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a b s t r a c t

This paper presents a gradient field representation using an analytical regularization of a hypersingular

boundary integral equation for a two-dimensional time harmonic wave equation called the Helmholtz

equation. The regularization is based on cancelation of the hypersingularity by considering properties of

hypersingular elements that are adjacent to a singular node. Advantages to this regularization include

applicability to evaluate corner nodes, no limitation for element size, and reduced computational cost

compared to other methods. To demonstrate capability and accuracy, regularization is estimated for a

problem about plane wave propagation. As a result, it is found that even at a corner node the most

significant error in the proposed method is due to truncation error of non-singular elements in

discretization, and error from hypersingular elements is negligibly small.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

This paper presents a gradient field representation using an
analytical regularization of a hypersingular boundary integral
equation for a two-dimensional time harmonic wave Helmholtz
equation. This representation is applicable to avoid fictitious
solutions which appear in an external problem such as a
scattering problem. The fictitious solutions are only found at
certain wave numbers which are corresponding to the eigenva-
lues of a related interior problem [1–6]. To avoid the fictitious
solutions, various techniques have been presented thus far. At
present, the most widely used techniques may be the techniques
demonstrated by Burton and Miller [2]. They adopted a coupled
two independent boundary integral equations. One is a conven-
tional boundary integral equation (CBIE), in which the field value
itself at a point on the boundary are shown as the boundary
integral of which kernel includes fundamental solutions. The
other is called a hypersingular boundary integral equation (HBIE)
that derived by taking the normal derivative of the CBIE, in which
the normal derivative or the gradient of the field are represented
by the boundary integral. The integrand of HBIE includes the
second order derivative of the fundamental solution, which has
stronger singularity than that of the CBIE.
ll rights reserved.

: +81 11 706 7128.

mioka),
An important feature of the HBIE integral is that it includes the
second order derivatives of the fundamental solution. In case of
CBIE, the singularity of the kernel is removed by analytical
integral around singular point. However, in case of HBIE, since the
singularity is stronger than that in CBIE, the hypersingular
integral cannot be evaluated without special considerations.
Burton and Miller also proposed the double integral technique
to regularize the hypersingularity. This technique requires more
intensive computational efforts because several computations of
double integration are required. This paper attempts to achieve
regularization without use of the double integral technique.

Previous methods to obtain regularization of hypersingular
integrals for second order partial differential equation are
reviewed by Tanaka et al. [7] and Chen et al. [8], and for the
Helmholtz equation are summarized in literatures elsewhere; e.g.,
by Hwang [9], Yang [10], and Yan et al. [11]. The regularizations
applied in past studies are classified into three approaches.
The first is a use of tangential derivatives on the boundary
[12–14,19,20]. The second approach is a use of the fundamental
solution of the Laplace equation together with that of Helmholtz
equation [2,9–12,16–18,20]. Since the singularity of the funda-
mental solution of Helmholtz equation is same as that of the
Laplace equation, the singularity of the difference of them
becomes weakly singularity. The last scheme is a use of
the difference between the field at an internal point and that on
its corresponding boundary point [9,14–18,20,25,26]; most of
these studies are used together with Taylor series expansion.
The scheme presented in this paper applies these three
schemes. Most of past studies using these techniques are applied
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for three-dimensional problems and some can be applied curved
surfaces; however, almost all of them require a smooth boundary.
Although this paper presents a scheme of regularization only for
two-dimensional problems, it is applicable for problems with
corners.

After the regularizations, the singularity of a hypersingular
integral becomes a weakly singular integral. However, to evaluate
this integral properly some considerations are required to ensure
accuracy; e.g., Meyer [14] and Chien [18] use sub-divided
elements, Terai [15] has presented an analytical integral, and
Yang [10] has used Fourier–Legendre expansions. This paper
presents an analytical representation of hypersingular integral.

The outline of this paper is as follows. In Section 2, the
singularities of CBIE and HBIE are introduced. The regularization
of the singularity of HBIE is presented in Section 3. In Section 4, a
rough estimation of errors in integrals of both hypersingular
elements and regular elements is presented. In Section 5,
numerical results are demonstrated for the D’alembert solution
to show the error of a gradient field on the boundary in the HBIE
representation. Finally, some remarks are shown in Section 6.
2. Representation of gradient field on boundary

A time harmonic scalar wave uðxÞ at a point x satisfies the
following Helmholtz equation:

r
2uðxÞþk2uðxÞ ¼ 0; xAO; ð1Þ

where k indicates the wave number, and O represents the spatial
domain considered. A fundamental solution u�ðx; yÞ in free space
corresponding to this equation satisfies

r
2u�ðx; yÞþk2u�ðx; yÞ ¼�dðx�yÞ; ð2Þ

where the differential operator r operates only on x, but not on y.
Using Green’s second identity and some integral operations, we
can obtain the conventional boundary integral equation (CBIE),

cðyÞuðyÞ ¼

I
G
½u�ðx; yÞðruðxÞÞ � n�uðxÞðru�ðx; yÞÞ � n�dG ð3Þ

where G denotes a boundary surrounding O, x is the position of
the points on the boundary, y is the position of a field point, n is
the outward-pointing normal unit vector, and cðyÞ is the result of
the following evaluation of Dirac’s delta function:

cðyÞuðyÞ9
Z
O

uðxÞdðx�yÞdO¼
Z
O
dðx�yÞdOuðyÞ: ð4Þ

The coefficient cðyÞ depends on both the relative position of field
point y and the shape of boundary G. When y is located inside and
outside the domain, cðyÞ evaluates to 1 and 0, respectively. In the
case where y is located on the boundary, cðyÞ equals to the ratio of
interior angle Dy to a whole angle; e.g., Dy=2p for two-
dimensional problems.

