential using complex
variable

4.1. Formulation of indirect BIEs based on double layer potential
using complex variable

After taking the following steps: (1) deleting one term
containing the function Q(t) on the right hand side of Eq. (31),
(2) the function U(t) is replaced by g(t) and (3) 7 is written as z, we
can propose a displacement expression:

N
U@ +iv@) = Y U@ +iv@); (75)
j=0

where

U@ +iv(2)); = Hli/ (f %gj(t)dt‘i’l,](t, 2)gj(tydt — Lz(t,z)%dt>

B;

(76)
d t-z 1 1 dt
L1(t,Z): —a{lnﬁ}: —Eﬁ—;a (77)
d (t—z 1 t—z dt
Lt2)= 5 {ff 2} -t (78)

Note that the functions gj(t) (j=0,1,2, ..., N) in Eq. (76) are the
density functions assumed along the contours B; (j=0,1,2, ..., N),
rather than the displacement on the boundaries (Fig. 6).

It is easy to see that the displacement expression shown by
Eq. (75) corresponds to the following complex potentials:

N N
P@) =Y 9@, y@ = ¥ 79)

j=1 ji=1

Dislocation doublet layer

Fig. 6. Multiply connected region with dislocation doublet layers along
B=Bo+Bi+--- +B.
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where
o1 .
02) = _2GH11/B ogvdt, (=0.12,..N) (80)
1 dt t
Yi(2)= 2GH11[B ( cf - >g](t)dt
t(t—27° 81)
+2GH i ; g](t)dt (=0,1,2,..,N)

If one substitutes the complex potentials (80) and (81) into
Eg. (3), the displacement (u(z)+iv(2)); (j=0,1,2, ..., N) is exactly
expressed by Eq. (76). Thus, the displacement expression shown
by Eq. (76) is an elasticity solution.

At this stage, one may find some differences between two
formulations based on the single layer and the double layer. In
fact, in the single layer formulation, the complex potential ¢;(z)
shown by Eq. (38) has a term In(t—2z) (In(t — z) =Ind+i0) in the
integrand. The distance between two points t and z is denoted by
d. Thus, the influence at point z has a factor proportional to In(d)
in the single layer formulation. However, in the double layer
formulation, the complex potential ¢;(z) shown by Eq. (80) has a
term 1/(t—z) in the integrand. Therefore, the relevant influence at
point z is proportional to 1/d in the double layer formulation. This
situation also exists in the formulation of the 2D Laplace equation
based on the single layer or double layer.

It can be proved that the complex potentials shown by
Eqs. (80) and (81) correspond to a dislocation doublet layer
placed along the contour B; (j=0,1,2, ..., N). In fact, if a dislocation
doublet with the intensity D=Dx+iD, (—D) is applied at the
point z=t (z=t+dt) (Fig. 7), the complex potentials for the
dislocation doublet are available [19] as

¢@(2)=Dl[log(z—t) —log(z— t — dt)] = — Dd—tz 82)
B f t+dt
W(2)=DJlog(z — t) — log(z — t — dt)] — Z—t z—t—dt (83)
_ pdt ot o
t—z Tt—z' T (t—2z?

In fact, if we make the substitutions D = 2GH,ig;(t) and D= —
2GH,ig;(t) in Eqgs. (82) and (83), and perform an integration with
respect to dt, the complex potentials shown by Egs. (80) and (81)
are obtained. Thus, the mentioned assertion is proved.

Assuming z—t;” and z—t; (t,€B;) and using the generalized
Sokhotski-Plemelj formulae and some results in Appendix B, from
Eq. (76) we will find

[(u(to) +iv(to));]5;
_— gi(t" +Hyi /( (e — g,(t)dt+L1(t to)gi(t)dt — Ly(t, to)gj(t)dt>
(treBj, j=0,1,2,...,N) (84)

Ay

t+dt

I 4

[3)

Fig. 7. Dislocation doublet with the intensity D= Dy+iD, (—D) applied at the
point z=t (z=t+dt).

