Shape variable radial basis function and its application in dual reciprocity boundary face method

Fenglin Zhou, Jianming Zhang*, Xiaomin Sheng, Guangyao Li

State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China

ABSTRACT

The radial basis functions (RBFs) is an efficient tool in multivariate approximation, but it usually suffers from an ill-conditioned interpolation matrix when interpolation points are very dense or irregularly spaced. The RBFs with variable shape parameters can usually improve the interpolation matrix condition number. In this paper a new shape parameter variation scheme is implemented. Comparison studies with the constant shaped RBF on convergence and stability are made. Results show that under the same accuracy level, the interpolation matrix condition number by our scheme grows much slower than that of the constant shaped RBF interpolation matrix with increase in the number of interpolation points. As an application example, the dual reciprocity method equipped with the new RBF is combined with the boundary face method to solve boundary value problems governed by Poisson equations. Numerical results further demonstrate the robustness and better stability of the new RBF.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The boundary element method (BEM) is an efficient alternative numerical technique for solving partial differential equations (PDE). For problems governed by Laplace equation, Helmholtz equation and linear diffusion-reaction equation, it has been widely used. In this method, the PDE is converted to an equivalent boundary integral equation (BIE) using Green’s theorem and a fundamental solution. Thus, its main advantage over the classic domain methods, such as finite element method (FEM) and finite difference method (FDM), is the need of boundary only discretization together with a high rate of convergence. Nevertheless, when dealing with inhomogeneous problems, non-linear problems and more general linear PDEs for which fundamental solutions are unavailable or inconvenient, the BEM becomes less attractive since it is inevitable to discretize the considered domain for calculating the domain integrals that remain in the BIEs for the above problems.

To avoid the domain integrals, an alternative method named dual reciprocity method (DRM) was proposed by Nardini and Brebbia [1]. In this approach, the inhomogeneous term of the PDE is approximated by a series of simple functions and transformed to the boundary integrals employing particular solutions of considered problem. Since the accuracy and the stability of the solution depend largely on that of the approximation, the choice of the approximating functions in the series is usually of crucial importance in the DRM formulation. The most widely used approximating functions in DRM are radial basis functions (RBFs).

The RBF interpolation was pioneered by Hardy. After that there is a wide range of applications of the RBF, especially in meshless methods for solving partial differential equations [2,3]. Despite its simplicity and efficiency, the RBF interpolation suffers from a contradiction between accuracy and stability, which can be expressed in a form similar to the uncertainty principle in quantum mechanics [4]. The RBF interpolation matrix condition number becomes very large when the interpolation points are dense or irregularly spaced, and the ill-conditioned interpolation matrix limits its further application especially in large scale problems. To guarantee the robust of the interpolation many researchers have sought for the theoretical results about the convergence and stability of the RBF interpolation [4–8]. So far many methods have been proposed, such as compactly supported RBF, multilevel method, precondition method, domain decomposition method, truncated RBF method, RBF with variable shape parameter and knot optimization method [9]. The present paper focuses on the RBF with variable shape parameter.

The concept of variable shape parameters in the RBF interpolation has been proposed by many researchers, e.g. Kansa and Carlson [10]. The main idea is to determine the shape parameter of a RBF in terms of the local density of its corresponding interpolation point. Thus the columns of the interpolation matrix elements are more distinct, and the condition number becomes smaller. However, new problems may be caused by the shape parameter variation such as a singular interpolation matrix, lower convergence rate and difficulties to choose the variation schemes [11]. Many previous researches

* Corresponding author. Tel.: +86 0731 88823061.
E-mail address: zhangjianm@gmail.com (J. Zhang).

