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a b s t r a c t

An improved form of the hypersingular boundary integral equation (BIE) for acoustic problems is

developed in this paper. One popular method for overcoming non-unique problems that occur at

characteristic frequencies is the well-known Burton and Miller (1971) method [7], which consists of a

linear combination of the Helmholtz equation and its normal derivative equation. The crucial part in

implementing this formulation is dealing with the hypersingular integrals. This paper proposes an

improved reformulation of the Burton–Miller method and is used to regularize the hypersingular

integrals using a new singularity subtraction technique and properties from the associated Laplace

equations. It contains only weakly singular integrals and is directly valid for acoustic problems with

arbitrary boundary conditions. This work is expected to lead to considerable progress in subsequent

developments of the fast multipole boundary element method (FMBEM) for acoustic problems.

Numerical examples of both radiation and scattering problems clearly demonstrate that the improved

BIE can provide efficient, accurate, and reliable results for 3-D acoustics.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The boundary integral equation (BIE) has been used for a long
time in solving radiation and scattering problems in many
scientific fields, such as potential theory, elastostatics, and
acoustics. However, there is a defect; the BIE fails to yield unique
solutions for exterior acoustic problems at characteristic frequen-
cies of the associated interior Dirichlet problem. It should be
noted that the non-uniqueness is purely a mathematical draw-
back, and those fictitious characteristic frequencies have no
physical meaning. To remove the non-uniqueness difficulty from
exterior acoustic problems is one of the major tasks in the
research of BIEs. Two major methods, appropriate for practical
applications, have been applied to overcome this difficulty.

Schenck [1] proposed a combined Helmholtz integral equation
formulation (CHIEF) that successfully removed the non-unique-
ness by adding some additional Helmholtz integral relations in
the interior domain. This resulted in an over-determined system
of equations, which was then solved using a least-squares
technique. This method is perhaps widely used in engineering
applications. However, selecting the optimum number and
suitable positions of interior points may become difficult as the
ll rights reserved.

: +86 27 87544175.
wave number increases. Some modified CHIEF methods were
proposed by several other researchers [2–6]; however, they still
do not solve the non-uniqueness problem completely, especially,
in the high-frequency range.

Another well-known formulation to overcome the non-
uniqueness problem at characteristic frequencies was the method
by proposed Burton and Miller [7]. This method consisted of a
linear combination of the Helmholtz equation and its normal
derivative equation. It was proved in Ref. [7] that the linear
combination of these two equations would yield a unique solution
for all frequencies if the coupling constant of the derivative
equation was appropriately chosen. However, the major difficulty
in this formulation is that the normal derivative of the Helmholtz
integral equation involves a hypersingular integral. Burton and
Miller used a double surface integral method throughout the
integral equation to reduce the order of hypersingularity.
Although such a technique results in numerically tractable
kernels, it is computationally expensive to evaluate a double
surface integral. Other regularization techniques such as the work
by Meyer et al. [8] and Terai [9] are valid for planar elements only.
The concept of Hadamard finite-part integral [10] has also been
used to evaluate the hypersingular integral. Based on Hadamard
finite-part interpretation, Chien et al. [11] employed some
identities in the integral equation related to an interior Laplace
problem to reduce the order of kernel singularity. Liu and Rizzo
[12] and Liu and Chen [13] presented a weakly singular form of
the hypersingular integral equations by subtracting a two-term
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Taylor series from the density function. Certain integral identities
of static Green’s function were used to assess the added-back
terms.