[(u(to)+iv(Eo)) 15
— [(uto)+iv(to)) 15, = gi(to) (fo €
From Eqs. (84) and (85), we see that the displacements are
discontinuous in case of a moving point ¢, across the boundary B;
(j=0,1,2, ..., N).
Substituting Egs. (80) and (81) into Eq. (2) yields the resultant
force function

B, j=0,1,2....N) (85)

N
D> (Y@ +iX(@); (86)

j=o

-Y(@)+iX(2) =

where
(=Y (2)+iX(2)); = 2GHyi

2 _
fBj (— Egj-(t) dt — Ly(t,2)g;(t)dt + L (t, 2)g;(t) dt) &7

Similarly, letting z—t; and z—t; (t,eB;) and using the
generalized Sokhotski-Plemeljs formulae and some results in
Appendix B, from Eq. (87) we will find

[(=Y(to)+ iX(to))j]EE =[(=Y(to)+ l.X(to))j]Ej

. 2 N
=2GH, lfBl <— mgj(t)dt — Ly (t, to)gj(t) dt + Ly (t, to)g;() dt)
(treB;, j=0,1,2,...,N)
(88)

[(—Y(to)+ix(fo))j];}§ = [(=Y(t)+iX(to));]p, =0 89
(toeBy j=0,1.2....N) ©
From Eqgs. (88) and (89) we see that the resultant force
function is continuous in case of a moving point t, across the
boundary B;.
From Egs. (5), (80) and (81), the traction on(z)+ionr(2) at a
domain point can be evaluated as follows:

N
ON@) +ioNr(@) = Y (ON@)+ioNT(2); (90)
j=0
where
(on(2)+ionT(2));

d .
= 5z (Y@ +iX@))

[ 2 -
=H1z/B‘ < . 2g](t) dt — My (t, 2)g;(t) dt+M,(t, 2)g;(t) dt)

91)
In Eq. (91), two kernels are defined by
d d(d t—z
M (t,2) = {Ll(t z)} & {E{lnﬁ}}
1 1 dtdz
- _ huiod 92
(t—z)2+(f—z)2dtdz ©2)
d d (d(t-z
My(t,2) = {Lz(t Z)} =4z {a {E}}
2 93)
1 dt dz 2(t —2)dtdz
T -2 (E+E> T(-zpdidz

Similarly, assuming z—t;" and z— t; (t,€B;) and using results
for jump values for three integrals in Eq. (91) (see Appendix B),
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from Eq. (91) we will find

[(an(to)+iont(to))jl5,
= [(on(to) +ionT(to));]5,

:Hﬂ'/
B.

el

(to €Bj) 94

2 _
<— mgj(t)dt — M (¢, to)g;(tydt+ Ma(t, fo)gj(t)dt)

[(on(to)+iont(to))lg  — [(On(to)+ionT(to))jl =0 (toeBy)  (95)

In the derivation of Eq. (94), the jump values from the first
integral and second integral on the right hand side of Eq. (91) are
just compensated, and the third integral has no contribution to
the jump value (see Appendix B). From Eq. (95) we see that the
tractions are continuous in case of a moving point t, across the
boundary B;. In addition, the first term on the right hand side of
Eq. (94) is a hypersingular integral.

Thus, from Egs. (76) and (87) we have

(U@ +v@)il, inc =0 (kj=0,1,2,...,N) (96)

(Y@ +X@Wdgine=0 (kj=0,1,2,....N) 97)

Eq. (96) represents the single-valued condition of displace-
ments, which has been satisfied in the present formulation.
Eq. (97) shows that the tractions applied on contour B; must be in
equilibrium in resultant forces. This is a disadvantage in the
formulation based on dislocation doublet layer.

From Eq. (81) we have

z ) dt t
1@ = [Y;(z)dz=2GH, lfBj (ln(z —t)+ p )gj(t)dt
Z (98)
—2GH11]BJIH(Z—t)mdt (]':0,1,2,..., )
Therefore, substituting Eq. (98) into (57) yields
(Mo(@)l, e =47GHiRe | @0y dt - go(t)dD) =0 (99)
{Mj@}g ;e = — 4nGH Re [; (g;(f) dt — g;(t)df) =0,
i(@)ig, ' 1 fB,(gJ &j (100)
G=1,2,...,N)
{mk(z)}Bg inc=0, (kj=0,1,2,..,N) (101)

where {mk(z)}B inc Tepresents the moment applied on contour B;
caused by thé kth density distribution along the contour Bk
Eqgs. (97) and (101) reveal that the tractions applied on the
contour B;j (j=0,1, ..., N) must be in equilibrium in forces and
moment. This is a disadvantage in the formulation based on
dislocation doublet layer.

4.2. Formulations of boundary value problems

The Dirichlet problem is formulated first. It is assumed that the
displacement along the contours t,eB; (k=0,1,2, ..., N) has been
given beforehand, which is as follows:

(u(to)—}—iv(to))g; = (U(to)+iV(to)), (to€By,k=0,1,2,...,N)

In Eq. (102), (@i(t,) +iV(to)), (k=0,1,2, ..., N) are given functions.
Using Egs. (75), (76), (84) and (102) and the principle of
superposition, we will find the following integral equation:

(102)

) | i / ( 1)gk<t)elt+L1<t t)g(H dt — L(t, ro)gk(t)dt>

iy [ (G

= (U(to) +iV(to))

g](t) dt+Li(t, to)gj(t) dt — La(t, to)g;(6) dt)

(to € By, k=0,1,2,...,N) (103)

N
In Eq. (103), the prime in 3~ ' means that the term j=k should
j=o0

be excluded in the summation.