A two-dimensional fundamental solution appearing in Eq. (3)
is written as a function of the distance between the source point
(i.e., integration point x) and the field point y [21],

u�ðx; yÞ ¼
1

4j
Hð2Þ0 ðkrÞ; r¼ jx�yj; ð5Þ

where j denotes an imaginary unit, and the function Hð2Þ0 ðkrÞ is a
second kind 0-th order Hankel function. This solution represents
an outward propagating wave with time factor ejot assumed. The
Hankel function Hð2Þ0 ðkrÞ has a singularity at r¼ 0, with asymptotic
form shown in Eqs. (89)–(91) in Appendix B. In boundary element
methods, the boundary is divided into discrete boundary
elements. The distribution of u and ðruÞ � n on each element is
modeled by means of shape functions, according to a discretiza-
tion scheme such as assignment to constant, linear, or higher
order elements. By locating the field point y at every boundary
node, we can obtain simultaneous equations, and determine
the unknown quantities along the boundaries. When y ap-
proaches x in a boundary element, we should pay
attention because both integrands u� and ðru�Þ � n are singular.
However, their integral does not diverge. In the case of u�

the singularity is only on the order of logr, and this integral
becomes rðlogr�1Þ. Since it approaches 0 as r approaches 0, the
singularity disappears. This kind of singularity is called a weakly
singularity. In the case of the other integrand ðru�Þ � n, there is a
stronger singularity. Introducing a unit vector between x and y as
er9ðx�yÞ=r, we can rewrite the kernel as ðru�Þ � n¼ ð@u�=@rÞer � n.
Since the vector er is perpendicular to the normal vector n near
the singular point y, the inner vector product, er � n, becomes 0;
therefore, the singularity also disappears. Thus, Eq. (3) does not
necessitate inclusion of any singular integrals, and it requires only
attention to ensure the accuracy of integration.

Next, let us consider the gradient of the wave field at the
boundary nodes. Taking the gradient of Eq. (3) with respect to the
field point y, we can obtain the following equation:

ry½cðyÞuðyÞ� ¼
I
G
½ðryu�ðx; yÞÞðruðxÞÞ � n�uðxÞðryru�ðx; yÞÞ � n�dG ;

ð6Þ

where thery means the gradient with respect to y. The respective
gradients of both fundamental solutions, ryu� and ryru�, show
stronger singularities than CBIE representation in Eq. (3). These
singularities cannot be regularized simply because the aforemen-
tioned orthogonality of n and er does not apply to Eq. (6). This
type of singularity is called a hypersingularity, and the equation is
called hypersingular boundary integral equation (HBIE).
3. Regularization of the hypersingular integral related to a
gradient field

3.1. Hypersingular term

Since the quantity cðyÞ in Eq. (4) is not dependent on either the
wave number k or any field distributions, we can evaluate it by a
Laplace equation, which is identical to Eq. (1), in terms of k¼ 0.
Assuming the field is uniform, we can obtain cðyÞ as the
subsequent boundary integral representation [29], which is called
the equi-potential condition:

cðyÞ ¼�
I
G
ru�Lðx; yÞ � n dG ; ð7Þ

where u�L is a fundamental solution of the Laplace equation.
Substituting this relation into Eq. (3), we can reduce to the
following expression:I
G
½q�ðx; yÞuðxÞ�q�Lðx; yÞuðyÞ�u�ðx; yÞqðxÞ�dG ¼ 0; ð8Þ

where q, q�, and q�L are the normal derivatives of u, u�, and u�L ,
respectively. The last term of the integrand has only a weakly
singularity as shown in the previous section. In contrast, both the
first and the second term have stronger singularities. However,
the singularity of sum of them is canceled as follows. Since, the
fundamental solution of u�L can be given as

u�L ¼�
1

2p logr; ð9Þ

the singularity of u�L is same as u�. Therefore, the difference
between the fundamental solutions,

du�9u��u�L ; ð10Þ
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has no singularity with OðlogrÞ even if y¼ x, and it has the highest
order term of Oð1Þ. Thus, the normal derivative of du� has no
singularity, and Eq. (8) is a regular boundary integral equation. In
fact, we can choose the Oð1Þ term of du� so that it will also be
canceled because the constant term in the fundamental solution
can be chosen arbitrarily. In this case we can find that the
significant order of du� around r� 0 becomes Oðr2logrÞ from Eqs.
(89)–(91) in Appendix B. The regularization scheme has been also
used for HBIE regularization in past studies [2,9–12,16–18,20].