More recently, Yang [14,15] expressed the unknown functions
as a truncated Fourier–Legendre series. Some weakly singular
integrals and the hypersingular integral were analytically eval-
uated using some properties of Legendre functions. Harris and
Chen [16] proposed a high-order Galerkin method in terms of the
singularity subtraction approach to reduce the hypersingular
operator to a weakly singular one. In Ref. [16], the numerical
procedures included two particular iterative solvers: the con-
jugate gradient normal method (CGN) and the generalized
minimal residual method (GMRES). Gray et al. [17] employed
multiple polar coordinate transformations and analytic integra-
tion to evaluate directly Galerkin hypersingular integrals without
recourse to the Hadamard’s finite part. Yan et al. [18] considered
the normal derivative of solid angles on the surface. Seydou et al.
[19] proposed a method based on Green’s theorem for calculating
singular and hypersingular integrals.

In the present paper, an improved form of the hypersingular
and strongly singular BIEs for exterior acoustic problems based on
the Burton–Miller formulation is presented. This improved form is
used to regularize the hypersingular integrals using a new
singularity subtraction technique and properties from the asso-
ciated Laplace equations. It contains only weakly singular
integrals and is directly valid for acoustic problems. Discretization
of this weakly singular form of the hypersingular and strongly
singular BIEs is straightforward. No special numerical integration
quadratures are required to compute all the integrals and hence
the quadrature for conventional BIE can be applied directly.

The improved form in this paper is mainly solving 3-D exterior
acoustic radiation and scattering problems with Neumann
boundary conditions on the surface of the structure, which is
quite common in practice. We note that the improved form of BIE
presented here is intended for use in solving practical problems,
such as acoustic radiation and scattering from spherical and
cylindrical bodies. However, for Dirichlet or Robin boundary
conditions, acoustic radiation and scattering problems are still
effectively solved using the improved form.

This paper is organized as follows. The basic BIE formulation is
reviewed in Section 2. The weakly singular regularization method
is presented in Section 3. Numerical examples demonstrating the
effectiveness and accuracy of the improved form for acoustic
radiation and scattering from spherical and cylindrical bodies are
presented in Section 4. Section 5 concludes the paper with further
discussions.
2. BIE formulation of exterior acoustic problems

The problem under consideration in this paper is the solution
of the Helmholtz equation in the domain E exterior to a closed
bounded surface S. To be precise, we consider propagation of
time-harmonic acoustic waves in a homogeneous isotropic
acoustic medium described by the Helmholtz equation

r
2fðxÞþk2fðxÞ ¼ 0; xAE: ð1Þ

For the exterior acoustic problems it is necessary to introduce a
condition at infinity. This ensures the physical requirement that
all scattered and radiated waves are outgoing. This is termed the
Sommerfeld radiation condition:

lim
r-1

r
@f
@r
� ikf

� �
¼ 0; ð2Þ

where f is the total acoustic wave (velocity potential or acoustic
pressure), k=o/c the wave number, o the angular frequency, c the
wave speed in the acoustic medium E, r the distance from a fixed
origin to a general field point, and i¼

ffiffiffiffiffiffiffi
�1
p

.
The integral representation of the solution to the exterior

Helmholtz equation is

CðxÞfðxÞ ¼
Z

S
�
@Gkðx; yÞ

@ny
fðyÞþGkðx; yÞ

@fðyÞ
@ny

� �
dSyþfinðxÞ; ð3Þ

where x is the collocation point, y the field point, Sy denotes a
subset of surface S, fin(x) is a prescribed incident wave (for
scattering problems only), the coefficient C(x)=1, ½, or 0 when the
collocation point x is in the exterior region E (acoustic medium),
on the boundary S (if it is smooth), or in the interior region B

(a body or scatterer), respectively, and ny is the outward normal at y.
The free space Green’s function Gk for 3-D problems is given by

Gkðx; yÞ ¼
eikr

4pr
with r¼ jx� yj: ð4Þ

Eq. (3) with xAS is the commonly used form of the
conventional BIE for acoustic wave problems. This is a singular
form of the conventional BIE, which can be converted into a
weakly singular form readily using an integral expression for the
coefficient C(x). If the normal derivative is given on boundary S,
the acoustic pressure can be computed at any point in E using
Eq. (3). However, Eq. (3) does not possess a unique solution at
certain characteristic frequencies with the corresponding interior
problems. A number of different methods [1,7,13,16] have been
proposed for overcoming this non-uniqueness problem. One of
the most effective and robust method is the Burton–Miller
method [7] and for this reason, this is the method we shall use
here.