As claimed previously, the tractions applied on the contour B;
(j=0,1,2, ..., N) must be in equilibrium in forces and moment.
However, an arbitrary assumed boundary condition for
(Ti(to)+1V(to)) (k=1,2, ..., N) may not satisfy this condition. Thus,
the singular integral equation (103) cannot be used in the general
case. It can be only used in some particular case, for example, a
symmetric elliptic ring region with symmetric deformation as
indicated in Fig. 8(a).

Clearly, if (1) the inner contour is fixed, or u+iv=0 for inner
contour, and (2) the outer contour has a translation in x-direction,
or u+iv=c (c-real), there must be a resultant force applied on the
contour (Fig. 8(b)). Thus, the integral equation must have no
solution in this case (Fig. 8(b)). Clearly, the formulation based on
dislocation doublet potentials cannot be used in the Dirichilet
problem in general.

The Neumann problem is formulated secondly. It is assumed
that the tractions along the contours t,eBy (k=0,1,2, ..., N) have
been given beforehand

(to € By, k=0,1,2,...,N)
(104)

(on(to) +ionT(to))s, = (6N (to)+i6 NT(t0))k

In Eq. (104), (Gn(to)+iGnr(to) (K
functions.

Using Eqgs. (90), (91), (94), (95) and (104), and the principle of
superposition, we will find the following hypersingular integral
equation:

=0,1,2, ..., N) are given

L[ 2 I
H; I/Bk (- mgk(f) dt — My (t, to)gk(t) dt+ My(t, t)g 1 () dt)

+le2/ (

= (G n(to)+16 NT(t0))k

. —=—gj(tydt — My (t, t,)gj(t) dt+My(t, to)g;(t) dt)

(to € By, k=0,1,2,....N) (105)

In Eq. (105), the prime in Z means that the term j=k should
iZo
be excluded in the summation.

As claimed previously, the tractions applied on the contour B;
(j=0,1,2, ..., N) must be in equilibrium in forces and moment.
However, the arbitrary assumed boundary tractions for
(6n(to)+i6 NT(to)), (k=0,1,2, ..., N) may not satisfy this condition.
Thus, the presented hypersingular integral equation cannot be
used in the general case. It can be only used to some particular
case, for example, a ring region with tractions on contours in
equilibrium in forces and moment (Fig. 9(a)). This is a
disadvantage in the formulation based on dislocation doublet
layer.

a Inner contour b
. Inner contour
y u+iv=0 y

u+iv=0

Outer contour
u-+iv: translation in x-direction

Outer contour
u+iv: symmetric deformation

Fig. 8. (a) An elliptic ring with symmetric deformation along boundaries. (b) An
elliptic ring with non-symmetric deformation along boundaries.
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a Inner contour:
Loadings in equilibrium

\4

Outer contour: traction free

Inner contour:
Ya Loadings not in equilibrium

Outer Contour:
Loadings not in equilibrium

Fig. 9. Loadings on individual contour in (a) equilibrium and (b) not in equilibrium.

Clearly, Eq. (105) cannot be used in the loading condition
shown by Fig. 9(b). Previously, a particular complex potential was
introduced [18]. After introducing this complex potential, the
problem shown by Fig. 9(b) can be reduced to a complementary
problem that the tractions on contours are in equilibrium. Later,
the integral equation (105) is used to solve the complementary
problem. However, this procedure will make the solution more
complicated.

Clearly, the above-mentioned boundary value problems are
defined for multiply connected region for a finite region. If there is
no outer boundary By, we simply delete the relevant term in the
formulation. In this case, the boundary value problem is defined
for multiply connected region for an infinite region.

As stated in Ref. [22], no general proof has been done for the
degenerate scale problem. A physical background for the problem
is introduced below. Typically, the degenerate scale problem
arises from the exterior BVP when the vanishing displacement is
imposed on the boundary. For a single contour case of the exterior
BVP (only k=1 in Eq. (103)), one may assume vanishing
displacement on the right hand side of Eq. (103). In this case,
one may obtain a non-zero solution for g;(t) [26]. However, this
non-trivial solution represents a rigid rotation of the inner portion
to the exterior portion, and no stress was initiated in the exterior
region. Note that the complex potentials can be defined in the
interior and exterior regions with respect to contour By. That is to
say, we have a unique solution for the stresses for the BIE defined
by Eq. (103). Thus, no degenerate scale problem can be found
from the double layer formulation.