Since Eq. (8) is satisfied for any boundary shapes, we can
modify the boundary to exclude the point y as shown in Fig. 1.
This modification is achieved as follows. First, the original
boundary is divided into two types of boundary sections: the
non-singular boundary section, Gn, and the singular one. Next, the
singular boundary section including the singular point y is further
separated into three sections to exclude y: the first is a part of
circle section Ge with infinitesimal radius e, the second is Ga

connecting from one of end points of Ge to the end point of Gn,
and the last is Gb connecting from the other end point of Ge to the
other end point of Gn. The original boundary is redefined with
limiting procedure as

G¼Gn [ lim
e-0
½Ga [ Gb [Ge�: ð11Þ

Taking the gradient with respect to y of Eq. (8), and
considering the integral of q�L disappears by Eq. (7) when the y
is located outside the domain in the configuration, we can
transform the boundary integral equation toI
G
½ðryq�Þu�ðryq�LÞuðyÞ�ðryu�Þq�dG ¼ 0: ð12Þ

In the case where the gradient operator with respect to y is
applied to the functions that depend on only the distance r such as
u� or u�L , the result is represented by the gradient with respect to x
with an opposite sign because the unit vectors of such functions
have an opposite direction to each other.

ryu� ¼�ru� ¼�
@u�

@r
er ; ð13Þ

ryu�L ¼�ru�L ¼�
@u�L
@r

er : ð14Þ

In contrast, the gradients of both q� and q�L are not functions that
depend only on the distance, r, because they also depend on the
vector’s inner product, er � n. However, considering the relations
Fig. 1. Boundary excluding the singular point.
of er ¼ ðx�yÞ=r and ryy � n¼ n, we can obtain the following
expression:

ryq� ¼ �
@2u�

@r2
þ

1

r

@u�

@r

� �
erer � n�

1

r

@u�

@r
n: ð15Þ

Since u� satisfies the following Helmholtz equation expressed in
circular polar coordinates, the second order derivative of u� can be
replaced by the first order derivative and the u� itself:

@2u�

@r2
þ

1

r

@u�

@r
þk2u� ¼ 0: ð16Þ

Thus, we can obtain ryq�; furthermore, putting k¼ 0 into the
result of ryq�, we can also obtain ryq�L as follows:

ryq� ¼ k2u�þ
2

r

@u�

@r

� �
erer � n�

1

r

@u�

@r
n; ð17Þ

ryq�L ¼
2

r

@u�L
@r

erer � n�
1

r

@u�L
@r

n: ð18Þ

The three integrals on the left-hand side in Eq. (12) can be
written as follows:

I19
I
G
ðryq�Þu dG ¼

I
G

k2u�þ
2

r

@u�

@r

� �
erer � n�

1

r

@u�

@r
n

� �
u dG ;

ð19Þ

I29�
I
G
ðryq�LÞuðyÞdG ¼�uðyÞ

I
G

2

r

@u�L
@r

erer � n�
1

r

@u�L
@r

n

� �
dG ;

ð20Þ

I39�
I
G
ðryu�Þq dG ¼

I
G

@u�

@r
erq dG : ð21Þ

The orders of integration kernels in both I1 and I2 are Oðr�2Þ and
that of I3 is Oðr�1Þ for the vicinity around r� 0.

3.2. Integral along the boundary Ga and Gb

We assume a linear shaped boundary element for Ga and Gb in
Eqs. (19)–(21), with nodes located at both ends of each element.
We also consider that the normal derivative q¼ru � n varies
linearly within the element, following a linear element discretiza-
tion scheme, so that q can be represented by the following Taylor
expansion; similar formulations to regularization have been
applied in [15–18,20,22,23]

q¼ru � n� ðru � nÞyþrer � ðrru � nÞy: ð22Þ

Since the order of q is less than that of u, the distribution of u

should be expressed including the second order as follows, to
ensure the accuracy of q being equivalent to that of u:

u� uðyÞþrer � ðruÞyþ
r2

2
er � er � ðrruÞy: ð23Þ

In the case where the integration point x is located on the
linear shaped boundary Ga or Gb, the unit vector er ¼ ðx�yÞ=r is
identical to the unit tangential vector sg, where the suffix g
denotes either a or b (see Fig. 1). Since sg is perpendicular to ng,
the vector erer � n that appeared at the first term on the right-hand
side of Eqs. (19) and (20) vanishes.

The summation of the non-zero integration kernels of
Eqs. (19)–(21) is evaluated using Eqs. (23), (22) and (10), as follows:

�
1

r

@u�

@r
ungþ

1

r

@u�L
@r

uðyÞngþ
@u�

@r
qsg

¼
@u�

@r
ðng � sgÞ � ðruÞy�

1

r

@du�

@r
uðyÞng

þr
@u�

@r
�

1

2
ng
@2u

@t2
g

�����
y

þsg
@2u

@tg@ng

����
y

0
@

1
A; ð24Þ
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where the representation of the first term with vector triple product
is derived from the formula ðng � sgÞ � ðruÞy ¼ ðng � ðruÞyÞsg�
ðsg � ðruÞyÞng. The order of the singularity of each term @u�=@r,
ð1=rÞ@du�=@r, and r@u�=@r is Oðr�1Þ, OðlogrÞ, and Oð1Þ, respectively.
Although the second term on the right-hand side becomes a weakly
singular integrand, the first term is still singular.