Please cite this article as: Zhou F, et al. Shape variable radial basis function and its application in dual reciprocity boundary face method. Eng Anal Bound Elem (2010), doi:10.1016/j.enganabound.2010.08.009
focus on solving problems caused by the shape parameter variation. Towards the singular interpolation matrix that may appear in the new interpolation method, Bozzolini et al. [12] proposed some criterions for the shape parameter variation, which guarantee the unique solvability of the interpolation. Towards the variation schemes, Sarra and Sturgill [13] have implemented a linear scheme successfully. Nevertheless, the variable shaped RBF was implemented to improve the accuracy rather than to improve the stability in the previous work. To the authors’ knowledge, there is not yet any paper that implements this method with an emphasis on improving the stability of the interpolation. Whereas for engineering problems, the stability and the convergence of a method are often of more importance than its accuracy, because, generally speaking, the analytical solution for an engineering problem is usually unavailable. As the shape parameter variation scheme is the key factor in the successful implementation of variable shaped RBF interpolation, in this paper, we focus on the shape parameter variation scheme and proposed a quadric scheme for the variable shaped multiquadric (MQ) and a linear scheme for the variable shaped inverse multiquadric (IMQ) to improve the interpolation matrix condition numbers. Comparison studies showed that the variable shaped MQ with the proposed scheme outperformed the constant shaped MQ both on the accuracy and the stability, and that the variable shaped IMQ with the linear scheme outperformed the constant shaped IMQ on the stability. We also proposed a scheme for one of the variable shaped compactly supported RBF (CSRBF), but the comparison study showed that the improvement on the stability is not notable.

As an application example of the new RBFs, we also implement them in a combined approach of the DRM and the boundary face method (BFM) [15]. The BFM is an alternative approach for numerical solution of the BIE and implemented directly using the boundary representation (B-rep) data structure that is used in most CAD packages for geometry modeling. Both boundary integration and variable approximation are performed in the parametric space as in the hybrid boundary node method (HdbNBM) [17–20]. The integrand quantities are calculated directly from boundary faces rather than from the standard elements as in the BEM, thus geometric errors can be avoided. When the BFM is implemented using shape functions from the moving least squares [16], it becomes a meshless method, and the BFM can be considered as a new implementation of the boundary node method (BNM) [21–22]. Recently, Qin and Zhang [23] have implemented the BFM using finite elements defined in the parametric space of boundary faces, which can be considered as a new implementation of the BEM. Our method is different from the boundary knot method [24] and the boundary particle method [25], which are simply some kind of collocation methods. In this paper, the BFM is combined with the DRM and facilitated by the variable shaped RBF to solve BVPs governed by Poisson equations. We call the combined method the dual reciprocity boundary face method (DRBFM).

The accuracy of the DRM mainly depends on two aspects: the method chosen to solve the BIE and the method for approximating particular solutions [15]. In the DRBFM, particular solutions are approximated by the variable shaped RBF, for which the error can be bounded by spectral norm of the inverse interpolation matrix. Hence, the condition number of the interpolation matrix can be controlled and better accuracy can be expected for the variable shaped RBF.

The paper is organized as follows. In Section 2 the RBF interpolation is given. Section 3 describes for the variable shaped RBF and shows comparisons on the stability and the convergence between constant shaped RBF and variable shaped ones. A brief description of the DRBFM and some numerical examples is given in Section 4. The paper ends with conclusions and discussions on future work in Section 5.

2. Outline of the RBF interpolation

2.1. Basic formulations

For given \(N \) data \(f(x_i) = f_i \) for \(i = 1, 2, \ldots, N \), where \(x_i \)'s are \(N \) distinct points in \(\mathbb{R}^d \); the basis of the interpolation function was taken as

\[
\phi_j = \phi(r_j) = \varphi(|x-x_j|) \quad j = 1, 2, \ldots, N
\]

and all

\[
p \in P^d_m
\]

where \(m \) stands for the order of the positive definiteness [4] of the RBF and \(P^d_m \) denotes the space of \(d \)-variables polynomials of an order not exceeding \(m \). The interpolation function is formed by

\[
s_f(x) = \sum_{i=1}^{N} a_i \phi(x) + \sum_{j=1}^{M} \beta_j p_j(x)
\]

in which \(M \) is the dimension of \(P^d_m \). The coefficient vectors \(a \) and \(\beta \) can be determined by

\[
s_f(x_i) = f_i \text{ for } i = 1, 2, \ldots, N
\]

and

\[
\sum_{j=1}^{N} a_i p_j(x_i) = 0 \text{ for all } p \in P^d_m
\]

Actually the polynomials in the interpolation function are added to keep the equations uniquely solvable. The additional polynomials are not necessary if the RBF is strictly positive definite (SPD). In this paper, we focus on SPD RBFs.

