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This paper presents a gradient field representation using an analytical regularization of a hypersingular
boundary integral equation for a two-dimensional time harmonic wave equation called the Helmholtz
equation. The regularization is based on cancelation of the hypersingularity by considering properties of
hypersingular elements that are adjacent to a singular node. Advantages to this regularization include
applicability to evaluate corner nodes, no limitation for element size, and reduced computational cost
compared to other methods. To demonstrate capability and accuracy, regularization is estimated for a
problem about plane wave propagation. As a result, it is found that even at a corner node the most
significant error in the proposed method is due to truncation error of non-singular elements in
discretization, and error from hypersingular elements is negligibly small.
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1. Introduction

This paper presents a gradient field representation using an
analytical regularization of a hypersingular boundary integral
equation for a two-dimensional time harmonic wave Helmholtz
equation. This representation is applicable to avoid fictitious
solutions which appear in an external problem such as a
scattering problem. The fictitious solutions are only found at
certain wave numbers which are corresponding to the eigenva-
lues of a related interior problem [1-6]. To avoid the fictitious
solutions, various techniques have been presented thus far. At
present, the most widely used techniques may be the techniques
demonstrated by Burton and Miller [2]. They adopted a coupled
two independent boundary integral equations. One is a conven-
tional boundary integral equation (CBIE), in which the field value
itself at a point on the boundary are shown as the boundary
integral of which kernel includes fundamental solutions. The
other is called a hypersingular boundary integral equation (HBIE)
that derived by taking the normal derivative of the CBIE, in which
the normal derivative or the gradient of the field are represented
by the boundary integral. The integrand of HBIE includes the
second order derivative of the fundamental solution, which has
stronger singularity than that of the CBIE.
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An important feature of the HBIE integral is that it includes the
second order derivatives of the fundamental solution. In case of
CBIE, the singularity of the kernel is removed by analytical
integral around singular point. However, in case of HBIE, since the
singularity is stronger than that in CBIE, the hypersingular
integral cannot be evaluated without special considerations.
Burton and Miller also proposed the double integral technique
to regularize the hypersingularity. This technique requires more
intensive computational efforts because several computations of
double integration are required. This paper attempts to achieve
regularization without use of the double integral technique.

Previous methods to obtain regularization of hypersingular
integrals for second order partial differential equation are
reviewed by Tanaka et al. [7] and Chen et al. [8], and for the
Helmholtz equation are summarized in literatures elsewhere; e.g.,
by Hwang [9], Yang [10], and Yan et al. [11]. The regularizations
applied in past studies are classified into three approaches.
The first is a use of tangential derivatives on the boundary
[12-14,19,20]. The second approach is a use of the fundamental
solution of the Laplace equation together with that of Helmholtz
equation [2,9-12,16-18,20]. Since the singularity of the funda-
mental solution of Helmholtz equation is same as that of the
Laplace equation, the singularity of the difference of them
becomes weakly singularity. The last scheme is a use of
the difference between the field at an internal point and that on
its corresponding boundary point [9,14-18,20,25,26]; most of
these studies are used together with Taylor series expansion.
The scheme presented in this paper applies these three
schemes. Most of past studies using these techniques are applied
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for three-dimensional problems and some can be applied curved
surfaces; however, almost all of them require a smooth boundary.
Although this paper presents a scheme of regularization only for
two-dimensional problems, it is applicable for problems with
corners.

After the regularizations, the singularity of a hypersingular
integral becomes a weakly singular integral. However, to evaluate
this integral properly some considerations are required to ensure
accuracy; e.g., Meyer [14] and Chien [18] use sub-divided
elements, Terai [15] has presented an analytical integral, and
Yang [10] has used Fourier-Legendre expansions. This paper
presents an analytical representation of hypersingular integral.

The outline of this paper is as follows. In Section 2, the
singularities of CBIE and HBIE are introduced. The regularization
of the singularity of HBIE is presented in Section 3. In Section 4, a
rough estimation of errors in integrals of both hypersingular
elements and regular elements is presented. In Section 5,
numerical results are demonstrated for the D’alembert solution
to show the error of a gradient field on the boundary in the HBIE
representation. Finally, some remarks are shown in Section 6.

2. Representation of gradient field on boundary

A time harmonic scalar wave u(x) at a point x satisfies the
following Helmholtz equation:

Viux)+ku®) =0, xeQ, 1)

where k indicates the wave number, and Q represents the spatial
domain considered. A fundamental solution u*(x;y) in free space
corresponding to this equation satisfies

VAU R y) + w3, y) = —d(x—Y), )

where the differential operator V operates only on x, but not on y.
Using Green'’s second identity and some integral operations, we
can obtain the conventional boundary integral equation (CBIE),

cyYuy) = fr W' @ y)(Vu®) - n—u@)(Vu*(x;y)) - njdl’ 3

where I" denotes a boundary surrounding €2, x is the position of
the points on the boundary, y is the position of a field point, n is
the outward-pointing normal unit vector, and c(y) is the result of
the following evaluation of Dirac’s delta function:

cyum)L /Q U®)S(x-y)dQ = /Q Sx—y)dQu(y). @

The coefficient c(y) depends on both the relative position of field
point y and the shape of boundary I'. When y is located inside and
outside the domain, c(y) evaluates to 1 and 0, respectively. In the
case where y is located on the boundary, c(y) equals to the ratio of
interior angle A6 to a whole angle; e.g., A0/2n for two-
dimensional problems.

A two-dimensional fundamental solution appearing in Eq. (3)
is written as a function of the distance between the source point
(i.e., integration point x) and the field point y [21],

1
urX;y) = 4—ng2><1<0, r=|x-yl, (5)

where j denotes an imaginary unit, and the function ng’(kr) isa
second kind O-th order Hankel function. This solution represents
an outward propagating wave with time factor /! assumed. The
Hankel function H{”(kr) has a singularity at r = 0, with asymptotic
form shown in Egs. (89)-(91) in Appendix B. In boundary element
methods, the boundary is divided into discrete boundary
elements. The distribution of u and (Vu)-n on each element is
modeled by means of shape functions, according to a discretiza-
tion scheme such as assignment to constant, linear, or higher

order elements. By locating the field point y at every boundary
node, we can obtain simultaneous equations, and determine
the unknown quantities along the boundaries. When y ap-
proaches x in a boundary element, we should pay
attention because both integrands u* and (Vu*)-n are singular.
However, their integral does not diverge. In the case of u*
the singularity is only on the order of logr, and this integral
becomes r(logr—1). Since it approaches 0 as r approaches 0, the
singularity disappears. This kind of singularity is called a weakly
singularity. In the case of the other integrand (Vu*) - n, there is a
stronger singularity. Introducing a unit vector between x and y as
e £ (x—y)/r, we can rewrite the kernel as (Vu*) - n = (ou*/ér)e; - n.
Since the vector e, is perpendicular to the normal vector n near
the singular point y, the inner vector product, e - n, becomes 0;
therefore, the singularity also disappears. Thus, Eq. (3) does not
necessitate inclusion of any singular integrals, and it requires only
attention to ensure the accuracy of integration.