This singularity of the first term, can be removed by
considering the summation of the integrals of Ga and Gb. The
factor of the singular term contains the vector product of ng � sg.
They have mutually opposite signs, and their lengths are same;

ng � sg ¼ e3g ¼
�e3; ðg¼ aÞ;

þe3; ðg¼ bÞ;

(
ð25Þ

where e3 is one of the unit vectors in the Cartesian coordinate
system that is perpendicular to the two-dimensional domain
under consideration, as shown in Fig. 1. Using this property, the
singular integral is canceled and the result is easily evaluated:X
g ¼ a;b

Z
Gg

@u�

@r
ðng � sgÞdG� ðruÞg

¼ ½�u�ðLaÞþu�ðLbÞ�e3 � ðruÞy
¼ ½�u�ðLaÞþu�ðLbÞ�ð�e1e2þe2e1Þ � ðruÞy; ð26Þ

where La and Lb represent the size of elements Ga and Gb,
respectively. It should be noted that the computation of the sum
of the integral along the singular elements Ga and Gb is obtained
solely by evaluations of u� at one end of each element, and it
requires no numerical integrations. Moreover, limitations regard-
ing element size or smoothness are not imposed in this
formulation; it is applicable for different sizes of boundary
elements, and also applicable for corners. To simplify notations
in later discussion we introduce an abbreviation of a difference
operator between a function f related to Ga and that related to Gb,
as Diffg:a�b fg

� �
9fa�fb. The coefficients of ðruÞy on the left-hand

side of Eq. (26) are rewritten as the following dyadic tensor:

Ca[b

 !

ðyÞ9�Diff
g:a�b

u�ðLgÞ
� �

ð�e1e2þe2e1Þ ¼

0 Diff
g:a�b

u�ðLgÞ
� �

�Diff
g:a�b

u�ðLgÞ
� �

0

0
B@

1
CA:
ð27Þ

Next, let us consider the second and third terms on the right-
hand side of Eq. (24). The second order derivatives at the third
term can be expressed as a linear combination of u and q at
associated points, which are the singular node y and its adjacent
nodes xg, as shown in Eqs. (81) and (83)–(85) in Appendix A. Also
the second term is expressed by uðyÞ itself. Consequently, the
integrals of terms of Eq. (24) are expressed by u and q but not ru,
so we introduce the following vector definition:

Jgðu; qÞ9�
Z Lg

0

1

r

@du�

@r
dr uðyÞngþ

Z Lg

0
r
@u�

@r
dr �

1

2
ng
@2u

@t2
g

�����
y

þsg
@2u

@tg@ng

����
y

0
@

1
A:
ð28Þ

For the sake of accurate evaluations of both the weakly singular
integral and the regular integral, we can apply the analytical
integral shown in Appendix B.

Thus, the summation of the entire integral along Ga and Gb is
represented as

Ia[b9
X
g ¼ a;b

X3

i ¼ 1

Ii;g ¼ Ca[b

 !

ðyÞ � ðruÞyþ
X
g ¼ a;b

Jgðu; qÞ: ð29Þ

3.3. Integral along the boundary Ge

The integration path Ge can be given by edy where e is an
infinitesimal constant, and y is the azimuthal angle from the
direction e1 in the Cartesian coordinate system. The angle y
varies from yb to ya with the interior angle Dy¼ ya�yb40.
Since er ¼�ne is satisfied throughout the path, each of the
integrals (Eqs. (19)–(21)) along Ge is readily evaluated by applying
a similar procedure to that used in the reduction of Eq. (24). The
terms with non-zero values in the integrals are as follows:

I1;e9lim
e-0

Z ya

yb

@u�

@r

����
e
neðuðyÞ�ene � ðruÞyÞdy; ð30Þ

I2;e9�uðyÞlim
e-0

Z ya

yb

@u�L
@r

����
e
ne dy; ð31Þ

I3;e9�lim
e-0

Z ya

yb

@u�

@r

����
e
nene � ðruÞye

� �
dy: ð32Þ

Since the singularity of @du�=@r is OðrlogrÞ, the coefficient of uðyÞ
vanishes with e-0; therefore, the summation of these integrals
are simplified as

Ie9
X3

i ¼ 1

Ii;e ¼�lim
e-0

e@u�

@r

����
e

� �Z ya

yb

2nene dy � ðruÞy : ð33Þ

Furthermore, Ie is a regularized term because the singularity of
@u�=@r is Oðr�1Þ, and the coefficient of the integral can be
evaluated as

lim
e-0

e@u�

@r

����
e

� �
¼
�1

2p
: ð34Þ

The vector ne and the dyad nene are written in terms of unit
vectors in the Cartesian coordinate system, e1 and e2, as follows:

ne ¼�er ¼�ðcosye1þsinye2Þ; ð35Þ

nene ¼ cos2ye1e1þcosysinyðe1e2þe2e1Þþsin2ye2e2: ð36Þ

Evaluating the definite integral with respect to y using these
equations, we can obtain the following result:

Ie ¼ Diff
g:a�b

yg
2p

	 

1
 !

þDiff
g:a�b

sin2yg
4p

	 

ðe1e1�e2e2Þ

�

þDiff
g:a�b

�cos2yg
4p

	 

ðe1e2þe2e1Þ

�
� ðruÞy9 Ce

 !