2.2. Two categories of RBF

So far, many RBFs have been constructed, which can be sorted into two types: the globally supported RBF and the compactly supported RBF. Here we list some widely used globally supported RBFs:

- **Gaussians:** \(\exp(-\frac{r^2}{2c}) \quad c > 0 \)
- **Multiquadric:** \((c^2 + r^2)^{\beta/2} \quad \beta \in \mathbb{R}: 2N, c \neq 0 \)
- **Thin-Plate Splines:** \((l-1)^{\beta/2} \log(r) \quad \beta \in \mathbb{R}: 2N, \text{ even dimension} \)
- **L2-rth:** \(\frac{1}{r^\beta} \quad \beta \in \mathbb{R}: 2N, \text{ odd dimension} \)

The Gaussian and the MQ are SPD RBFs, and the TPS is conditionally positive definite RBF of order 1. The global RBF often results in a dense and ill conditioned interpolation matrix. This poses high computational cost and serious stability problems. To avoid these drawbacks, compactly supported RBFs are getting popularity recently.

Compactly supported RBFs can be found in excellent works by Wu 26, Wendland 27 and Buhmann 28. Here we list Wendland’s functions as follows:

\[
\varphi_{0,0}(r) = \begin{cases} 1 - \frac{r}{3} & r < 3 \\ 0 & r \geq 3 \end{cases}
\]

\[
\varphi_{1,0}(r) = \begin{cases} 1 - \frac{r}{3} & r < 1 \\ \frac{r}{3} & r \geq 1 \end{cases}
\]

\[
\varphi_{1,1}(r) = \begin{cases} 1 - \frac{r}{3} & r < 1 \\ (l+1) \frac{r}{3} & r \geq 1 \end{cases}
\]

\[
\varphi_{2,0}(r) = \begin{cases} 1 - \frac{r}{3} & r < 1 \\ \frac{r}{3} & r \geq 1 \end{cases}
\]

\[
\varphi_{2,1}(r) = \begin{cases} 1 - \frac{r}{3} & r < 1 \\ (l^2 + 4l + 3) \frac{r}{3} & r \geq 1 \end{cases}
\]

\[
\varphi_{2,2}(r) = \begin{cases} 1 - \frac{r}{3} & r < 1 \\ (l^2 + 4l + 3) \frac{r}{3} & r \geq 1 \end{cases}
\]
where \(\Leftrightarrow \) denotes equality up to a constant.

The implementation of the CSRBF in multivariate approximation usually leads to a sparse interpolation matrix. The supporting scale \(\delta \) is the key importance to the stability and accuracy of the interpolation. However, it is still a challenge to find the best supporting scale of the CSRBF.

3. RBF with spatially variable shape parameters

3.1. Role of the shape parameter in RBF interpolation

The shape parameter of RBF is another important factor that affects the interpolation error and stability. For the MQ case, Huang et al. [29] had found that theoretically larger value of the shape parameter often results in high accuracy. Nevertheless, the condition number of the interpolation matrix is usually huge for large value of the shape parameter. An optimal (in the sense of the highest accuracy) value of the shape parameter of MQ was found in [29]. Similar phenomenon appears in Gaussian and IMQ cases. In CSRBF case, the support scale plays the same role as the shape parameter plays in the globally supported RBF case. The density of the interpolation matrix depends largely on the scale of the supporting domain. Large supporting scale often results in a high accuracy whereas the interpolation usually suffers from a dense and ill conditioned matrix.

3.2. The variable shaped RBF

Most literatures about the variable shaped RBF focus on improving the accuracy of the interpolation. To the authors’ knowledge, there is not yet a paper emphasizing on improving the stability of the interpolation through the variable shaped RBF.