Next, let us consider the gradient of the wave field at the
boundary nodes. Taking the gradient of Eq. (3) with respect to the
field point y, we can obtain the following equation:

Vylc@u@)] = fr [(Vyur x; y)(Vu)) - n—u@®)(V, Vu* (%, y)) - nldl’,
6)
where the V, means the gradient with respect to y. The respective
gradients of both fundamental solutions, Vyu* and V), Vu*, show
stronger singularities than CBIE representation in Eq. (3). These
singularities cannot be regularized simply because the aforemen-
tioned orthogonality of n and e, does not apply to Eq. (6). This

type of singularity is called a hypersingularity, and the equation is
called hypersingular boundary integral equation (HBIE).

3. Regularization of the hypersingular integral related to a
gradient field

3.1. Hypersingular term

Since the quantity c(y) in Eq. (4) is not dependent on either the
wave number k or any field distributions, we can evaluate it by a
Laplace equation, which is identical to Eq. (1), in terms of k=0.
Assuming the field is uniform, we can obtain c(y) as the
subsequent boundary integral representation [29], which is called
the equi-potential condition:

) =— ﬁ Vujx.y) - ndr, )

where uj is a fundamental solution of the Laplace equation.
Substituting this relation into Eq. (3), we can reduce to the
following expression:

]ﬁ [q° (% Y)u®)—q; (X YuE)—u* @ y)g@)] I =0, ®)

where ¢q, g%, and q} are the normal derivatives of u, u*, and uj,
respectively. The last term of the integrand has only a weakly
singularity as shown in the previous section. In contrast, both the
first and the second term have stronger singularities. However,
the singularity of sum of them is canceled as follows. Since, the
fundamental solution of uj can be given as

U =— l10 T 9)

L= "5, gr,

the singularity of uj is same as u*. Therefore, the difference
between the fundamental solutions,

ou* Lur—uj, (10)
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has no singularity with O(logr) even if y = %, and it has the highest
order term of O(1). Thus, the normal derivative of du* has no
singularity, and Eq. (8) is a regular boundary integral equation. In
fact, we can choose the O(1) term of ou* so that it will also be
canceled because the constant term in the fundamental solution
can be chosen arbitrarily. In this case we can find that the
significant order of du* around r ~ 0 becomes O(r?logr) from Eqs.
(89)-(91) in Appendix B. The regularization scheme has been also
used for HBIE regularization in past studies [2,9-12,16-18,20].

Since Eq. (8) is satisfied for any boundary shapes, we can
modify the boundary to exclude the point y as shown in Fig. 1.
This modification is achieved as follows. First, the original
boundary is divided into two types of boundary sections: the
non-singular boundary section, I'y, and the singular one. Next, the
singular boundary section including the singular pointy is further
separated into three sections to exclude y: the first is a part of
circle section I'y with infinitesimal radius ¢, the second is I'q
connecting from one of end points of I', to the end point of Iy,
and the last is I', connecting from the other end point of I, to the
other end point of I',,. The original boundary is redefined with
limiting procedure as

['=TyUlimilo U T, UL 11)
£

Taking the gradient with respect to y of Eg. (8), and
considering the integral of qj disappears by Eq. (7) when the y
is located outside the domain in the configuration, we can
transform the boundary integral equation to

ﬁ (Vg u—(V, qDu@)—(Vyu)qldl" =0. (12)

In the case where the gradient operator with respect to y is
applied to the functions that depend on only the distance r such as
u* or uj, the result is represented by the gradient with respect to x
with an opposite sign because the unit vectors of such functions
have an opposite direction to each other.

ou*

Vyu =-Vu=- or er, (13)
ouy
Vyup =—Vuj = —#er- (14)

In contrast, the gradients of both g* and q; are not functions that
depend only on the distance, r, because they also depend on the
vector’s inner product, e, - n. However, considering the relations

Ly

es (&)

e; e (1)

I’y (=N uT,ury))

Fig. 1. Boundary excluding the singular point.

of e,=(x—y)/r and V,y-n=n, we can obtain the following
expression:

Vogt — 62u*+lau* ee .n 1ou*
= a2 "ror) T ror

Since u* satisfies the following Helmholtz equation expressed in

circular polar coordinates, the second order derivative of u* can be

replaced by the first order derivative and the u* itself:

Pur lour
or2 ' ror

Thus, we can obtain V,q*; furthermore, putting k=0 into the
result of V,q*, we can also obtain V,q; as follows:

n. (15)

u=0. (16)

2 ou* 1ou*
* __ 2. % o T .
Vyq* = (k u*+ ; ar)erer n e n, a7
20U, g 10U
Vy L= e ror (18)

The three integrals on the left-hand side in Eq. (12) can be
written as follows:

" 2 0u* 1ou*
A * _ 2. % il n_ _
117]5(qu yudl' = ﬁ{(k u*+ - 6r>erer n . n}udr,

(19)
: " [20u} 1 ouy
N * _ =77 n— L
L= .ﬁ(quL)UW)dr = u(}').fr{r o Grér -1, n} ar,
(20)
N . . " ou*
13:—]4 (Vyu)qdl = f ——eqdl. @n
r r or

The orders of integration kernels in both I, and I, are O(r—2) and
that of I5 is O(r~1) for the vicinity around r ~ 0.

3.2. Integral along the boundary I'q and T'),

We assume a linear shaped boundary element for I'; and ', in
Eqgs. (19)-(21), with nodes located at both ends of each element.
We also consider that the normal derivative q= Vu-n varies
linearly within the element, following a linear element discretiza-
tion scheme, so that q can be represented by the following Taylor
expansion; similar formulations to regularization have been
applied in [15-18,20,22,23]

q=Vu-n~Nu.-n),+re - (VVu-n),. 22)

Since the order of g is less than that of u, the distribution of u
should be expressed including the second order as follows, to
ensure the accuracy of g being equivalent to that of u:

2

u~uy)+rer - (Vu)y—i-jer e - (VVu),,. 23)

In the case where the integration point x is located on the
linear shaped boundary I’y or I'p, the unit vector e, = (x—y)/r is
identical to the unit tangential vector t,, where the suffix y
denotes either a or b (see Fig. 1). Since 7, is perpendicular to n,,
the vector e,e; - n that appeared at the first term on the right-hand
side of Egs. (19) and (20) vanishes.