Taking the derivative of Eq. (3) with respect to the normal at
the collocation point x(nx) and letting x approach S give the
following boundary integral equation:

CðxÞ
@fðxÞ
@nx

¼

Z
S
�
@2Gkðx; yÞ

@ny @nx
fðyÞþ

@Gkðx; yÞ

@nx

@fðyÞ
@ny

" #
dSyþ

@finðxÞ

@nx
; xAS;

ð5Þ

where C(x)=1/2 if S is smooth around x. In the right-hand side of
Eq. (5), the two integrands become hypersingular [12,20]
(integrand has a 1/r3 singularity) and strongly singular (integrand
has a 1/r2 singularity). A well-known formulation to overcome the
non-uniqueness problem is the method proposed by Burton and
Miller [7]. This approach consists of a linear combination of the
Helmholtz integral Eq. (3) and its normal derivative Eq. (5):

a
Z

S

@2Gkðx; yÞ

@ny @nx
fðyÞdSy � a

Z
S

@Gkðx; yÞ

@nx

@fðyÞ
@ny

dSy

¼

Z
S
�
@Gkðx; yÞ

@ny
fðyÞþGkðx; yÞ

@fðyÞ
@ny

� �
dSy

�
1

2
fðxÞ �

1

2
a @fðxÞ
@nx
þfinðxÞþa

@finðxÞ

@nx
; xAS; ð6Þ

where a is a non-zero coupling constant. It can be shown that the
imaginary part of a is non-zero. Discussions on the choices of a,
found to be rather non-restrictive, are given in Refs. [8,11,12].
Regarding Eq. (6) it was proved in Ref. [7] that the linear
combination of the two equations would yield a unique solution
for all frequencies. However, the major difficulty in this formula-
tion is that the normal derivative of the Helmholtz integral
equation involves a hypersingular integral. The question of how to
effectively handle this hypersingular integral is still under
investigation by many researchers [21–23]. Various regularization
techniques to reduce the order of singularity can be found in the
literature mentioned in the introduction (Section 1). Here, this
paper proposes an improved reformulation of the Burton–Miller
method and is used to regularize the hypersingular and strongly
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singular integrals by using a new singularity subtraction techni-
que and properties from the associated Laplace equations in
Section 3.
2
x

3. Improved weakly singular form of the hypersingular BIE

In the present study, an improved form is used to regularize
the hypersingular and strongly singular integrals using a new
singularity subtraction technique and properties from the asso-
ciated Laplace equations. We need the following three integral
identities for the static Green’s function G0 ¼ 1=ð4prÞ [24,25]:Z

S

@G0ðx; yÞ

@ny
dSy ¼ 0; the first identity; ð7Þ

Z
S

@2G0ðx; yÞ

@nx @ny
dSy ¼ 0; the second identity; ð8Þ

Z
S

@2G0ðx; yÞ

@nx @ny
ðy

� xÞdSy ¼

Z
S

@G0ðx; yÞ

@nx
ny dSy; the third identity; ð9Þ

where the collocation point x is in domain E.
We now introduce Eq. (6) with a view to remove the

hypersingular term. In order to obtain a weakly singular form,
we need to apply a transformation to the hypersingular term

Z
S

@2Gkðx; yÞ

@nx @ny
fðyÞdSy: ð10Þ

A special treatment, proposed by Chien et al. [11], is needed to
take the differential operator into the integral. Therefore, the
hypersingular term can be transformed into an integrable form by
subtracting the second derivative of the Green’s function as
follows:

Z
S
fðyÞ

@2Gkðx; yÞ

@nx @ny
dSy ¼

Z
S
fðyÞ

@2Gkðx; yÞ

@nx @ny
�
@2G0ðx; yÞ

@nx @ny

" #
dSy

þ

Z
S
fðyÞ

@2G0ðx; yÞ

@nx @ny
dSy: ð11Þ

As point y approaches point x, kernel of the first integral in the
right-hand side of Eq. (11) can be expanded by Taylor series:

@2Gkðx; yÞ

@nx @ny
�
@2G0ðx; yÞ

@nx @ny
¼

k2

8pr
þ

ik3

12p þoðrÞ: ð12Þ

Since the above kernel is weakly singular, clearly, the first integral
in the right-hand side of Eq. (11) is weakly singular.

Now, we consider the second integral in the right-hand side of
Eq. (11). It contains singularity 1/r3, which corresponds to an
associated interior problem of the Laplace equation r2f=0, with
the boundary condition f0=f on surface S. In order to calculate
this integral, it is better to convert this integral into a different
form, using potential theory and a singularity subtraction
technique. However, the Laplace equation is just a special case
of the Helmholtz equations, wave number k=0. Therefore, the
simplest way to accomplish this transformation is to replace the
function Gk(x,y) by function G0(x,y) in Eq. (11).

The second integral in the right-hand side of Eq. (11) can be
transformed into an integrable form, and then the differential
operator can be applied to the new integrand, since the new
integrand is weakly singular. In order to do this, we make use of
the following identity [23,25]:

Z
S
bðy� xÞ

@2Gkðx; yÞ

@ny @nx
dSy ¼

Z
S
bny

@Gkðx; yÞ

@nx
dSy

Z
S
� k2bðy� xÞ

@Gkðx; yÞ

@nx
dEy �

bnx

2
; ð13Þ

where b is a vector in R3 (a function of space). The second integral
on the right-hand side is a volume integral. Volume Ey denotes the
interior region enclosed by surface Sy in R3.

It is noticed that the second integral in the right-hand side of
Eq. (11) can be written identically by subtracting and adding back
terms, as follows:

Z
S
fðyÞ

@2G0ðx; yÞ

@nx @ny
dSy ¼

Z
S
½fðyÞ � fðxÞ � rfðxÞðy� xÞ�

@2G0ðx; yÞ

@nx @ny
dSy

þfðxÞ
Z

S

@2G0ðx; yÞ

@nx @ny
dSy

þ

Z
S
rfðxÞðy� xÞ

@2G0ðx; yÞ

@nx @ny
dSy: ð14Þ

Substituting Eq. (8) (the second identity) into Eq. (14) yields

Z
S
fðyÞ

@2G0ðx; yÞ

@nx @ny
dSy ¼

Z
S
½fðyÞ � fðxÞ � rfðxÞðy� xÞ�

@2G0ðx; yÞ

@nx @ny
dSy

þ

Z
S
rfðxÞ � ðy� xÞ

@2G0ðx; yÞ

@nx @ny
dSy; ð15Þ

where rf(x) denotes the domain gradient of f at the point x. The
first term in the right-hand side of Eq. (15) contains what is
essentially the difference between f(y) and the terms up to and
including the first derivative terms of its Taylor’s series about y=x.
This is a general rule. The higher the order of singularity, the more
the terms to be retained. Hence the remainder of terms in square
brackets in Eq. (15) is of order r2 and so the first integral behaves
as r�1, which means it is weakly singular. Clearly, the first term in
the right-hand side of Eq. (15) can be evaluated using an
appropriate quadrature rule.