The variation scheme is a crucial importance to the performance of the variable shaped RBF. The variation scheme to improve the stability of the interpolation is different from that aiming to improve the accuracy of the interpolation. To improve the stability of the interpolation, the shape parameter of the RBF is determined according to the minimal distance between the corresponding interpolation point and its adjacent points. Thus the corresponding columns of the interpolation matrix are more distinct, and the condition number decreases. Although the accuracy becomes two or three orders magnitude less than the constant shaped RBF, the condition number can be well controlled. In constant shaped RBF case, a smaller value of the shape parameter plays in the globally supported RBF case. The density of the interpolation matrix depends largely on the scale of the supporting domain. Large supporting scale often results in a high accuracy whereas the interpolation usually suffers from a dense and ill conditioned matrix.

(i) MQ: \(\varphi = \sqrt{p^2 + c^2} \)

(ii) Inverse MQ: \(\varphi = \frac{1}{\sqrt{p^2 + c^2}} \)

(iii) Wendland’s \(\varphi_{3,1} : \varphi = (1-(r/\delta))^3 \cdot (4(r/\delta)+1) \)

where \(f \) is a function from \(H_2(R^d) = d/2 + k + 1/2 \), which coincides with the native space of \(\varphi_{3,1}. \) \(h = \sup_{\gamma \in \Omega} || x-y || \) is called the fill distance, and \(C \) is a constant independent of the fill distance and the interpolated function. Moreover the condition number of the interpolation matrix was bounded above by

\[
C_1 \left(\frac{d}{\delta} \right)^{d-2k+1}
\]

where \(C_1 \) is some constant independent of \(q = \min_{1 \leq i < j} || x_i - x_j || \)
For the MQ, we are inspired by the upper bound of λ^{-1}, which is a representation of the interpolation sensitivity, and is of the form:

$$\frac{1}{h} e^{38.28h/h} \text{ in } 3D$$ \hspace{1cm} (12)

Two variation schemes are proposed for the MQ, they are

$$c_i = h_i^2$$ \hspace{1cm} \text{and} \hspace{1cm} (13)

$$c_i = 5h_i^2$$ \hspace{1cm} \text{where} \hspace{1cm} i \leq j \leq m$$

where c_i denotes the ith interpolation point. In constant shaped RBF cases, we substitute Eq. (13) into expression (12), the new upper bound as follows is obtained:

$$\frac{1}{h} e^{38.28h}$$ \hspace{1cm} (15)

We have $(1/h)e^{38.28h} = O(h^{-1})$ when h goes to zero. On the other hand, the error estimation for the MQ in [4] is given by an upper bound of the power function as introduced in Section 2:

$$P^2(x) = F(h) = e^{-\tilde{\lambda}}$$ \hspace{1cm} (16)

where σ is a constant independent of h, but it is usually a function of the shape parameter. A balance between the accuracy and the stability of the interpolation may be found through the quadric variation scheme (Eq. (13)).

For the IMQ, the bound of λ^{-1} is of the form:

$$\lambda^{-1} \leq he^{38.28h/h}$$ \hspace{1cm} (17)

We propose the variation scheme

$$c_i = 2.5h_i$$ \hspace{1cm} (18)

for this RBF. If we substitute Eq. (18) into inequality (17), the new upper bound for the IMQ is obtained:

$$\lambda^{-1} \leq 2.5he^{95.7}$$ \hspace{1cm} (19)

We have $2.5he^{95.7} = O(h)$ when h goes to zero. On the other hand, Huang et al. [29] proposed the error estimation for the IMQ:

$$\varepsilon \sim O(e^{\lambda \ln h/h})$$ \hspace{1cm} (20)

where $a > 0$, $1 > \lambda > 0$ are real constants and ε denotes the interpolation error. A higher degree of h in Eq. (15) may lead a lower convergence rate, but it usually results in an interpolation matrix condition number with lower increasing rate. The balance between the accuracy and the stability of the IMQ interpolation may be found through the linear variation scheme (Eq. (18)).