The summation of the non-zero integration kernels of
Egs. (19)-(21) is evaluated using Egs. (23), (22) and (10), as follows:

10u* 10u; .
3 s s +

ou* 1 00u*
= W(""/ X Ty) x (Vi) — —Wu(y)ny

T
+r6u* —11162—“ + 24)
or 2 Tor2 ’
7y y

o%u
ot,on,

Ty
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where the representation of the first term with vector triple product
is derived from the formula (n, x t;) x (Vu), =(n, - (Vu),)7,—
(Ty - (Vu)y)n,. The order of the singularity of each term ou*/ér,
(1/radu*/or, and rou*/ér is O(r—'), O(logr), and O(1), respectively.
Although the second term on the right-hand side becomes a weakly
singular integrand, the first term is still singular.

This singularity of the first term, can be removed by
considering the summation of the integrals of I’y and I'p. The
factor of the singular term contains the vector product of n, x t,.
They have mutually opposite signs, and their lengths are same;

e =0
e A )

where e; is one of the unit vectors in the Cartesian coordinate
system that is perpendicular to the two-dimensional domain
under consideration, as shown in Fig. 1. Using this property, the
singular integral is canceled and the result is easily evaluated:

ou*
> /r — (M % 7,)dIl" x (Vu),
y=ab’ 'y

=[-u"(La)+u*(Lp)les x (Vu),
=[-u"(La)+u*(Lp)l(—ere; +exeq) - (Vu),, (26)

(25)

where L, and L, represent the size of elements I'; and I,
respectively. It should be noted that the computation of the sum
of the integral along the singular elements I'; and I'j, is obtained
solely by evaluations of u* at one end of each element, and it
requires no numerical integrations. Moreover, limitations regard-
ing element size or smoothness are not imposed in this
formulation; it is applicable for different sizes of boundary
elements, and also applicable for corners. To simplify notations
in later discussion we introduce an abbreviation of a difference
operator between a function f related to I’y and that related to I},
as Diff,.q_p [fy] 2fa—fb. The coefficients of (Vu), on the left-hand
side of Eq. (26) are rewritten as the following dyadic tensor:
. 0 piflf) [u*(Ly)]
Caub(y)é_BJiE; [u*(L))](—eie;+ese1) = Diff e (LV)]"” 0
V:a—
27)
Next, let us consider the second and third terms on the right-
hand side of Eq. (24). The second order derivatives at the third
term can be expressed as a linear combination of u and g at
associated points, which are the singular node y and its adjacent
nodes x,, as shown in Egs. (81) and (83)-(85) in Appendix A. Also
the second term is expressed by u(y) itself. Consequently, the
integrals of terms of Eq. (24) are expressed by u and q but not Vu,
so we introduce the following vector definition:

L 1 66u* L aur 1_ &u
a_ 2 N a _-nfr
J,u,q= /0 dru(y)n,—»—/O "5 dr 2n’61%y+

r or

(28)
For the sake of accurate evaluations of both the weakly singular
integral and the regular integral, we can apply the analytical
integral shown in Appendix B.
Thus, the summation of the entire integral along I'; and I}, is
represented as

3 >
Tp2 > D> Ty =Canp®) - (Vu)y+ > J,(u,q). 29)

y=abi=1 y=ab

3.3. Integral along the boundary I,

The integration path I'; can be given by ¢d6f where ¢ is an
infinitesimal constant, and 6 is the azimuthal angle from the

direction e; in the Cartesian coordinate system. The angle 0
varies from 6, to 6, with the interior angle Af=6,—6, > 0.
Since e, =-mn; is satisfied throughout the path, each of the
integrals (Egs. (19)-(21)) along I is readily evaluated by applying
a similar procedure to that used in the reduction of Eq. (24). The
terms with non-zero values in the integrals are as follows:

Oa gy

Iu;élim
-0 /g, r

n.(uy)—en; - (Vu,) do, (30)

&

. Va gy
I .2 —u(y)lim L\ n,do, 31
’ £-0 0, r ¢
I 2 —lim (o n.n; - (Vu),e ) do 32)
387 -0 0 or & ere y ’

Since the singularity of déu*/or is O(rlogr), the coefficient of u(y)
vanishes with ¢— 0; therefore, the summation of these integrals
are simplified as

3
L2 I, = ~lim (e

Furthermore, I, is a regularized term because the singularity of
ou*/or is O(r~1), and the coefficient of the integral can be
evaluated as

. ou* -1
11m<.s 8) =5 (34)

&0 or
The vector n, and the dyad n:n. are written in terms of unit
vectors in the Cartesian coordinate system, e; and e,, as follows:

ou* Oa
r F) /Hb 2n:n,; do - (Vu),,. 33)

n, = —e, = —(cosle; +sinfe,), (35)

n.n, = cos>0e; e; +cosfdsind(e; e, +e2e1)+sin2 Oeye,. (36)

Evaluating the definite integral with respect to 0 using these

equations, we can obtain the following result:

sin20
4r

0]
I— (lef [ﬂ} 1 - Diff

’l(e;e;—ese
bt bt }( 1€1—€2€3)

+ Diff

—Co0s2
y:a—b

01! <«
T} (e1e; +ezel)> (V) £ G ) - (Vuyy, St

where 1 denotes an identical dyadic tensor. The coefficient of 1

is equal to that of CBIE. The coefficient dyad E(y) is same as that
for Laplace equation [22,23] (note these references contain a few
mistakes in representations of the coefficients). Furthermore,
Chen et al. [24] shows similar coefficients called free term, but
their representation is given by two normal derivatives with
different normal directions at a corner.

3.4. Regularized boundary integral equation for gradient field

Using Egs. (29) and (37), the integral equation of the gradient
given in Eq. (12) is expressed by only the regularized terms as
follows:

C W) Vu) = —J.q). (38)

The right-hand side, J(u,q), is composed of J,(u,q) and J,(u,q),
where J,(u,q) is the regularized result of the hypersingular
integral shown in Eq. (28) that is not dependent on Vu, and
Jn(u,q) is the integral along the non-singular boundary elements.
The coefficient dyad C is the regularized result of hypersingular
integrals associated with Vu.

Ju, 92 > J,w 9+, q), (39

V= ab
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Jag)2 /F (Vy (Vo g u)—(Vyu)qidr, (40)
C (y)é Cc (y)"‘caub(y)
X 29»,+sin29-, . co 6/ ut
Ll ) "
fo{ cos20, u*(L-y)} Diff{z&,—smze}}
y:a—b 4n y:a—b 4n

When we can assume that the element size L, is small enough

compared to the wavelength, the C (y) is a regular matrix as

shown in Appendix C. Therefore, the inverse matrix C~!(y) can be
defined as Eq. (98). Operating the inverse matrix to Eq. (38), the
following equation is derived:

Vu) =—C"'@) - Jw.q). (42)

Since the C~!(y) depends on only the boundary shape and the
element size, once the quantities u and g are known, the gradient
can be computed by an evaluation of the right-hand side as an
explicit form.