ðyÞ � ðruÞy; ð37Þ

where 1
 !

denotes an identical dyadic tensor. The coefficient of 1
 !

is equal to that of CBIE. The coefficient dyad Ce
 !

ðyÞ is same as that
for Laplace equation [22,23] (note these references contain a few
mistakes in representations of the coefficients). Furthermore,
Chen et al. [24] shows similar coefficients called free term, but
their representation is given by two normal derivatives with
different normal directions at a corner.

3.4. Regularized boundary integral equation for gradient field

Using Eqs. (29) and (37), the integral equation of the gradient
given in Eq. (12) is expressed by only the regularized terms as
follows:

C
 !

ðyÞ � ruðyÞ ¼�Jðu; qÞ: ð38Þ

The right-hand side, Jðu; qÞ, is composed of Jgðu;qÞ and Jnðu; qÞ,
where Jgðu;qÞ is the regularized result of the hypersingular
integral shown in Eq. (28) that is not dependent on ru, and
Jnðu; qÞ is the integral along the non-singular boundary elements.
The coefficient dyad C

 !

is the regularized result of hypersingular
integrals associated with ru.

Jðu; qÞ9
X
g ¼ a;b

Jgðu; qÞþ Jnðu; qÞ; ð39Þ
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Jnðu; qÞ9
Z
Gn

fðryq�Þu�ðryq�LÞuðyÞ�ðryu�ÞqgdG; ð40Þ

C
 !

ðyÞ9 Ce
 !

ðyÞþCa[b

 !

ðyÞ

¼

Diff
g:a�b

2ygþsin2yg
4p

	 

Diff
g:a�b

�cos2yg
4p

þu�ðLgÞ

	 


Diff
g:a�b

�cos2yg
4p �u�ðLgÞ

	 

Diff
g:a�b

2yg�sin2yg
4p

	 

0
BBB@

1
CCCA: ð41Þ

When we can assume that the element size Lg is small enough

compared to the wavelength, the C
 !

ðyÞ is a regular matrix as

shown in Appendix C. Therefore, the inverse matrix C�1
 !

ðyÞ can be
defined as Eq. (98). Operating the inverse matrix to Eq. (38), the
following equation is derived:

ruðyÞ ¼�C�1
 !

ðyÞ � Jðu; qÞ: ð42Þ

Since the C�1
 !

ðyÞ depends on only the boundary shape and the
element size, once the quantities u and q are known, the gradient
can be computed by an evaluation of the right-hand side as an
explicit form.

In general problems either one of u or q on the boundary is
given, but not the other. In this case, taking the scalar product of
ngðyÞ and Eq. (42), we can obtain a Fredholm equation of the
second type with respect to q:

qgðyÞ ¼�ngðyÞ � C
�1
 !

ðyÞ � Jðu; qÞ: ð43Þ

Similarly to CBIE, this equation can be solved after constructing a
set of equations obtained by taking y for every boundary node.

Two kinds of error arise in solving such a set derived from
Eq. (43): one is the error from the regularization of the
hypersingular integral equation, and the other is the rounding
error in solving simultaneous equations. In contrast, Eq. (42) only
includes error from the regularization. Since another aim of this
paper is estimation of the error due to the regularization, we will
consider the evaluation of Eq. (42) in later sections.
4. Error estimation

In Section 3 in order to derive the regularized equation of
gradient field, we considered the second order derivatives of u

around the singular point in Eq. (23), and higher order derivatives
were truncated. The error by interpolation using shape functions
in the singular element, which is the error of Eq. (28), results from
these truncated terms. In the integral of non-singular elements
defined in Eq. (40) this error is also included. In this section we
will roughly estimate these errors. We classify the error source
terms as follows:

Jgf@
2
ttug9�

1

2

Z Lg

0
r
@u�

@r
dr
@2u

@t2
g

�����
y

ng; ð44Þ

Jgf@
2
tnug9

Z Lg

0
r
@u�

@r
dr

@2u

@tg@ng

����
y

sg; ð45Þ

Jni
fug9

Z
Gni

ðryq�ÞudG; ð46Þ

Jni
fqg9

Z
Gni

�ðryu�ÞqdG; ð47Þ

where the identifiers g and ni show, the singular element
ðgAfa; bgÞ and the i-th non-singular boundary element, respec-
tively, moreover, the argument in the bracket on the left-hand
side of each equation shows the cause of error, in which @t and @n

are abbreviation of derivative with respect to t and n, respec-
tively.

In order to facilitate estimation of the error we assume that u is
a plane wave, i.e., D’Alembert’s solution, which satisfies the
following equations:

ruþ jku¼ 0: ð48Þ

The amplitude of this solution can be estimated as follows:

jruj ¼ kjuj; j@nuj ¼ kjujjcosfj; j@tuj ¼ kjujjsinfj; ð49Þ

where f is the angle between the wave vector k and the normal
unit vector n. The higher order derivatives satisfy similar
relations.