4.3. Formulation of hypersingular integral equation for a curved
crack

A particular case is introduced below. Assume that there is
only one contour B,, which is composed of curves L and L;, or
B,=L+L, (Fig. 10). The stress field is defined on the entire plane
with the exception of the boundary B,. In this case, the density
function is denoted by g,(t). In addition, we assume that

) #0, (tel) and g(t)=0,(tel)
In this case, Eq. (105) is reduced to

(106)

. 2 -
H”/L <—mgo(f)dt — M (t, to)go(t) dt+ Ms(t, to)go(E) dt)

= (Gn(to)+idnt(to))g (to €L) (107)

where (G n(tp)+i6nr(to)) is the traction applied on the crack
face. From (85) we see that the density function represents the
following COD (crack opening displacement) function:

Zo(to) = (u(to) ‘H.V(to))LJr — (U(to)+iv(ty))y (toel) (108)

__________
.....
X .
04 .

o
o

\4

Dislocation doublet layer

Fig. 10. A dislocation doublet layer placed along curve “L".

Eq. (108) represents a hypersingular integral equation for the
curved crack problem. The hypersingular integral equation for the
curved crack was suggested by many researchers [6,14,29-31].

At this stage, we can summarize the particular behaviors of the
single and double layers in the formulation of the crack problem.
In fact, in the single layer formulation, a relation is shown by
Eq. (43): [(u(to)-i—iv(to))j],;; = [(u(to)+iv(to));l =0, (j=0.1,2, ..., N).
This means that the formulation cannot provide the COD behavior
in the crack problem. On the contrary, in the double layer
formulation, a relation is shown by Eq. (85): [(u(tg)+iv(to))j]§; -
[(u(t0)+iv(t0))j]§j =gj(to) (to€B;, j=0,1,2, ..., N). This means that the
formulation can provide the COD behavior in the crack problem.
As stated previously, only assuming gj(t,)=0 on some portion of
contour, and also assuming gj(t,)#0 on the other portion of
contour, the BIE for the curved crack problem is naturally
formulated.

As stated in Ref. [22], no general proof has been done for the
degenerate scale problem. A physical background for the problem
is introduced below. Physically, the degenerate scale problem
arises from the logarithmic kernel involved in the integrand. In
the BIE shown by Eq. (107), one kernel involved on the left hand
side is a hypersingular integral with the form [ (go(t)dt/(t — to)?).
We may propose a coordinates transformation x,=hxq, y,=hy;
(h—a positive value) between (x1,y1) and (x,y2). In this case, we
can obtain the relevant matrix after discretization for the integral.
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v

7 :

Fig. 11. A V-shaped crack with rounded corner.

Clearly, all elements of matrix in the coordinates (x,,y,) will be
proportional to those in the coordinates (x4,y1). That is to say the
adopted different scales have no essential influence on the
resulting algebraic equation, and only influence with a constant
multiplied factor h. Thus, there is no degenerate scale problem for
BIE (107). Clearly, this is a physical statement for the degenerate
scale problem of the curved crack.

4.4. A numerical example for a curved crack using hypersingular
integral equation

A numerical example is carried out for a curved crack problem
using the hypersingular equation shown by Eq. (107). The curved
crack has a V-shaped configuration with a rounded corner
(Fig. 11). The arm length is denoted by d, and the length of the
rounded portion is denoted by e. The arm of V-shape has an
inclined angle o with respect to the x-axis. The remote loading is
oy =0y° =p. A quadrature rule for the hypersingular integral
equation proposed in [32] is used. In addition, the curve length
coordinate technique is suggested in the solution [33]. Therefore,
the hypersingular integral equation (107) can be solved
numerically. The computed results for SIFs at the right tip are
expressed as

Ki =fi(,e/d)pvma, K, =fr(o,e/d)pv/ma (109)
where
a=d+e<taia—1) (110)

The 2a is equal to the length of the curved crack after
expanding.

The computed results for fi(o,e/d) and f>(o,e/d), under condi-
tions o=m/12,...,5n/12, and e/d=0.1,0.2, ...,1.0, are plotted
in Figs. 12 and 13, respectively. From the plotted results
we see that, the influence of the rounded corner (or the
ratio e/d) is not significant. However, the influence caused
by the inclined angle o is significant. For example,
in the case of e/d=0.5, we have fl(oc,e/d)\azn/12=0.9645,
fi(e,e/d)|y — 5z/12 = 0.5380, fa(o,e/d)|, — nj12 =0.1253,
fi(e,e/d)|y = 512 = 0.2392, respectively.