In general problems either one of u or g on the boundary is
given, but not the other. In this case, taking the scalar product of
n,(y) and Eq. (42), we can obtain a Fredholm equation of the
second type with respect to q:

4@ =-n,m) - C'®-Juq. (43)

Similarly to CBIE, this equation can be solved after constructing a
set of equations obtained by taking y for every boundary node.

Two kinds of error arise in solving such a set derived from
Eq. (43): one is the error from the regularization of the
hypersingular integral equation, and the other is the rounding
error in solving simultaneous equations. In contrast, Eq. (42) only
includes error from the regularization. Since another aim of this
paper is estimation of the error due to the regularization, we will
consider the evaluation of Eq. (42) in later sections.

4. Error estimation

In Section 3 in order to derive the regularized equation of
gradient field, we considered the second order derivatives of u
around the singular point in Eq. (23), and higher order derivatives
were truncated. The error by interpolation using shape functions
in the singular element, which is the error of Eq. (28), results from
these truncated terms. In the integral of non-singular elements
defined in Eq. (40) this error is also included. In this section we
will roughly estimate these errors. We classify the error source
terms as follows:

1 % our | %u
]},{6nu}——§ A r ar raT% yny, (44)
L our  du
2 A
].y.{ému}f/0 T drar7,an),. y‘c-,,, (45)
Jo (w2 /F (Vyqudr, (46)
B2 [~V 47)

where the identifiers y and n; show, the singular element
(y e{a,b}) and the i-th non-singular boundary element, respec-
tively, moreover, the argument in the bracket on the left-hand

side of each equation shows the cause of error, in which 8, and o,
are abbreviation of derivative with respect to T and n, respec-
tively.

In order to facilitate estimation of the error we assume that u is
a plane wave, i.e.,, D’Alembert’s solution, which satisfies the
following equations:

Vu+jku=0. (48)
The amplitude of this solution can be estimated as follows:
IVul=klul, 10,ul=klullcose|, |8,ul= klul|sing|, (49)

where ¢ is the angle between the wave vector k and the normal
unit vector n. The higher order derivatives satisfy similar
relations.

Although the discussions in this section are only focused on a
plane wave, it should be noted that the application can be
expanded to the case where the field u is expressed as a sum of
plane waves. By considering a plane wave u,;, with wave vector k;,
that has the same magnitude as other plane waves but different
directions, the amplitude of a gradient of the total field can be
estimated as the following expanded relation:

M
u= Y Um, Vip=—jkmtn, |knl=k
m=1

M
> kmtin| <
m=1

M

M
> lkm| - [uml =k > [um| < Mkmax|un|. (50)
m=1 m=1

Vu| =

4.1. Error due to integral including singular point

Both the errors associated with Egs. (44) and (45) are mainly
affected by the errors of the second order derivatives with the
discretization procedure because the integral can be evaluated
with good accuracy by analytical integral expressed as Eq. (88) in
Appendix B. The errors of the second order derivatives of which
details are shown in Appendix D, depend on the geometries: sizes
of two singular elements that both include the singular point y,
and the interior angle A6 at y. In subsequent discussion, the sizes
of the singular elements are denoted using a parameter ez as L, =L
and L, = al, where the subscript y is either one of a or b, and " is
the other one. In terms of the internal angle we consider two
typical cases; a flat boundary (A6 =m), and a corner with right
angle (A0 =m/2). The followings are the estimated error of
J,{é%u} and J, {6%,u}

s A0 =7 and

Mwm Pllku@)l <|1fx|<ﬁk’~ )
2 ~

AT, (0,u| (KL (1 +03), . 4 ’ AO=m and (51)
A8l 4 S Pliku)l [1—of < kL
kL)

|AJ-,{a$Tu}\=“§;7Z cos*pllku)l (A0 =7/2), Y

|AJ {82,u}| = Q\sm ¢eoso|lku) A1 2

y _ A)=m/2 |

In the case of L, = L,,, by comparing Egs. (51) and (53), we can find
that the error due to (&2 .Uy is larger than the error due to (a”u)y
Otherwise, the orders of the errors are same, (kL)%.

The error |AJ,{ &2.u}| for the corner shown in Eq. (52) error
decreases by taking smaller o at a glance. However, in the
situation of exchanging y and 7, the error increases because the
factor « is replaced by its reciprocal. Since the total integral given
in Eq. (39) includes a sum of the case of (y,y)=(a,b) and an
exchanged case (y,)’) = (b,a), the factor of the error should be
estimated as o+ 1/c. Thus, when we choose smaller o, the error of
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the total integral will not become smaller. Furthermore, in the
case of « ~ 1 the error for AQ = /2 (Eq. (52)) is larger than that for
A0 =7 (Eq. (51)).

4.2. Error due to the non-singular integral

The error due to discretization in integral of non-singular
elements appears as well as the integral of singular elements.
Substituting the quantities V,q*(x;¥) and —V,u*(x;y) to ¥Y(x;y),
and substituting u(x) and q(x) to f(x), we can reduce to the general
form of the non-singular integral in Eqs. (46) and (47) as follows:

Ln® [ weyyear, (54)

where x{, ' are both ends of the non-singular element I",, and
Yy¢I'n. The function f can be expanded by a shape function {;(x) as
follows:

f@=>fii@+Af@), (55)
i

where Af(x) means truncated terms in the discretizing procedure.
When we can calculate the first term with good accuracy, the
error due to the non-singular integral is determined by Af(x) at
the second term;

M2 [ Weyafedr. (56)

In the case of linear element, the significant term of Af(x) within
truncated terms is the second order derivative of f,

Afx) = AfP @) = 3x—%) - (X—%;) - (VV)y,. (57)

where x; = 1(x/ +/ ). Since u is assumed as D’Alembert’s solution
shown in Eq. (48), the gradient of f, where f is either u or
qg=Vu-n, satisfies Vf = —jkf. Moreover, putting x—x; =It;, we
can obtain the error as

(k. 1) . L/2
Ay = =IO [ ity i (58)
-L2

In the case where [ < r; (r; shows distance between x; and y), the ¥
can be considered as a constant vector,

3
AJy ()~ — 7 k- T ) Pl ). (59)

Since ¥ increases with decreasing r;, the error from the non-
singular element near the singular point y becomes significant.
When we consider the case where r; <1/k, the fundamental
solution Y, i.e., Vyu* or V,q* given by Egs. (13) and (17) are
reduced approximately as follows:

" ou* 1
Vyut = —e— - ~er S, (60)
2 0u* 1ou* 2e..(n; - e.)—n;
*— | KPur+ 2 . _ - PRt A S B Calind
V= (k s 6r>(n1 er)er ror ™ 2nr?
__ mcos2y;+Tisin2y; 61)

2mr?