Although the discussions in this section are only focused on a
plane wave, it should be noted that the application can be
expanded to the case where the field u is expressed as a sum of
plane waves. By considering a plane wave um with wave vector km

that has the same magnitude as other plane waves but different
directions, the amplitude of a gradient of the total field can be
estimated as the following expanded relation:

u¼
XM

m ¼ 1

um; rum ¼�jkmum; jkmj ¼ k;

jruj ¼
XM

m ¼ 1

kmum

�����
�����r

XM
m ¼ 1

jkmj � jumj ¼ k
XM

m ¼ 1

jumjrM kmax
m
jumj: ð50Þ

4.1. Error due to integral including singular point

Both the errors associated with Eqs. (44) and (45) are mainly
affected by the errors of the second order derivatives with the
discretization procedure because the integral can be evaluated
with good accuracy by analytical integral expressed as Eq. (88) in
Appendix B. The errors of the second order derivatives of which
details are shown in Appendix D, depend on the geometries: sizes
of two singular elements that both include the singular point y,
and the interior angle Dy at y. In subsequent discussion, the sizes
of the singular elements are denoted using a parameter a as Lg ¼ L

and Lg0 ¼ aL, where the subscript g is either one of a or b, and g0 is
the other one. In terms of the internal angle we consider two
typical cases; a flat boundary ðDy¼ pÞ, and a corner with right
angle ðDy¼ p=2Þ. The followings are the estimated error of
Jgf@

2
ttug and Jgf@

2
tnug:

jDJgf@
2
ttugj �

ðkLÞ2j1�aj
12p

jsin3fjjkuðyÞj
Dy¼ p and

j1�aj kL

 !
;

ðkLÞ3ð1þa3Þ

48pð1þaÞ
jsin4fjjkuðyÞj

Dy¼ p and

j1�aj5kL

 !
:

8>>>>><
>>>>>:

ð51Þ

jDJgf@
2
ttugj ¼

aðkLÞ2

12p jcos3fjjkuðyÞj ðDy¼ p=2Þ; ð52Þ

jDJgf@
2
tnugj ¼

ðkLÞ2

4p jsin2fcosfjjkuðyÞj
Dy¼ p or

Dy¼ p=2

 !
: ð53Þ

In the case of Lg ¼ Lg0 , by comparing Eqs. (51) and (53), we can find
that the error due to ð@2

tnuÞy is larger than the error due to ð@2
ttuÞy .

Otherwise, the orders of the errors are same, ðkLÞ2.
The error jDJgf@

2
ttugj for the corner shown in Eq. (52) error

decreases by taking smaller a at a glance. However, in the
situation of exchanging g and g0, the error increases because the
factor a is replaced by its reciprocal. Since the total integral given
in Eq. (39) includes a sum of the case of ðg; g0Þ ¼ ða; bÞ and an
exchanged case ðg; g0Þ ¼ ðb; aÞ, the factor of the error should be
estimated as aþ1=a. Thus, when we choose smaller a, the error of
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the total integral will not become smaller. Furthermore, in the
case of a� 1 the error for Dy¼ p=2 (Eq. (52)) is larger than that for
Dy¼ p (Eq. (51)).
4.2. Error due to the non-singular integral

The error due to discretization in integral of non-singular
elements appears as well as the integral of singular elements.
Substituting the quantities ryq�ðx; yÞ and �ryu�ðx; yÞ to Wðx; yÞ,
and substituting uðxÞ and qðxÞ to f ðxÞ, we can reduce to the general
form of the non-singular integral in Eqs. (46) and (47) as follows:

Jni
ff g9

Z xi
00

xi
0

Wðx; yÞf ðxÞdG; ð54Þ

where xi
0 , xi

00 are both ends of the non-singular element Gni
and

y=2Gni
. The function f can be expanded by a shape function zjðxÞ as

follows:

f ðxÞ ¼
X

j

fjzjðxÞþDf ðxÞ; ð55Þ

where Df ðxÞmeans truncated terms in the discretizing procedure.
When we can calculate the first term with good accuracy, the
error due to the non-singular integral is determined by Df ðxÞ at
the second term;

DJni
ff g9

Z xi
00

xi
0

Wðx; yÞDf ðxÞdG: ð56Þ

In the case of linear element, the significant term of Df ðxÞ within
truncated terms is the second order derivative of f,

Df ðxÞ ¼Df ð2ÞðxÞ ¼ 1
2ðx�xiÞ � ðx�xiÞ � ðrrf Þxi

; ð57Þ

where xi ¼
1
2 ðxi
0 þxi

00 Þ. Since u is assumed as D’Alembert’s solution
shown in Eq. (48), the gradient of f, where f is either u or
q¼ru � n, satisfies rf ¼�jkf . Moreover, putting x�xi ¼ lsi, we
can obtain the error as

DJni
ff g ¼

�ðk � siÞ
2f ðxiÞ

2

Z þL=2

�L=2
Wðxiþ lsi; yÞ l

2 dl: ð58Þ

In the case where l5ri (ri shows distance between xi and y), the W
can be considered as a constant vector,