The singularity in the second integral in the right-hand side of
Eq. (15) remains to be addressed. In order to overcome this
singularity, set b=rf(x) (remembering that xAS must be a point
at which the normal is well defined) and use Eq. (13) for k=0 to
obtain

Z
S
rfðxÞðy� xÞ

@2G0ðx; yÞ

@nx @ny
dSy ¼

Z
S
rfðxÞny

@G0ðx; yÞ

@nx
dSy

Z
S
� k2rfðxÞðy� xÞ

@G0ðx; yÞ

@nx
dEy

�
1

2
rfðxÞnx: ð16Þ

Clearly, the Laplace equation is just a special case of the Helmholtz
equations with wave number k=0. Therefore the volume integral
disappears along with the second integral in the right-hand side
of Eq. (16) and we obtain

Z
S
rfðxÞðy� xÞ

@2G0ðx; yÞ

@nx @ny
dSy ¼

Z
S
rfðxÞny

@G0ðx; yÞ

@nx
dSy

�
1
rfðxÞn : ð17Þ



ARTICLE IN PRESS

¦ È

x

z

y

r

a

Fig. 1. A sphere body with radius a.

S. Li, Q. Huang / Engineering Analysis with Boundary Elements 34 (2010) 189–195192
Substituting Eq. (17) into Eq. (15) yields thatZ
S
fðyÞ

@2G0ðx; yÞ

@nx @ny
dSy ¼

Z
S
½fðyÞ �fðxÞ � rfðxÞðy� xÞ�

@2G0ðx; yÞ

@nx @ny
dSy

þ

Z
S
rfðxÞny

@G0ðx; yÞ

@nx
dSy �

1

2
rfðxÞnx;

ð18Þ

where every integral in the right-hand side is now weakly
singular.

Substituting the result in Eq. (18) into the second integral of
Eq. (11), we obtainZ

S
fðyÞ

@2Gkðx; yÞ

@nx @ny
dSy ¼

Z
S
fðyÞ

@2Gkðx; yÞ

@nx @ny
�
@2G0ðx; yÞ

@nx @ny

" #
dSy

þ

Z
S
½fðyÞ � fðxÞ � rfðxÞðy� xÞ�

@2G0ðx; yÞ

@nx @ny
dSy

þ

Z
S
rfðxÞny

@G0ðx; yÞ

@nx
dSy �

1

2
rfðxÞnx; ð19Þ

where all integrals in the right-hand side are weakly singular.
Hence, we have reformulated the hypersingular integral into an
improved form involving boundary integrals that are only weakly
singular.

We have reformulated the hypersingular integral of Burton–
Miller formulation (Eq. (6)) using a weakly singular form. Now we
consider the strongly singular integral in Eq. (6), which can be
regularized using the identity (Eq. (7)) shown previously to yieldZ

S

@Gkðx; yÞ

@nx

@fðyÞ
@ny

dSy ¼

Z
S

@Gkðx; yÞ

@nx
þ
@G0ðx; yÞ

@ny

� �
@fðyÞ
@ny

dSy

�

Z
S

@G0ðx; yÞ

@ny

@fðyÞ
@ny
�
@fðxÞ
@ny

� �
dSy; ð20Þ

which represents a weakly singular kernel as y approaches x when
S is smooth near x.

Substituting Eqs. (19) and (20) into (6) yields

a
Z

S

@2Gkðx; yÞ

@nx @ny
fðyÞdSy � a

Z
S

@Gkðx; yÞ

@nx

@fðyÞ
@ny

dSy

¼ a
Z

S
fðyÞ

@2Gkðx; yÞ

@nx @ny
�
@2G0ðx; yÞ

@nx @ny

" #
dSy

"