where cosy; =n; - ey, siny; =7; - e;,. Introducing f as f=r;/L and
substituting the above equations and Eq. (49) into Eq. (59), we can
finally estimate the error due to the non-singular integral as
follows:

(KL)?|sin® pcosep |

48pr |ku(x;)|, (62)

|AT, (q}] ~

_ kLisin*@|
48f°n

These errors become larger for smaller 8. Since |AJ, {u}| is only

proportional to the first order of kL, it becomes larger than the

error due to the singular integral shown in the previous
subsection.

|AJy, (U} |ku(x;)]. (63)

4.3. Total error of the gradient field

In the above subsections we have shown the estimation of the
error due to the discretization for components of J. The total error

of the gradient field Vu is estimated by operating C~! on the sum
of the errors of the components:

A{Vu}2 —(?3 A, (64)
AJA Y AL G w + AT {2, u+ Y [AT, ()} + Al (). (65)
y=ab i

Since the component of AJ is generally unknown, we apply the
norm of the inverse matrix to estimate the total error:

A(Vu) = F‘A] <|lcian, (66)
Hc—1 _ 1 (‘ﬁ"ﬂmff ()] +|SnA0 ) (67)
hpng 2n y:a—b ! 2n
det C ‘

«—>

where the estimation of the norm ‘C‘l is shown in Appendix C.

The total error is magnified by this norm. Results of some typical
cases are shown in below:

(A=) 6—:1 < 2(1+ |2Diff . [u*(Ly)] l),
1+ (2Diff,q_p [u*(Ly)] |

A0=m éj 5
Lo=L, -

4m(m+2+4m|Diff,. o [u*(L)] 1)

2 "~ |2 —4+167m2(Diff . p [ur(Ly)])?I

T
AO - >

2| o< 22 (68)
Lo=Lp n-2

In the case of Ly =L, we can find that the norm for A6 =r is 2,
while the maximum of the norm for A0 =r/2 is almost 11. This
result suggests that the error for a corner with right angle in the
worst case is magnified about 5 times larger than that for smooth
boundary.

5. Numerical result

In order to show the error of hypersingular integral in the
proposed regularization, let us consider the case where true
solution is given in whole domain. We adopt the following plane
wave without scattering as the true solution @i to compare the
computational error of the hypersingular integral equation with
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the rough estimation discussed in Section 4;
i1(x) = uge J**, (69)

where 1y is complex amplitude and k is a real wave vector. The
true boundary values at boundary nodes x; consisting of the field
fi(x;) and its normal derivatives §(x;) can be readily obtained.
Substituting these boundary values to u(x;) and q(x;) on the right-
hand side of Eq. (42), we can evaluate the gradient at the
boundary nodes, Vu(x;), as an explicit form. The reference of
gradient at the boundary nodes is derived directly from the true
field in Eq. (69) as Vii(x;) = —jkii(x;). The error of the gradient is
defined as the difference of these gradients.

Since both of the results, Vu by numerical integral and Vii by
the reference, are dependent on position, it is difficult to fully
capture the error. However, by normalizing the gradient with
respect to the field itself, the true gradients can be converted to a
position independent quantity. Similarly, the numerical gradient
is normalized by the field as follows:

Lo Vi ko, Vu
KT ki T kT ki

The results shown below are represented in terms of these
normalized differences,

>

(70)

Aekéek—ék. 71)

The aim of this section is to demonstrate the error dependen-
cies with respect to element size, the effect of corners, and the
effect of uneven sized elements. A two-dimensional model to
demonstrate them is shown in Fig. 2. There are two different
configurations of boundary elements and nodes:

Even-type configurations: The nodes are placed with even
interval, i.e., the size of every element is same.

Uneven-type configurations: By appending two additional
nodes to the even-type configuration at the bottom side and
adjacent to the upper-right corner, two original elements are
replaced by four smaller elements, sized half that of original ones.

The size of standard element, L, and the direction, ¢,, are
changed, but the dimension of the region, D, and the wavelength,
A, are fixed as D=0.8m, 4= 0.1 m. Instead of the element size L,
the error dependency of element size is shown by N, representing
the number of elements in a wavelength, i.e., N=/1/L. Gauss’ 4
points quadrature formula [29,30] is applied to the numerical
integral for non-singular elements. Notably, we also examined use
of 8 points quadrature, but no significant difference was found.
This indicates that the error due to numerical integration is

L Se

Fig. 2. Node placements for even-type and uneven-type configurations: the filled
circles show boundary nodes for the even-type configuration. For the uneven-type
configuration, in which the interval of nodes are uneven, two additional nodes
shown by diamond shaped symbols at the bottom side and around upper right
corner are appended. The vector k shows the propagation vector.
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Fig. 3. Complex error vector Ae of the even-type configuration (N = 10): each pair
of figures in a row denotes a set of results for ¢, =0, /6, and 7 /4, respectively.
The left and right side figures show the real and imaginary part of Aey,
respectively. To show magnitude of the error vector, the one-tenth scaled true
unit propagation vector €, which is a real number vector, is also depicted at the
center of region in each figure.

sufficiently small compared to the error due to other effects such
as truncations of higher derivatives.

In addition, to avoid ambiguity of the direction of the normal
unit vector m at the corners, we employed a double node
technique with zero distance for the corner nodes [27,28], in
which each corner node has three variables; one field u, and two
normal derivatives for different direction g, and g, .

5.1. Error properties for even-type configuration

Fig. 3 shows the difference vector, Ae,, with N=10 for the
even-type configuration for different ¢,. It is found that the error
at a corner is larger than that on the sides, and its magnitude at
such a corner reaches almost 10% of true solutions.

From the result of ¢, = 0 symmetrical error with respect to the
horizontal axis (£, = 0) is found. However, symmetry with respect
to the vertical axis (£; =0) cannot be found. It may appear
counterintuitive; however, it is not a wrong result. The reason for
these results is the difference of the nature between the terms
(Vyu*)q and (Vyg*)u in the integrand in Eq. (40). The symmetrical
nature of the V,u* and V,q* can be evaluate by Egs. (13) and (17).
In the case where the symmetrical axis is the horizontal
axis ({,=0), each the (Vyu*)-e;, (Vyq*)-e;, u and q has
even symmetry, and each of the (V,u*)-e,, (V,q*)-e, has odd
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Fig. 4. Error dependencies on element size for the even-type configuration: each
figure in the left-hand side column shows the error at the center node of each side
of the boundary. Figures in the right-hand side depict the error around corners. The
difference among rows is the direction of the propagation vector, k. The positions of
the nodes to evaluate the error and the direction of k are depicted as a subfigure in
the top right of each figure. Positions at the center of each side and at each corner
are fixed but the nodes next to the corners are varying with change of N.

symmetry. Therefore, the above-mentioned difference in Eq. (40),
(V,u)g—(V,q*)u, which is the integrand of J, has even and odd
symmetry for horizontal and vertical component, respectively. In
contrast, in the case where the symmetrical axis is the vertical
axis (¢, =0), although the gradients have similar natures, the
natures of u and g have neither even or odd symmetry; u at
symmetrical point is equal to the complex conjugate of u at the
original point, and in terms of ¢ we have the complex conjugate
with opposite sign. Thus, there is no symmetry with respect to the
vertical axis. In the case where ¢, = /4, shown in the bottom
two graphs in Fig. 3, a symmetry with respect to the line of £; = &,
is observed. This is caused by the symmetry of all the quantities of
u, q, Vyu*, and V,q*.