DJni
ff g ��

L3

24
ðk � siÞ

2f ðxiÞWðxi; yÞ: ð59Þ

Since W increases with decreasing ri, the error from the non-
singular element near the singular point y becomes significant.
When we consider the case where ri51=k, the fundamental
solution W, i.e., ryu� or ryq� given by Eqs. (13) and (17) are
reduced approximately as follows:

ryu� ¼�er
@u�

@r
� eri

1

2pri
; ð60Þ

ryq� ¼ k2u�þ
2

r

@u�

@r

� �
ðni � erÞer�

1

r

@u�

@r
ni ��

2eri
ðni � eri

Þ�ni

2pr2
i

¼�
nicos2ciþsisin2ci

2pr2
i

; ð61Þ

where cosci ¼ ni � eri
, sinci ¼ si � eri

. Introducing b as b¼ ri=L and
substituting the above equations and Eq. (49) into Eq. (59), we can
finally estimate the error due to the non-singular integral as
follows:

jDJni
fqgj �

ðkLÞ2jsin2fcosfj
48bp

jkuðxiÞj; ð62Þ
jDJni
fugj �

kLjsin2fj
48b2p

jkuðxiÞj: ð63Þ

These errors become larger for smaller b. Since jDJni
fugj is only

proportional to the first order of kL, it becomes larger than the
error due to the singular integral shown in the previous
subsection.
4.3. Total error of the gradient field

In the above subsections we have shown the estimation of the
error due to the discretization for components of J. The total error

of the gradient field ru is estimated by operating C�1
 !

on the sum
of the errors of the components:

Dfrug9�C�1
 !

� DJ; ð64Þ

DJ9
X
g ¼ a;b

½DJgf@
2
ttugþDJgf@

2
tnug�þ

X
i

½DJni
fugþDJni

fqg�: ð65Þ

Since the component of DJ is generally unknown, we apply the
norm of the inverse matrix to estimate the total error:

jDfruðyÞgj ¼ C�1
 !

DJ

�����
�����r C�1

 !
�����

�����jDJj; ð66Þ

C�1
 !
�����

�����¼ 1

det C
 !

����
����

Dy
2p

����
����þjDiff

g:a�b
u�ðLgÞ
� �

jþ
sinDy

2p

����
����

� �
; ð67Þ

where the estimation of the norm C�1
 !
�����

����� is shown in Appendix C.

The total error is magnified by this norm. Results of some typical
cases are shown in below:

ðDy¼ pÞ C�1
 !
�����

�����r 2ð1þj2Diffg:a�b u�ðLgÞ
� �

jÞ

j1þð2Diffg:a�b u�ðLgÞ
� �

Þ
2
j
;

Dy¼ p
La ¼ Lb

 !
C�1
 !
�����

�����¼ 2;

Dy¼
p
2

� 

C�1
 !
�����

�����r 4pðpþ2þ4pjDiffg:a�b u�ðLgÞ
� �

jÞ

jp2�4þ16p2ðDiffg:a�b u�ðLgÞ
� �

Þ
2
j
;

Dy¼
p
2

La ¼ Lb

0
@

1
A C�1

 !
�����

�����r 4p
p�2

: ð68Þ

In the case of La ¼ Lb, we can find that the norm for Dy¼ p is 2,
while the maximum of the norm for Dy¼ p=2 is almost 11. This
result suggests that the error for a corner with right angle in the
worst case is magnified about 5 times larger than that for smooth
boundary.
5. Numerical result

In order to show the error of hypersingular integral in the
proposed regularization, let us consider the case where true
solution is given in whole domain. We adopt the following plane
wave without scattering as the true solution ~u to compare the
computational error of the hypersingular integral equation with
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Fig. 3. Complex error vector Dek of the even-type configuration ðN ¼ 10Þ: each pair

of figures in a row denotes a set of results for fk ¼ 0, p=6, and p=4, respectively.

The left and right side figures show the real and imaginary part of Dek ,

respectively. To show magnitude of the error vector, the one-tenth scaled true

unit propagation vector ~ek , which is a real number vector, is also depicted at the

center of region in each figure.
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the rough estimation discussed in Section 4;

~uðxÞ ¼ u0e�jk�x; ð69Þ

where u0 is complex amplitude and k is a real wave vector. The
true boundary values at boundary nodes xi consisting of the field
~uðxiÞ and its normal derivatives ~qðxiÞ can be readily obtained.
Substituting these boundary values to uðxiÞ and qðxiÞ on the right-
hand side of Eq. (42), we can evaluate the gradient at the
boundary nodes, ruðxiÞ, as an explicit form. The reference of
gradient at the boundary nodes is derived directly from the true
field in Eq. (69) as r ~uðxiÞ ¼ �jk ~uðxiÞ. The error of the gradient is
defined as the difference of these gradients.

Since both of the results, ru by numerical integral and r ~u by
the reference, are dependent on position, it is difficult to fully
capture the error. However, by normalizing the gradient with
respect to the field itself, the true gradients can be converted to a
position independent quantity. Similarly, the numerical gradient
is normalized by the field as follows:

~ek9
r ~u

�jjkj ~u
¼

k

jkj
; ek9

ru

�jjkj ~u
: ð70Þ

The results shown below are represented in terms of these
normalized differences,

Dek9ek� ~ek : ð71Þ

The aim of this section is to demonstrate the error dependen-
cies with respect to element size, the effect of corners, and the
effect of uneven sized elements. A two-dimensional model to
demonstrate them is shown in Fig. 2. There are two different
configurations of boundary elements and nodes:

Even-type configurations: The nodes are placed with even
interval, i.e., the size of every element is same.

Uneven-type configurations: By appending two additional
nodes to the even-type configuration at the bottom side and
adjacent to the upper-right corner, two original elements are
replaced by four smaller elements, sized half that of original ones.