5. Conclusions

For two kinds of potentials, it is important to study the
properties of potentials in detail. The continuous or discontinuous
properties for the displacements and tractions for a moving point
across the boundary play an important role in the study. For this

1.0 4
o=m/12
0.9 .
2m/12
0.8
0.7 - 3n/12

/K—;pj\

Non-dimensional stress intensity factor

0.6 4m/12
T T T T T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
el/d

Fig. 12. Non-dimensional mode I SIFs for a V-shaped crack (see Eq. (109) and
Fig. 11).

0.4+
o=>5n/12 \

4m/12

0.3

0.2+

0.1 w12

Non-dimensional stress intensity factor

0.0 T T T T T T T T T ]
0.0 0.2 0.4 0.6 0.8 1.0
e/d

Fig. 13. Non-dimensional mode II SIFs for a V-shaped crack (see Eq. (109) and
Fig. 11).

point, in addition to the generalized Sokhotski-Plemelj formulae
shown by Egs. (10)-(12), this paper provides some results in
Appendix B. Those results represent some extension of the
generalized Sokhotski-Plemelj formulae. Clearly, the results
shown in Appendix B are difficult to obtain using real variable
analysis.

Previously, when a moving point z goes forward in the
clockwise direction along the contour B! (j=1,2,...,N), the
increase for a function f(z) is defined by f(2)p, .. The analysis
for behaviors of f(2)p ;. also plays an importantj role in the study.
Clearly, only after studying those behaviors, we can know the
range of the solution for the formulated BIE. It can be seen from
analysis in the fourth section that the BIEs based on double layer
for exterior problem (shown by Egs. (103) or (105)) can only be
used in the cases where the tractions along the individual contour
are in equilibrium. Particularly, it is not easy to overcome the
inconvenient points in the formulation, e.g., for the boundary
value problem shown by Fig. 8(b).
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In addition, the limitation for the indirect BIEs based on the
single layer is minor. Only one demand in the single layer
formulation is that the total tractions applied on the all boundaries
for finite multiply connected region must be in equilibrium. When
using the indirect BIEs based on single layer, one may meet the
degenerate scale problem. However, people have sufficient knowl-
edge of the degenerate scale. Thus, it is easy to avoid meeting
unsatisfying conditions arising from the degenerate scale.

A significant feature in the direct BIE is that all functions
involved are the tractions or the displacements on the boundary.
However, in the indirect BIE, the free terms are the tractions or
the displacements on the boundary, and all involved functions in
the integrals are not the tractions or the displacements.

A variety of indirect BIEs in plane elasticity could be suggested.
At least, we can point out six of them.

(1) Previously, a fundamental solution based on a point disloca-
tion was suggested [19, Egs. (1.51) and (1.52)]. Based on this
fundamental solution, an indirect BIE was formulated [20,26].
The detailed computations are presented in [26]. The
particular feature of this BIE is that the applied tractions on
contour should be equilibrated in forces and moment.
Secondly, a fundamental solution based on a dislocation
doublet was suggested [19, Egs. (1.58) and (1.59)]. Based on
this fundamental solution, an indirect BIE can be formulated.
In fact, the BIEs shown by Eqgs. (103) and (105) represent this
type of BIE, which is based on the dislocation doublet
distribution along the contours. In fact, the mentioned
dislocation doublet distribution is equivalent to a COD
distribution. Since the BIE of second type can be obtained
from the first type from integration by part, the demand that
the applied tractions on contour should be equilibrated in
forces and moment remains.

(3) Thirdly, a fundamental solution based on a point concentrated

force was suggested [19, Egs. (1.54) and (1.55)]. Based on this

fundamental solution, an indirect BIE can be formulated. In fact,
the BIEs shown by Egs. (63) and (65) represent this type of BIE,
which is based on the body force distribution long the contours.

The particular feature of this BIE is that the applied tractions on

the individual contours may not be equilibrated in forces and

moment. However, the applied tractions on all contours for finite
multiply connected region must be equilibrated in forces and
moment. Therefore, the limitation for this BIE (type (3)) is minor.

Fourthly, a fundamental solution based on a force doublet was

suggested [19, Egs. (1.60) and (1.61)]. Based on this funda-

mental solution, an indirect BIE can be formulated. The BIE of
fourth type can be obtained from the third type from
integration by part.

Previously, the boundary value of an analytic function, or ¢(t),

is taken as the density function; Muskhelishvili proposed an

indirect BIE for plan elasticity [18,&98].

(6) Alternatively, an intermediate function, or w(t), is taken as the
density function; an indirect BIE for plan elasticity was
suggested [18,&101].

Obviously, varieties of formulation of indirect BIEs can provide
many ways to solve BVP. However, it is not easy to determine
which one is better among them.