When we turn to Wendland’s twice continuously differentiable CSRBF $\phi_{3,1}$, the interpolation matrix condition number has a bound of the form:

$$\text{Cond}(A) \leq C_l \left(\frac{h}{\delta_j} \right)^{-6}$$ \hspace{1cm} (21)

where $\text{Cond}(A)$ stands for the condition number of the interpolation matrix A. We proposed the variation scheme:

$$\delta_j = 5h_j^{2/3}$$ \hspace{1cm} (22)

for this CSRBF. Substituting Eq. (22) into inequality (21), the bound for the condition number becomes

$$\text{Cond}(A) \leq C_jh^{-2}$$ \hspace{1cm} (23)

It is four orders lower than that in inequality (21). Nevertheless, when we substitute Eq. (22) into inequality (10), the new convergence rate is only one order lower than that in inequality (10).

Here we use a numerical example to verify the schemes above. In the example, the interpolation points are distributed in $\Omega=[-1.1] \times [-1.1] \times [-1.1]$ with coordinates given by

$$(x_i, y_i, z_i) = (-1+2 \times \frac{1}{n}, \frac{1}{n}, -1+2 \times \frac{1}{n})$$

where n denotes the number of the interpolation points in each direction. The interpolated function is given by

$$f = \sin(2\pi x) \sin(2\pi y) \cos(2\pi z)$$

The condition number is defined as $\text{Cond}(A) = \|A\|_1 \|A^{-1}\|_1$, where

$$\|A\|_1 = \max_{1 \leq i \leq n} \frac{1}{\sum_{j=1}^{n} |a_{ij}|}$$

The parameter of the constant shaped RBF is evaluated with the average value of all variable parameters. The comparisons between constant shaped RBFs and variable ones are shown in Figs. 1–6.

Fig. 1 shows the convergence of the MQ interpolation using both variable and constant shape parameter. The convergence rate of both the constant shaped and the variable shaped MQ is nearly the same. The corresponding interpolation matrix condition number is presented in **Fig. 2**. The interpolation matrix condition number of the quadric schemed variable shaped MQ grows much slower than that of the constant shaped MQ with increase in interpolation points. It is demonstrated that the quadric variation scheme for the variable shaped MQ can improve the stability of the interpolation and that more accurate results can be obtained stably with adding interpolation points by this new method.

Figs. 3 and 4 show the comparisons between the variable shaped IMQ and the constant shaped IMQ on the convergence and the interpolation matrix condition number. Although the convergence rate is relatively low, the interpolation matrix condition number of the linear schemed variable shaped IMQ grows much slower than that of the constant shaped IMQ.

Figs. 5 and 6 show comparisons between the variable shaped $\phi_{3,1}$ with the variation scheme (Eq. (22)) and the constant shaped $\phi_{3,1}$ on the convergence and the interpolation matrix condition number. No notable improvement on the accuracy and the condition number appears in these comparisons. This can be explained by the fact that the span of the variable parameters (they are the supporting scales here) cannot be very large under

Fig. 1. Relative error versus the density of the interpolation points for the MQ.
the chosen variation scheme. Both of the constant shaped CSRBF and the variable shaped one with the variation scheme (Eq. (22)), however, result in an acceptable condition number of the interpolation matrix.

All the comparisons showed that the stability of the globally supported RBF interpolation can be largely improved using properly schemed variable shape parameters, and the CSRBF with properly chosen scale can result in acceptable condition number increasing rate. We will apply variable shaped MQ with a quadric variation scheme in the DRBFM to improve the accuracy and the stability.

4. Dual reciprocity boundary face method

4.1. Description of the dual reciprocity boundary face method

In the conventional BEM, the geometry coordinates are approximated through the standard element, thus inevitably producing geometric errors. In the BFM, both the integration over the boundary and the variable approximation are performed in the parametric space. The integrand quantities such as the coordinates of Gauss integration points, Jacobian and out normal
are calculated directly from the faces, which are represented in parametric form, rather than from standard elements as in FEM and BEM, and thus geometric error can be avoided. In this paper we combine the BFM and the DRM together to solve boundary value problems governed by Poisson equations.