Fig. 4 shows error dependencies of element size. It is found that
the error decreases with increasing N, which is equivalent to
decrease of the size of element L. For almost all of the results the
dependency of N obeys a 1/N law, which agrees with the discussions
in Section 4. The significant error is the error due to the non-singular
integral AJ, {u} shown in Eq. (63). Some exceptions are found in
cases where the field node is located around the center of the left-
side or right-side for ¢, =0, in which the dependency shows 1/N?2.
In these cases, the error due to the truncation of higher order
derivatives in the representation of field on the left- or right-hand
side of the boundary disappears, because the wave front of the
propagation wave is parallel to each side, over which both the u and
q are uniform. Therefore, the error AJ, {u} from non-singular far
element on top- or bottom side, (r; > 41), becomes significant. Since
the error in Eq. (63) is a consequence of the assumption of
l<r;<1/k, we cannot use the estimation. However, it can be
estimated directly by substituting the second of Eq. (61) into

Eq. (59). In the case where n;-e, ~0, it is |AJ,{u}l= ((kLy?
Isin® | /24 ) |u(x;)éu* /or|, which is proportional to 1/N2.

We can also draw some conclusions of the errors around
corners from the result shown at the right-hand side column of
Fig. 4. For the case of sufficiently fine element resolution (e.g.,
N =100) the errors at the corner nodes are larger than that at
adjacent nodes, for which distance from the corner is L. It depends
on the ¢,. In the case of ¢, =0 their ratio is almost 4, and in the
case of ¢, = /4 they are almost same. This result agrees with the
discussion in Section 4.3; i.e., the error at the corner that is

induced from the norm HC1 grows almost 5 times larger than

that on flat boundary in the worst case. The reason why the errors
are almost equals in the case of ¢, = /4 can be also explained by

>

previous analysis in terms of symmetry. The growth factor €1,

>

and the maximum norm of C! is evaluated by the right-hand side

<«

of Eq. (99) in Appendix C. If the error vector AJ multiplied to C! is
known, the error growth can be estimated precisely using Eq.
(98). The significant error at every corner is AJ,, (u} as discussed
above, which magnitude and direction are shown in Eqgs. (63) and
(61), respectively. There are two dominant elements within this
error source: namely the two non-singular elements adjoining to
two singular elements, where the normal vectors point in
different directions. Estimating sum of them for two corners
(upper-right and upper-left), we can find that both the absolute
magnitudes of error are same but the directions of the error
vectors are different each other. The vector component satisfies,
respectively, AJ-e; =AJ -e; and AJ - e; = —AJ - e, for the upper-
right corner and for the upper-left corner. Using these relations

the norm of C~! can be evaluated. The norms at both corners for
¢ =m/4 become

N
Y]

41

=y 24 (72)

This result is almost equal to the norm for A6 = 7, which is equal
to 2 as shown in Eq. (68).

5.2. Error properties for the uneven-type configuration

Fig. 5 shows the effect in the case where smaller sized
elements are included. Although the uneven-type configuration
uses smaller sized elements, the growth of error is found from a
comparison of the zoomed graphs around the replaced elements.
The growth is not limited to only this example. The detail results
are not shown here, but we have obtained that the amplitude
each error obeys 1/N as similar to the case of even-type
configuration shown in Fig. 4. It means that the significant error
is AJ, {u} shown in Eq. (63) even in the case of uneven-type
configuration. The error at the additional node on the bottom side
is almost twice as large as neighboring ones. Although the
element size of the singular element is reduced by appending a
new node, the size of the non-singular element L is not changed.
However, since f§ appeared in the denominator in the equation is
proportional to the distance between the center of the element
and the singular node, the f§ does become smaller by appending
the new node. It means f = 2 for the even-type configuration, and
p =1 for the uneven-type configuration. Thus, the error from the
non-singular element which connects to the singular elements
increases by appending the new node. From Eq. (63), the growth
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Fig. 5. Comparison of error vectors in the even-type configuration (a), and the
uneven-type configuration (b): the graph at top left side of each figure shows the
error in whole region, while those at top right side and at bottom are zoomed
vectors in the vicinity of the circled area in the figure of whole region. In the
zoomed figures of uneven-type (b) the additional nodes are marked by diamond
shaped symbols. All results are of N= 10, ¢, =0.

of AJ,{u} by appending the new node is estimated as § times
larger than the even-type configuration.

The error near a corner is similar to the case where the
additional node is located on the bottom side. The error at the
additional nodes has larger error than that at the adjacent node
located opposite to the corner node. At the corner node a little
improvement is gained. The dominant error at the corner is
caused by the AJ,{u} from horizontal side as discussed in the
previous subsection. Since the element with the most significant
error is the one adjacent to the additional node that is opposite to
the corner, the element size becomes half of the size of the
original element and f is same as the original configuration. Thus,
the error from this element decreases. Note that the error is not
reduced to exactly half, since the error from the other elements is
not reduced.

From the above discussion we can conclude that when the
configuration contains uneven sized elements even if their sizes
are finer than the other even sized elements, it may still result in
larger error around them.

5.3. Error reduction around the corner

As discussed above, the errors at corners are generally larger
than at other nodes. Furthermore, replacement of an element
around corner to several smaller sized elements induces a larger
error in the areas around the corners. However, it does afford a
little improvement exactly on the corner nodes. To reduce the
error at the corner nodes, we evaluated two configurations. One is
a gradual size-variation configuration. In this configuration, the
element adjacent to the corner node on either side is replaced by
four smaller elements with a quarter size of the original element;
moreover, the next consecutive element following this replaced
element is also replaced two half-sized elements. In the other
configuration the two elements adjacent to the corner node are
replaced by eight quarter-sized elements on each side, i.e., the
number of new fine elements is sixteen. Both of these results are
shown in Fig. 6, together with the result of the original even-type
configuration. The results of both new configurations
demonstrate the error reduction at the corner. However, the
errors at the additional nodes are relatively larger than the errors
on the side near the corner. The growth of the error on the side in
the case of gradual size varying is smaller than that of the
replacement by eight quarter-sized elements on each side. These
results agree with the results discussed in the above subsections.
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Fig. 6. Error reduction around corners: (N =10, ¢ = 7/6) (a) Even sized elements: sizes of all elements are equal. (b) Gradual element size variation: each of two original
elements connected to the corner node is replaced by four elements with a quarter size of the original element, respectively; moreover, each of the elements adjacent to
these is replaced by two elements of half size. (c) Fine resolution into 16 elements: each of two original elements connected to the corner are, respectively, replaced by 8
elements of quarter size.
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6. Conclusion