(2

—

=

(5

—

Appendix A
About different displacement expressions at domain point in exterior BVP
The exterior BVP is considered in the following analysis. It is

sufficient to consider an infinite plate bounded by contour B
(Fig. 14). If 7 is rewritten as z, from Eq. (31), the displacement

S+

dt

B,

Fig. 14. An exterior BVP with tractions on contour not in equilibrium.

expression at a domain point z (zeS*, exterior to B;) can be
expressed as

U(2) = u(2)+iv(2) = (u2) +iv(2)); + W(2) +iv(2)), 1)

where

(U(2)+iv(z)); = Hy i/B < ('; )U(t)dt+L1(t 2)U(t)dt

—Ly(t,2U(t)dt) (zeS™) @2)

U@ +iv(2)), = %/ K[In(t — 2)+1In(t — 2)]Q(t)dt

Hyi . (a3)
+ﬁ —Q(t)dt (zeSh)
In the following derivation, from Eq. (2) we have
df(t) = d(=Y () +iX(t)) = (on(t) +ionr(t))dt = Q(t)dt (a4)

df(t) = d(=Y(t) - iX(t) = Q(O)dt
We can perform the integration from ¢t} to t”s along the contour
B; (Fig. 14), where t] to t’s are two points very near the point t;.
Thus, an integration by part for Eq. (a3) yields
(U(2)+1iv(2)),
Hii
= ZG K [ln(ts - Z)"‘ln(ts - Z)}fmc"‘ = —fmc

H]l
36 (f(t)dt{ }dt——f(t)dt—_—f(t)dt) zes)

(as)

where the value f;, is defined by

fine=f®)c=or,—fO)]c =t (@6)

Thus, if and only if f;,.=0, or the tractions applied along
contour By are in equilibrium in forces, Eq. (a5) can be reduced to

U@ +iv@)y = 5=

I;G <f(t)dr{

—%f(t)zﬁ) (zeS*) @7)

}dt ——f(t)dt

Eq. (a7) is exactly one term in Eq. (14) of [14].

The above-mentioned derivation reveals that Eq. (14) in [14]
cannot be used in the exterior BVP with tractions on contour B;
not in equilibrium. This is a disadvantage for Eq. (14) in [14].
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Appendix B

Properties for some integrals with kernel functions L(t,z), Lx(t,z),
Ki(t,z), Kx(t,z), M;(t,z) and Mx(t,z) defined by Eqs. (77), (78), (49),
(92) and (93)

Two integrals with the kernel functions L,(t,z), Ly(t,z) shown by
Eqgs. (77) and (78) are defined as follows:

Wi@2) = ﬁ/rLl(t,z)f(t)dt (zeSt orzeS) (b1)
Wh(2) = ﬁ./rLz(t,z)f(t)dt (zeSt orzeS) (b2)
where

Li(t.2) = ;t{lnf_z}= 7t172+%2§ (b3)
Ly(t,2) = %{;:—;} = fi—z— (;__EZ)Z% (b4)

In Egs. (b1) and (b2), I denotes a closed contour and f{t)
is an arbitrary function. If dt goes forward in an anti-clockwise
direction, S* and S~ are the inside finite region and the
outside infinite region, respectively. In addition, if dt goes
forward in a clockwise direction, S* and S~ are the outside
infinite region and the inside finite region, respectively (refer to
Fig. 2).

In Egs. (b1) and (b2), assuming z—t, (zeS*, t,el') and
assuming z—t, (zeS™, t,eI'), and using the generalized Sokhots-
ki-Plemelj formulae shown by Egs. (10)-(12), we will find

Wi (6) = F fito)+ oo / Lit.t)f(tydt (te D) (b5)

1
Wi (1) = 5 LY (Od (toe D) (b6)

We can prove the assertion shown by Eq. (b5) as follows. In
fact, we can rewrite Wy(z) as

Wi =L+, (zeST orzeS) (b7)
where
1 1 N _

L(z)= Zm/(_ﬁ>ﬂndt (zeStorzeS) (b8)
L(z)= 1 / 1 di f(tdt (zeSt orzeS) (b9)
2 2mi t—zdt € €

For convenience in derivation, we can define

e T L[ Lm + -
I(2) = —Iz(z)_zm./rt_zf(t)dt (zeS* orzeS) (b10)

In Egs. (b8) and (b10), assuming z—t, (zeS*, t,eI') and

assuming z—t, (zeS™, t,el') , and using the generalized
Sokhotski-Plemelj formulae shown by Egs. (10)-(12), we will find

_ f(to)

1
If(ty=7F 5 +2—m/ (—E>f(t)dt (toel) (b11)
- o 1
Igi(to)=flzi(to)=if(£)+ﬁ/rt_to el (b12)
I (to) =
— o 1 1
— I (t) = if(£)+2—m/< tdt)f(t)dt (toel) (b13)

From Egs. (b7), (b11) and (b13), the validity of Eq. (b5) is
proved. Similarly, we can prove the validity of Eq. (b6).