We consider a boundary value problem in potential theory:

\[
\begin{align*}
\nabla^2 u &= b, & \forall x \in \Omega \\
u &= \Pi, & \forall x \in \Gamma_u \\
\frac{\partial u}{\partial n} &= q, & \forall x \in \Gamma_q
\end{align*}
\]

(23)

where the domain \(\Omega \) is enclosed by \(\Gamma = \Gamma_u \cup \Gamma_q \), \(b = b(x,y,z) \) is the distribution of the heat source, and \(\Pi \) and \(q \) denote for the known potential and normal flux on the essential boundary \(\Gamma_u \) and on the flux boundary \(\Gamma_q \), respectively.

In the DRM, the inhomogeneous term is approximated by a series of RBFs:

\[
b \approx \sum_{i=1}^{N+L} \phi_i
\]

(24)

where \(N \) and \(L \) are the number of boundary points and inner points, respectively. \(x = (x_1, x_2, \ldots, x_{2N+1}) \) is the coefficient vector, which can be determined by the following equation:

\[
F \xi = b
\]

(25)

where \(F \) is the interpolation matrix of order \(N+L \) and the entries of vector \(b \) are values of the interpolated function at each point. Substituting Eq. (24) into the governing equation, we have

\[
\nabla^2 u = \sum_{i=1}^{N+L} \phi_i (\nabla^2 \phi_i)
\]

(26)

\(\phi_i \), which satisfies \(\nabla^2 \phi_i = \phi_i \), is the particular solution for \(\phi_i \). The same procedure for developing the BEM for the Laplace equation is applied on both parts of Eq. (13), producing

\[
c_i u_i + \int_{\Gamma} q^* u d\Gamma - \int_{\Gamma} u^* q d\Gamma = \sum_{k=1}^{N+L} a_k (c_i \phi_{ik} + \int_{\Gamma} q^* \phi_k d\Gamma - \int_{\Gamma} u^* \frac{\partial \phi_k}{\partial n} d\Gamma)
\]

(27)

where \(u \) and \(q \) are the fundamental solution to the Laplace equation and its normal derivative, respectively. \(c_i = \theta/2\pi \) is a constant and \(\theta \) is the internal angle at point \(x_i \) in radians. The readers are referred to [30] for more details about the DRM.

We apply the BFM to solve this BIE. After the boundary discretization and the boundary variable approximation, we have the discretized BIE:

\[
c_i u_i + \sum_{j=1}^{N} \int_{\Gamma} q^* (s,x_i) N_k(s) u_j d\Gamma(s) - \sum_{k=1}^{N} \int_{\Gamma} u^* (s,x_i) N_k(s) q_j d\Gamma(s)
\]

(28)

\[= \sum_{m=1}^{N+L} \sum_{j=1}^{N} \phi_{im} c_{ij} + \sum_{j=1}^{N} \int_{\Gamma} q^* (s,x_i) \sum_{k=1}^{N} N_k(s) \phi_{km} d\Gamma(s)
\]

[\[− \sum_{j=1}^{N} \int_{\Gamma} u^* (s,x_i) \sum_{k=1}^{N} N_k(s) \phi_{km} d\Gamma(s)\]

where \(\phi_{km} = \phi_m(x_k) \) and \(q_{km} = \frac{\partial \phi_m}{\partial n}(x_k) \). The boundary variable approximation is performed in the parametric spaces. It is of the form:

\[
u(x,y,z) = \nu(u,v) = \nu(\xi,\eta) = \sum_{k=1}^{N} N_k(\xi,\eta) u_k
\]

(29)

where \((u,v) \) is the parametric coordinate of \((x,y,z)\) on the surface, and \((\xi,\eta)\) is the corresponding normalized parametric coordinate.

The matrix form of Eq. (28) is given by

\[
Hu - Cq = (H\bar{U} - \bar{C}\bar{Q})\alpha
\]

(30)

in which \(\bar{U}_j = \phi_{j} \bar{Q}_j = \bar{q}_j \).

After the system above is solved, the potential at any internal location can be calculated from equation:

\[
u_i = -\sum_{k=1}^{N} H_{ik} u_k + \sum_{k=1}^{N+L} G_{ik} q_k + \sum_{j=1}^{N+L} a_j (\phi_{ij} + \sum_{k=1}^{N} H_{ik} \phi_{jk} - \sum_{k=1}^{N} G_{ik} \phi_{kj})
\]

(31)

4.2. Illustrative numerical examples

The DRBFM equipped with variable shaped RBF has been tested for three types of 3-D geometrical objects: a cube, a sphere and an elbow pipe. The first model is taken to compare the variable shaped RBF with the constant shaped RBF in DRBFM. The following model is taken to compare the numerical solution of a BVP on a torus by DRBFM with the analytical solution. The third model is taken to show the convergence of our method.