þ

Z
S
½fðyÞ � fðxÞ � rfðxÞ � ðy� xÞ�

@2G0ðx; yÞ

@nx @ny
dSy

þ

Z
S
rfðxÞ � ny

@G0ðx; yÞ

@nx
dSy �

1

2
rfðxÞnx

�

Z
S

@Gkðx; yÞ

@nx
þ
@G0ðx; yÞ

@ny

� �
@fðyÞ
@ny

dSy

þ

Z
S

@G0ðx; yÞ

@ny

@fðyÞ
@ny
�
@fðxÞ
@ny

� �
dSy

�

¼

Z
S
�
@Gkðx; yÞ

@ny
fðyÞþGkðx; yÞ

@fðyÞ
@ny

� �
dSy

�
1

2
fðxÞ �

1

2
a @fðxÞ
@nx
þfinðxÞþa

@finðxÞ

@nx
; xAS: ð21Þ

Eq. (21) is the improved weakly singular form of the hypersingular
and strongly singular BIEs for acoustic wave problems, which has
not only an unique solution (as in Burton–Miller method) but also
no hypersingular and strongly singular integrals (unlike Burton–
Miller method). Therefore, subsequent solution of Eq. (21) can be
directly solved by the standard quadrature formula.

Compared with the method in Ref. [23], in the present method,
discretization is much easier because the domain gradient rf(x)
can be evaluated readily using shape functions on an element. The
method in Ref. [25] faces strongly singular integrals and is suited
only for solving acoustic problems with Neumann boundary
conditions on the surface of structures. The present method faces
no hypersingular and strongly singular integrals and is valid for
acoustic problems with arbitrary boundary conditions.
4. Numerical examples

The improved form of the hypersingular BIE has been
implemented in a code using Fortran 90. Numerical studies on
radiation and scattering from spherical and cylindrical bodies
with smooth surfaces are conducted to verify the improved BIE
with linear quadrilateral elements. The coupling constant is taken
to be a= i/k for all the problems. It should be noted that this
adheres to the aforementioned requirement that Im(a)a0.
Discussions on choices of a that have been found to be rather
non-restrictive are given in Refs. [8,11,12].

The first numerical example is the radiation and scattering
problems of a spherical body of radius a in an infinite acoustic
domain (Fig. 1). The whole sphere is considered for modeling the
problem with 96 linear quadrilateral elements.

For the radiation problem, the exact analytical solution of the
acoustic pressure f at a distance r from the center of a pulsating
sphere, pulsating with uniform radial velocity u0 on the surface S

and qf/qn= ikz0u0 is given by [11]

fðrÞ
z0u0
¼

a

r

ika

1þ ika
e�ikðr�aÞ; ð22Þ

where z0=rc is the characteristic impedance and k the wave
number. As shown in Fig. 2, nondimensionalized surface acoustic
pressure |f/(z0u0)| is plotted versus nondimensionalized wave
numbers ka=0–8 with 219 frequency steps. With these small
frequency increments, fictitious frequencies for the conventional
BIE can be identified clearly at ka=p and 2p, near which the
conventional BIE results deviate substantially from the analytical
solution (a clear indication of the non-uniqueness of the
conventional BIE solution). However, the improved BIE proposed
by this paper provides very good agreement with the analytical
solution throughout the range of frequencies. The improved BIE
results can converge to the analytical solution with a finer mesh
(results are not shown on the plot).

For the scattering problem, the rigid sphere where qf/qn=0 on
the surface S is impinged upon by an incident unit plane wave
fin=eikx along the x-axis. The analytical solution for scattered
pressure fs(r,y) at a distance r from the center of the sphere and
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Fig. 2. Dimensionless pressure on the surface of a pulsating sphere.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

φ s
/φ

in

Analytical Solution
Improved BIE
Conventional BIE

r = 3a
ka = π

φs/φin

Fig. 3. Angular dependence of fS/fin for a rigid sphere when ka=p and r=3a.