In addition, other two integrals with the kernel functions
Ki(t,z), K5(t,z) shown by Eq. (49) are defined as follows:

Ws(2) = i./K](t,z)f(t)dt (zeStorze$S) (b14)
2mi Jr
Way(2) = L/Kz(t,z)f(t)dt (zeS*t orzeS) (b15)
2mi Jr
where
d t—z 1 1 dz
dft-z1_ 1 (-2 d&z
Ka(t.2) = dz{ 2} Tt-z (f-2z7 dz (b17)
As before, we can prove the following equalities:
1 7
W ()= T+ 5 [ K fOde toeD) (b18)
Wi (t) = i / Kx(t, to)f () dt (toel) (b19)
2mi r

If in all above-mentioned integrals, the integration is per-
formed along the curve L (Fig. 10), all equations (b5), (b6), (b18)
and (b19) are still valid.

In the following, some formulae relating to the hypersingular
integrals are introduced. We can define a Cauchy type integral as
follows:

1 [fode . )
F(Z)_ﬁ,ptfz (zeStorzeS) (b20)
From Eq. (b20), we can define
, dF 1 fodt . _
Fo= 2m'/r(t_z)2 (zeS* orzeS) b21)

In Eq. (b21), assuming z—t, (zeS", t,eI') and assuming z—t,
(zeS™, t,eI), dz=dt, and using the generalized Sokhotski-Plemelj
formulae, we will find

’ f(to) l
O B

_ L ft) fdt
=z 2 +27Tl/r(t—tg)

f(t)dt}
(b22)

(toel)

where the second term in the right hand of Eq. (b22) represents a
hypersingular integral. This equation was obtained in an alter-
native way [30].

From Egs. (b1) and (b2), we can define the following integrals:

d 1 _
Vi(z) = E{Wﬂz)} = ﬁ/er(t,z)f(t)dt (zeStorzeS™) (b23)

Va(z) = %{Wz(z)} = %/I_Mz(t,z)f(t)dt (zeStorzeS™) (b24)

where
_(t—12)2 +ﬁ%3—§ (b25)
)
- ?f(i;? %g (b26)
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In Eq. (b23), letting z—t, (zeS*, t,eI') and letting z—t, (zeS~,
toe '), dz=dt, and using Eq. (b5), we will find

N d . d [ 1
Vit = g AW o)} = g { 7R+ 5 [t tofode

= Ff(+ 5 [ M LfOde el (b27)
T Jr
Similarly, from Egs. (b6), (b24), we can obtain
1
Vi to)= 5 [ Mt tofdt e ) (b28)

References

[1] Cheng AHD, Cheng DS. Heritage and early history of the boundary element
method. Eng Anal Bound Elem 2005;29:286-302.

[2] Rizzo FJ. An integral equation approach to boundary value problems in
classical elastostatics. Quart J Appl Math 1967;25:83-95.

[3] Cruse TA. Numerical solutions in three-dimensional elastostatics. Int ] Solids
Struct 1969;5:1259-74.

[4] Jaswon MA, Symm GT. In: Integral equation methods in potential theory and
elastostatics. London: Academic Press; 1977.

[5] Brebbia CA, Tells JCF, Wrobel LC. In: Boundary element techniques—theory
and application in engineering. Heidelberg: Springer; 1984.

[6] Hong HK, Chen JT. Derivations of integral equations of elasticity. ] Eng Mech
1988;114:1028-44.

[7] Chen JT, Hong HK. Review of dual boundary element methods with emphasis on
hypersingular integrals and divergent series. Appl Mech Rev 1999;52:17-33.

[8] Chen JT, Liang MT, Yang SS. Dual boundary integral equations for exterior
problems. Eng Anal Boun Elem 1995;16:333-40.

[9] Hartmann F. The physical nature of elastic layers. ] Elasticity 1982;12:19-29.

[10] Vodicka R, Manti¢ V. On solvability of a boundary integral equation of the
first kind for Dirichlet boundary value problems in plane elasticity. Comput
Mech 2008;41:817-26.

[11] Vodicka R, Mantic V. On invertibility of elastic single-layer potential operator.
] Elasticity 2004;74:147-73.

[12] Kolte R, Ye W, Hui CY, Mukherjee S. Complex variable formulations for usual
and hypersingular integral equations for potential problems—with applica-
tions to corners and cracks. Comput Mech 1996;17:279-86.