In all examples, the variables on each face are interpolated by discontinuous quadric surface elements (parametric formed) with 9 interpolating nodes, and the variable shaped MQ is implemented with its variation scheme \(c_i = h^2 \) as we proposed in Section 3.

For the purpose of error estimation and convergence study, a 'global' \(L_2 \) norm error, normalized by \(|v|_{\text{max}} \) is defined as follows [22]:

\[
e = \frac{1}{|v|_{\text{max}}} \sqrt{\frac{N}{N-1} \sum_{i=1}^{N} (v_i^n - v_i)²}
\]

(32)

where \(|v|_{\text{max}} \) is the maximum value of \(u \) or \(q \) over \(N \) sample points, and the superscripts \((e) \) and \((n) \) refer to the exact and numerical solutions, respectively.

4.2.1. Dirichlet BVP on a cube

\[
\begin{align*}
\nabla^2 u &= -50 \cos(3x) \sin(4y) \sin(5z) + 6 & (x,y,z) \in \Omega \\
u &= \cos(3x) \sin(4y) \sin(5z) + x^2 + 2y^2 + 3z + 1 & (x,y,z) \in \Gamma
\end{align*}
\]

where

\[\Omega = \{(x,y,z) | -0.5 < x < 0.5, -0.5 < y < 0.5, -0.5 < z < 0.5\}\]
The exact solution of this problem is
\[u = \cos(3x)\sin(4y)\sin(5z) + x^2 + 2y^2 + 3z + 1 \]

Both the constant shaped RBF and the variable shaped RBF are applied in this example. The constant shape parameter was chosen as 1.5, as proposed by Wang and Liu [31] in 2D interpolation. In the procedure, more interpolation points are distributed near the boundary to improve the interpolation accuracy near the boundary.

The convergence of the interpolation using constant RBF was guaranteed theoretically. The decrease in error of RBF interpolation in this example is shown in Table 1. From Fig. 7, however, we can see that the DRBFM using constant shape RBF numerically diverges. In the other hand, although the convergence and the stability of the present interpolation method have not been testified up to now, and the errors are two or three orders of magnitude more than that of the constant shape RBF interpolation, and the result of the DRBFM breaks down when the condition number of the RBF interpolation matrix exceeds 10^{16}. This example clearly demonstrates that the DRBFM equipped with variable shaped MQ is very efficient. Moreover, another observation can be made in Table 1. Accurate interpolation results of the constant shaped RBF can be also obtained even when the condition number exceeds 10^{16}. As pointed out in [29], this can be explained by the “effective condition number”, which was proposed by Chan and Foulser [32]. Li and Huang [33] have found that the effective condition number can be smaller than the traditional one by a few orders, and they investigated the effective condition number for numerical partial differential equation.

Table 1
Comparisons of accuracy of the RBFs using constant and variable shape parameters.

<table>
<thead>
<tr>
<th>Number of interpolation points</th>
<th>Error of constant shape RBF (%)</th>
<th>Error of variable shape RBF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>544</td>
<td>0.001520</td>
<td>0.2764</td>
</tr>
<tr>
<td>952</td>
<td>0.0003302</td>
<td>0.2165</td>
</tr>
<tr>
<td>2856</td>
<td>0.001080</td>
<td>0.1297</td>
</tr>
<tr>
<td>4200</td>
<td>0.001590</td>
<td>0.03081</td>
</tr>
</tbody>
</table>

Fig. 7. Comparison of the convergence of the DRBFM between constant case and variation case.