-0.5 0 0.5 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

φ s
/φ

in

Analytical Solution
Improved BIE
Conventional BIE

r = 3a
ka= 2π

φs/φin

Fig. 4. Angular dependence of fS/fin for a rigid sphere when ka=2p and r=3a.

x

z

y
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angle y from the x-axis is given by [26]

fSðr; yÞ ¼
X1
n ¼ 1

�
inð2nþ1Þjn

0 ðkaÞ

hn
0 ðkaÞ

PnðcosyÞhnðkrÞ; ð23Þ

where Pn denotes the Legendre function of the first kind, hn is the
spherical Hankel function of the first kind, and jn the spherical
Bessel function of the first kind. As shown in Figs. 3 and 4, the
variation of fS/fin at a distance r=3a is plotted versus the polar
angle y (Fig. 1) for wave numbers, and compared with the
analytical solution and the conventional BIE. Wave numbers ka=p
and 2p are the fictitious frequencies of both the conventional and
the normal derivative BIEs, so conventional BIE cannot be applied
successfully. However, Figs. 3 and 4 clearly demonstrate that the
results using the improved BIE proposed by this paper are very
stable and have excellent agreement with the analytical solution.

The second numerical example is the radiation and scattering
problem of a capsule-like cylindrical body with radius=1.0 m and
total length=7.0 m in an infinite acoustic domain. This is the same
test problem used in Liu and Chen [13]. Since no analytical
solutions are readily available for this problem, a comparison with
the CHIEF method [1,2] verifies the accuracy and efficiency of the
proposed method. In the present work, the whole cylinder is
considered for modeling the problem with 456 linear quadrilat-
eral elements (Fig. 5).

For the radiation problem (a pulsating capsule), a uniform
normal velocity of unit magnitude is applied on the surface of the
cylinder. As shown in Fig. 6, the magnitude of acoustic pressure at
the point (0,10, 0) in the main axis direction (y-axis) is plotted
versus frequencies 0–250 Hz (with 251 frequency steps). The
fictitious frequencies for conventional BIE can be identified clearly
at 134, 153, 185, and 224 Hz. It can be seen that results using the
conventional BIE deteriorate near the four fictitious frequencies.
The CHIEF method [1,2], which can overcome this fictitious
frequency difficulty, uses the Helmholtz integral representation at
additional points inside the body (interior points) and solves an
over-determined system of equations. It is well known that the
success of the CHIEF method to overcome the fictitious frequency
difficulty is largely determined by successful selections of the
interior points, which are case dependent and often difficult for
complicated structures or in high-frequency range. In this case,
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three interior points are placed along the main axis of the cylinder
for the CHIEF solution. Fig. 6 shows that the improved BIE
proposed by this paper provides stable and smooth results, and
very good agreement with the CHIEF solution throughout the
range of frequencies is obtained.

For the scattering problem, the rigid cylinder where qf/qn=0
on the surface S is impinged upon by an incident unit plane wave
fin=eikx along the x-axis. As shown in Fig. 7, the magnitude of
scattered waves |fS/fin| at the point (0,10, 0) in the main axis
direction, is plotted versus frequencies 0–250 Hz (with 251
frequency steps). The conventional BIE cannot be applied
successfully near the four fictitious frequencies (134, 153, 185,
and 224 Hz). However, results using the improved BIE proposed by
this paper and the CHIEF solution stay closely along a smooth
curve as expected.
5. Conclusion

Numerical results have demonstrated that the improved BIE
proposed by this paper to regularize the hypersingular and
strongly singular integrals into weakly singular form in the
Helmholtz integral equation is very efficient and accurate.
Discretization of this weakly singular form is quite straightfor-
ward. All the computations have been accomplished with the
standard quadrature procedure without any special numerical
integration schemes. The new method greatly improves computa-
tional efficiency and has tractable integral kernels. Another
improvement in the numerical examples presented in this paper
is the use of linear quadrilateral elements in place of the usual
piecewise-constant elements to handle curved boundaries.

Here surface of the structure is constrained to be smooth
enough. Further investigations will extend the new technique to
problems with arbitrary shape structures. The improved form is
evaluated analytically. Analytical integration has the benefit of
accuracy and efficiency and is well suited for integration with
the fast multipole boundary element method (FMBEM). This
work is expected to lead to considerable progress in subsequent
developments of the FMBEM for acoustic problems. The
improved BIE is also suited for the high-frequency acoustic
problems.
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