[13] Mogilevskaya SG, Linkov AM. Complex fundamental solutions and complex
variables boundary element method in elasticity. Comput Mech 1998;22:88-92.

[14] Mogilevskaya SG. Complex hypersingular integral equation for the piece-
wise homogeneous half-plane with cracks. Inter ] Fract 2000;102:177-204.

[15] Chen JT, Chen YW. Dual boundary element analysis using complex variables
for potential problems with or without a degenerate boundary. Eng Anal
Bound Elem 2000;24:671-84.

[16] Linkov AM. In: Boundary integral equations in elasticity. Dordrecht: Kluwer;
2002.

[17] Whitley R], Hromadka TV. Theoretical developments in the complex variable
boundary element method. Eng Anal Bound Elem 2006;30:1020-4.

[18] Muskhelishvili NI. In: Some basic problems of the mathematical theory of
elasticity. Netherlands: Noordhoff; 1953.

[19] Chen YZ, Hasebe N, Lee KY. In: Multiple crack problems in elasticity.
Southampton: WIT Press; 2003.

[20] Savruk MP. In: Two-dimensional problems of elasticity for body with crack.
Kiev: Naukoya Dumka; 1981 (In Russian).

[21] Chen YZ, Wang ZX, Lin XY. A new Kernel in BIE and the exterior boundary
value problem in plane elasticity. Acta Mech 2009;206:207-24.

[22] Chen JT, Lin JH, Kuo SR, Chiu YP. Analytical study and numerical experiments
for degenerate scale problems in boundary element method using degenerate
kernels and circulants. Eng Anal Bound Elem 2001;25:819-28.

[23] Chen JT, Kuo SR, Lin JH. Analytical study and numerical experiments for
degenerate scale problems in the boundary element method of two-
dimensional elasticity. Int ] Numer Meth Eng 2002;54:1669-81.

[24] Chen]T, Shen WC. Degenerate scale for multiply connected Laplace problems.
Mech Res Commun 2007;34:69-77.

[25] Chen YZ, Lin XY, Wang ZX. Evaluation of the degenerate scale for BIE in plane
elasticity and antiplane elasticity by using conformal mapping. Eng Anal
Bound Elem 2009;33:147-59.

[26] Chen YZ, Lin XY. Solutions of the interior and exterior boundary value
problems in plane elasticity by using dislocation distribution layer. Int ]
Solids Struc 2009 (In press).

[27] Chen JT, Lin SR, Chen KH. Degenerate scale problem when solving Laplace’s
equation by BEM and its treatment. Int ] Numer Mech Eng 2005;62:233-61.

[28] Chen YZ, Lin XY, Wang ZX. Numerical solution for degenerate scale problem
for exterior multiply connected region. Eng Anal Bound Elem 2009;33:1316-
212009.

[29] Chen YZ. Numerical solution of a curved crack problem by using
hypersingular Integral Equation. Eng Fract Mech 1993;46:275-83.

[30] Linkov AM, Mogilevskaya SG. Complex hypersingular integrals and integral
equations in plane elasticity. Acta Mech 1994;105:189-205.

[31] Martin PA. Perturbed cracks in two dimensions: an integral-equation
approach. Int J Fract 2000;104:317-27.

[32] Mayrhofer K, Fischer FD. Derivation of a new analytical solution for a general
two-dimensional finite-part integral applicable in fracture mechanics. Int ]
Numer Meth Eng 1992; 33: 1027-47.

[33] Chen YZ. Solution of integral equation in curve crack problem by using curve
length coordinate. Eng Anal Bound Elem 2004;28:989-94.



	Formulation of indirect BIEs in plane elasticity using single or double layer potentials and complex variable
	Introduction
	Preliminary knowledge
	Some preliminary knowledge in complex variable method of plane elasticity
	Formulation of BIE using real variable or complex variable

	Indirect BIEs based on single layer potential using complex variable
	Formulation of indirect BIEs based on single layer potential using complex variable
	Formulations of boundary value problems
	Formulation of the degenerate scale problem for finite multiply connected region
	Formulation of the degenerate scale problem for infinite multiply connected region

	Indirect BIEs based on double layer potential using complex variable
	Formulation of indirect BIEs based on double layer potential using complex variable
	Formulations of boundary value problems
	Formulation of hypersingular integral equation for a curved crack
	A numerical example for a curved crack using hypersingular integral equation

	Conclusions
	Appendix A
	About different displacement expressions at domain point in exterior BVP

	Appendix B
	Properties for some integrals with kernel functions L1(t,z), L2(t,z), K1(t,z),K2(t,z), M1(t,z) and M2(t,z) defined by Eqs. (77), (78), (49), (92) and (93)

	References