![Fig. 8. Comparison of the stability of the DRBFM between constant case and variation case.](image)

4.2.2. Dirichlet problems on a domain bounded by a torus

This example considers a problem in a torus centered at the origin; the exterior radius and the interior radius of the torus are 2 and 0.5 units, respectively (see Fig. 9). This example is presented here to verify the accuracy of the DRBFM. The analytical result is given by

\[u(x, y, z) = \frac{1}{2\pi} \sum_{i=1}^{12} \left(\frac{(i-1)}{6} \pi, i = 1, 2, \ldots, 12 \right) \]

It is seen that the numerical results are in good agreement with the analytical solutions both on potential and flux. It demonstrates that the DRBFM equipped with variable shaped MQ is very efficient.

4.2.3. BVPs with mixed boundary on a sphere

In order to further demonstrate the convergence of the DRBFM, the case of the field for a sphere domain governed by three Poisson equations is presented as the last example. The sphere with a radius of 2 units is centered at the origin. The essential boundary conditions are imposed on half part of the sphere denoted by \(\Gamma_1 \), and the nature boundary conditions are imposed on the other part denoted by \(\Gamma_2 \). The three BVPs are listed as follows:

Problem 1:

\[\nabla^2 u = 12x^2 + 12xy + 6y + 14 \quad (x, y, z) \in \Omega \]

\[u = x^4 + 2x^3y + y^3 + 7z^2 + 5yz + 3z + 1 \quad (x, y, z) \in \Gamma_1 \]

\[\nabla \cdot \mathbf{n} = 2x^4 + 4x^3y + 1.5y^2 + 5yz + 7z^2 + 1.5z \quad (x, y, z) \in \Gamma_2 \]

with its exact solution:

\[u = x^4 + 2x^3y + y^3 + 7z^2 + 5yz + 3z + 1. \]
Problem 3:

\[\nabla^2 u = e^x + e^{1.1y} + 1.44e^{1.2z} \quad (x,y,z) \in \Omega \]
\[u = e^x + e^{1.1y} + e^{1.2z} \quad (x,y,z) \in \Gamma_1 \]
\[\frac{\partial u}{\partial n} = 0.5xe^x + 0.55ye^{1.1y} + 0.6ze^{1.2z} \quad (x,y,z) \in \Gamma_2 \]

with its exact solution:

\[u = e^x + e^{1.1y} + e^{1.2z} \]

\(L_2 \) errors of nodal values of \(u \) and \(q = \partial u / \partial n \) are shown in Figs. 12 and 13, respectively. We can see that more accurate nodal values can be obtained using more surface elements in three problems. This example shows the convergence of our method. It is worth noting that the result of the polynomial case is not agreeing well in comparison with other two cases. This can be caused by the interpolated function \(f = 12x^2 + 12xy + 6y + 14 \), which varies rapidly in the consider domain. The function with a steep
5. Conclusions and future work

We have proposed several shape parameter variation schemes for the variable shaped RBF in order to improve the stability of the interpolation. It has been demonstrated that a better conditioned interpolation matrix can be obtained using the variable shaped RBF with the proposed scheme. The convergence of the interpolation using the variable shaped RBF with the proposed scheme has been also verified.

The DRM and the BFM are combined for solving Poisson equations. A number of numerical examples with different geometries, different boundary condition types and different known analytical solutions are presented. Results demonstrate the high accuracy of our method and that the RBFs with variable shape parameters outperform that with constant parameters.

The BFM needs only boundary discretization in the parametric space of the surface of a body, and the DRM requires only internal points rather than grids. The DRBFM has real potential to seamlessly interact with CAD software to handle arbitrary trimmed solids and to solve practical engineering problems. By coupling with the FMM [34–36], the DRBFM may be able to perform large-scale computations for complicated structures, which is an ongoing work of our research. Developing a fast algorithm for calculating the near singular integrals appeared in the BFM is also ongoing.

Acknowledgements

This work was supported in part by the National Science Foundation of China under grant number 10972074, in part by National 863 Program of China under grant number 2008AA042507 and in part by National 973 Project of China under grant number 2010CB328005.

References

Please cite this article as: Zhou F, et al. Shape variable radial basis function and its application in dual reciprocity boundary face method. Eng Anal Bound Elem (2010), doi:10.1016/j.enganabound.2010.08.009