This paper shows the regularization of the hypersingular term
that appears in the gradient representation of a boundary integral
equation for a two-dimensional Helmholtz equation. Since this
regularization is achieved by an analytical approach and it does
not use the double integral technique [2], a computational cost
may be significantly reduced. Moreover, this regularization is
applicable even if the nodes include corner locations or if the size
of elements is non-uniform. This paper also shows that the error
from this regularization in terms of linear elements is estimated
roughly by separation into the error from the singular elements
and that from non-singular elements. The computational result
from evaluated examples demonstrates that the calculated errors
are in agreement with the roughly estimated error. The error
caused by the hypersingular element regularized in the proposed
method is negligibly small in comparison to the non-singular
element. The dominant non-singular error decreases with in-
creasing of the number of elements, N, such that the total error is
proportional to 1/N. When some nodes are modified by
appendage of evenly sized boundary elements, the properties of
the error vary according to the location of the appended nodes. In
the case where the additional node is located on a flat boundary,
in which the size of two adjacent boundary elements to the node
are different, the error increases in spite of the reduced boundary
size. In the case where the additional node is located in the
vicinity of a corner, the error at the corner decreases, but
the error at adjacent nodes along a flat boundary increases.
In order to reduce the error effectively by the regularization
technique proposed in this paper, it is recommended to use even
sized elements for flat boundaries, and for corner areas to employ
a configuration of gradual variation of element sizes.

Appendix A. Representation of the second order derivative of
the field at the singular point

The purpose of this appendix is to reformulate the two second
order derivatives in Eq. (28) as the linear combination of u and q
at the singular point y or at adjacent nodes. The two variables that
should be represented finally are (6*u/ot,n,|), and (3°u/ot3l),
where y is a or b and the unit vectors n,, T, are shown in Fig. 1. Let
us label 7’ which expresses associated quantities with the
opposite side of the boundary I', to y. Notice that (y,7’) can be
taken as either pair (a, b), or (b, a); however, their identification is
not important because no quantities dependent on the difference
between them are found in the following formulation.

We assume the second derivative of u is defined at a point x
located on each boundary element, and derivatives of third or
higher orders are negligibly small. Accordingly, the Taylor
expansion around y can be given as follows.

u(®) ~ u)+@-y) - (Vu), +3x-y) - ®-y) - (VV),. (73)

Since the quantity g has been already applied to the differential
operator, the Taylor expansion is represented up to the first order:

0;®) ~ ¢+ &=Y) - (Vay)y, 74

where g, = Vu - n,.

The relation between the pairs of unit vectors (t,,n,) and
(ty,my) are represented by the internal angle A at the singular
point y. The following inner products are corresponding to the
components of the coordinate transform matrix:

Tor 27y - Ty =Cc0SA0, Trn27Ty, -y, =—sinAo,

>

Tpe2ny - T, =—sinAf, Tyn2ny, -n, = —cosAf. (75)

The derivative operators can be transformed by the coordinate
transform matrix between (t,, n,) system and (t,, n,) given by the
following derivative operators:

ar’ _ T‘c’r T‘r’n 8': _ Tf/—"aj , (76)
O Ty: Tun On Tn’jaj

where the notation of g, is an abbreviation of 5/6x. Moreover, the
summation symbol with respect to j for 7, n is omitted in the final
notation.

The position vectors x, and x, are expressed by the unit
tangential vectors 7, of I, as well as the vectors 7, of I'y,

x-y=L1, X-y=Ly7y, 77)

where L, and L, denote the size of I'y and I';, respectively.
The result of expansion of u(x,) can be written simply as

L2
u@®y) ~ u)+Ly (0, u),+ j(aﬁ,u)y. (78)

The second derivative at the last term is the variable to be solved,
while both u(x,) and u(y) are the variables in the final expression
of a linear combination.

In the case of u(x,) the derivative operator is replaced
by the transform matrix in Eq. (76), and then the expansion is
written as

2
U(Xy) ~ UY)+Ly (O )y + - (@2 1)y = uy)+Ly (Tex(0,u),

12
+Ton(@,1),)+ > (T2 (8%,u)y + 2To Ton(02, )y + T2, (O5,10)y).
(79)

In this equation the variable (5,u),, is identical to q,(y),
(Gny =4, ). (80)

Taking a tangential derivative of this equation, we obtain the
other second derivative (62,u), that is one of the variable to be
represented finally,

_ %
oty

u
otyn,

N q,(Xy)—q,(y) .

(5%,1 wy = L,

(81

y y

The relation between the quantities (aﬁnu)y and (6§Tu)y can be
given by a Helmholtz equation, because the sum of these
quantities equals the Laplacian,

(02,u)y + (0% u)y +K2u(y) = 0. (82)

Eliminating the derivatives except (aﬁfu)y from five indepen-
dent equations (78)-(82), we can represent the (6%111)’, using a
linear combination form

&u
2 if.
@y =755 =D Wifi (83)
sy 1
where f; denotes one of the quantities u and g, aty, x, and x,,
fi e {fu@), uxy), ux,), q,¥), q,(x;,)}, (84)
and, each factor for f; is obtained as follows:
u(x,) —2LycosA0
W (KL, )2
w; +2L, cosAO—2L, <1_ 2 sin2A0>
Wu(x,,) _ l
7 w0 “D| +2L, ’
qy(Xy .
w; +125in2A0
W‘?:‘(Y)

—L2sin2A0+2L,L, sinA0

D=L,L,(Lycos2A0—L,cosAD). (85)
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These factors depend on the quantity A6 as well as the sizes of
elements.

Appendix B. Analytical representation of integrals appeared
in the singular element

The purpose of this appendix is to show the analytical
representation of the two integrals in Eq. (28). A numerical
integral is obtainable because these integrals are regular or
weakly singular. However, analytical representation is useful to
improve the accuracy and to understand the nature of the
integrals.

The second integral in Eq. (28) is transformed to the following
relation by partial integration:

/L-/ P gr = [ru*l, _ . — /Lﬁ u*dr = IiH(z)(l<L )—l/L? H® (kr)dr.
o or T =t T4 0T 4 )y 0 ’
(86)

where the second term has a weakly singularity. This integration
is given by Struve function, H,(x) [30],

/0 XH‘Oz) (x)dx = xHY (x) + ”7" Ho()HP (x)—H; ()HS (x)). (87)

Since the first term of the integral of Eq. (86) and the first term of
Eq. (87) are canceled, the integral of Eq. (86) is reduced to

L, * ittL.
/ raa”r dr:“%L' (Ho(kL,)H® (KL,)—H; (KL,)H? (KL,)). (88)
0

The integer order of the Hankel function, H®(x), and the Struve
function, H,(x), are given by the following infinite series:

HP (X) = Ja(X)—jY n(x), (89)
n 2m
o= (3) Zoanm(g) : (90)

-1 =1 (n—m=1)! x\2m-n 2. x
D D (5)  +Zlogsh)

1 & X\ 2m+n
_Emgo(¢m+l+‘pn+m+l)anm(§) s 91)
__ =" Y
= min+m)!’ W1 =—7+ ’:ZlTa 92)
x\n+1 =2 (_l)m X\ 2m
H,0 = (3) mZ::o FmT yromid ) 93)

where 7y is the Euler constant, and I" represents the Gamma
function. In the case of kL, <1 the infinite series converges
rapidly. The integral around kL, ~ 0 can be approximated as

L our -L,
| a5
Similarly, the other integral in Eq. (28) that is a weakly singular
integral can be represented without any singularity using Eqs.

(89)-(92),
Ly 1oou* Ly 1/-k 2) —1
/o T ar dr = /0 = <4—1,H1 (kr)_Z_nr) dr

k& am (KL
- 2

j 1 kL,
'<]+E<l//m+l+!//m+2+ m—Jr%_ZIOg 5 . (95

(KL, ~ 0). (94)

Appendix C. Inverse matrix of the coefficient matrix

To ensure the existence of an inverse matrix of (? the
determinant of C must not be 0. The evaluation of the
determinant is shown in this appendix. Both the differences
Diff,.,_p[sin20,] and Diff,, ,[cos20,] in the definition of c
(Eq. (41)) are reduced to the following relation:

Diff [sin20, ]

7:a-b . cos20q 0a+0,
Diflf) [c0s20, ] =2sinAf < —sin26, ) - bo= 2 (96)
y:a—

Using this relation the determinant of C is represented as

= _ 1 2 2 ; " 2
det C = W((AO) —sin A0)+(E;f£[u (L.,)})

1 . . 2 . 2
= W((Ae)hsmer)Jr { (m{ Tl:)alf[f) [u*(L)] }) - (3{ Pa]g [u*(Ly)] }) }

+2jm{pif£ [u (L)) }S{Difg [u*(Ly)] } 97)

:a—

The first and second terms on the right-hand side are real
numbers. In contrast, the last term is a pure imaginary number. In
order to satisfy the condition that the determinant is not equal to
0, either the real or the imaginary part must have a non-zero
value. The first term is always positive. The second term depends
on L,. In general, the element size is chosen as a size sufficiently
small compared to the wave length, i.e., L, < 1/k. In this case the
fundamental solution u*(L,) has a larger real part than its
imaginary part; therefore, the second term has also a positive
real number. Since the real part of the determinant given by the
sum of the first term and the second term is a positive number,
hence the determinant has a non-zero value and we can conclude

that C has an inverse matrix in the case L, < 1/k.

The inverse matrix C~! can be readily obtained from Eqs. (41)
and (96) as follows:

A0 U
pu 2 ~Diff [w )]
o hreg A0
det C i *(L,, —_
+P;f£[u 1) o
i —c0s20y —sin26,
sinA0 . 0 1 0 . 98)
2n —sin26y +co0s26y

Since the second matrix in the square bracket is an orthogonal
matrix, the second order norm becomes unity. Taking a maximum
norm for the first matrix, we can obtain the following relation:

>
<

1 <|A0|+\sinA0|
+

det? 2m

DIffu(L,)] D . (99)

Appendix D. Error due to truncated terms of the singular
element

D.1. In the case of the node on flat boundary

Since the second order derivatives of u in Eqs. (44) and (45) are
represented using the quantities u and g at the singular node y, as
well as adjacent nodes, ¥, and x,, as shown in Appendix A, the
third or higher derivatives cause error of truncation. To estimate
the error due to the truncation we must estimate the third
derivative. However, since there is a case where the third
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derivative vanishes under a certain condition, we also consider
the fourth derivative.

In the case of a flat boundary (A0 = n), the factors of coordinate
transform matrix in Eq. (76) are given by Eq. (75) as follows:

T‘E/‘E = _1, Tn’n = +l, Tr’n = Tn’f =0. (100)
From these factors the fourth order of the Taylor expansions at the

nodes, x, and x,, around the singular node, y, are obtained as
follows:

2
u(x.,.)~u(y)+L(aru)y+%(a$Tu)y (amu)y+ aﬁmu)y, (101)
u(x.,.,)~u(y)_o<L(aTu)y+(°‘) (@ u)y—@(a 3. )y+(°‘) @ )y,
(102)

where sizes of elements are set as L, =L and L, = «L. Eliminating
(0, u)y and rearranging with respect to (6$Tu)y, we can obtain the
following representation of (6$Tu)y.

2(o(xy)—(1+o)uy)+uxy))
(O%t)y ~ s ARt AR (103)
L(1—o
A® o L= - )@, ., (104)
L2(1+03
@ a2 ( ) a‘rlrnu)y, (105)

Zu— T 12(1+a)

where the variable shown as A}”’ represents the truncated term
for some function f associated with n-th order of derivative. In the
case of o« = 1, the error due to the third derivative vanishes and the
fourth one becomes dominant.

In contrast, the derivative of q is simpler because it can be
given by only the Taylor expansion at u(x,). The Taylor expansion
of g using third derivative of u, which is equivalent to the second
derivative of q, is given as
(106)

12
(%) ~ @)+ LGy + =5 (02:y)y»

where q, = Vu - n,. Rearranging about (2,qy),, we can estimate the
error of truncation of g, as follows:

(X)) —qy
(0:qy)y ~ w +AZ) (107)
3 a2 L 2
Aaz u= "~ i(af‘rq"/)}’ == (arrnu)y (108)

D.2. In the case of the node at a corner with a right angle

This case (A0 = 1t/2) is simple because the third derivative of u
is not canceled. Since the factors of geometry are given as

Tor=Tyn=0, Ton=Tpc=-1, (109)
the Taylor expansion of u at x, is given as follows:

ol oL
U(Xy) ~ u(y)—aL(6,u), + ( ) (a ay— ( ) (a,m,, (110)

The normal derivative (anu)y at the second term is identical to
q,(¥), and also (#%,u), at the third term can be represented by
(afzu)y using Eq. (82). Consequently, (afru)y is reduced as follows:

2((1 (kal) )u(y) Uy )—olq, (y))
(@%u), ~ +A3,

(aL)?

111)

@)
Ty~ A5, L~

y~ 42, 112)

(5nnn u)y-

In terms of the tangential derivative of g, we can derive the same
relation to that in the case of the flat boundary shown in Eq. (107).
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