The size of standard element, L, and the direction, fk, are
changed, but the dimension of the region, D, and the wavelength,
l, are fixed as D¼ 0:8 m, l¼ 0:1 m. Instead of the element size L,
the error dependency of element size is shown by N, representing
the number of elements in a wavelength, i.e., N¼ l=L. Gauss’ 4
points quadrature formula [29,30] is applied to the numerical
integral for non-singular elements. Notably, we also examined use
of 8 points quadrature, but no significant difference was found.
This indicates that the error due to numerical integration is
Fig. 2. Node placements for even-type and uneven-type configurations: the filled

circles show boundary nodes for the even-type configuration. For the uneven-type

configuration, in which the interval of nodes are uneven, two additional nodes

shown by diamond shaped symbols at the bottom side and around upper right

corner are appended. The vector k shows the propagation vector.
sufficiently small compared to the error due to other effects such
as truncations of higher derivatives.

In addition, to avoid ambiguity of the direction of the normal
unit vector n at the corners, we employed a double node
technique with zero distance for the corner nodes [27,28], in
which each corner node has three variables; one field u, and two
normal derivatives for different direction qg and qg0 .
5.1. Error properties for even-type configuration

Fig. 3 shows the difference vector, Dek, with N¼ 10 for the
even-type configuration for different fk. It is found that the error
at a corner is larger than that on the sides, and its magnitude at
such a corner reaches almost 10% of true solutions.

From the result of fk ¼ 0 symmetrical error with respect to the
horizontal axis ðx2 ¼ 0Þ is found. However, symmetry with respect
to the vertical axis ðx1 ¼ 0Þ cannot be found. It may appear
counterintuitive; however, it is not a wrong result. The reason for
these results is the difference of the nature between the terms
ðryu�Þq and ðryq�Þu in the integrand in Eq. (40). The symmetrical
nature of the ryu� and ryq� can be evaluate by Eqs. (13) and (17).
In the case where the symmetrical axis is the horizontal
axis ðx2 ¼ 0Þ, each the ðryu�Þ � e1, ðryq�Þ � e1, u and q has
even symmetry, and each of the ðryu�Þ � e2, ðryq�Þ � e2 has odd
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Fig. 4. Error dependencies on element size for the even-type configuration: each

figure in the left-hand side column shows the error at the center node of each side

of the boundary. Figures in the right-hand side depict the error around corners. The

difference among rows is the direction of the propagation vector, k. The positions of

the nodes to evaluate the error and the direction of k are depicted as a subfigure in

the top right of each figure. Positions at the center of each side and at each corner

are fixed but the nodes next to the corners are varying with change of N.
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symmetry. Therefore, the above-mentioned difference in Eq. (40),
ðryu�Þq�ðryq�Þu, which is the integrand of J, has even and odd
symmetry for horizontal and vertical component, respectively. In
contrast, in the case where the symmetrical axis is the vertical
axis ðx1 ¼ 0Þ, although the gradients have similar natures, the
natures of u and q have neither even or odd symmetry; u at
symmetrical point is equal to the complex conjugate of u at the
original point, and in terms of q we have the complex conjugate
with opposite sign. Thus, there is no symmetry with respect to the
vertical axis. In the case where fk ¼ p=4, shown in the bottom
two graphs in Fig. 3, a symmetry with respect to the line of x1 ¼ x2

is observed. This is caused by the symmetry of all the quantities of
u, q, ryu�, and ryq�.

Fig. 4 shows error dependencies of element size. It is found that
the error decreases with increasing N, which is equivalent to
decrease of the size of element L. For almost all of the results the
dependency of N obeys a 1=N law, which agrees with the discussions
in Section 4. The significant error is the error due to the non-singular

integral DJni
fug shown in Eq. (63). Some exceptions are found in

cases where the field node is located around the center of the left-

side or right-side for fk ¼ 0, in which the dependency shows 1=N2.
In these cases, the error due to the truncation of higher order
derivatives in the representation of field on the left- or right-hand
side of the boundary disappears, because the wave front of the
propagation wave is parallel to each side, over which both the u and

q are uniform. Therefore, the error DJni
fug from non-singular far

element on top- or bottom side, ðri44lÞ, becomes significant. Since
the error in Eq. (63) is a consequence of the assumption of

l5ri51=k, we cannot use the estimation. However, it can be
estimated directly by substituting the second of Eq. (61) into
Eq. (59). In the case where ni � eri
� 0, it is jDJni

fugj ¼ ððkLÞ2

jsin2fj=24bÞjuðxiÞ@u�=@rj, which is proportional to 1=N2.
We can also draw some conclusions of the errors around

corners from the result shown at the right-hand side column of
Fig. 4. For the case of sufficiently fine element resolution (e.g.,
N¼ 100) the errors at the corner nodes are larger than that at
adjacent nodes, for which distance from the corner is L. It depends

on the fk. In the case of fk ¼ 0 their ratio is almost 4, and in the

case of fk ¼ p=4 they are almost same. This result agrees with the
discussion in Section 4.3; i.e., the error at the corner that is

induced from the norm C�1
 !
�����

����� grows almost 5 times larger than

that on flat boundary in the worst case. The reason why the errors

are almost equals in the case of fk ¼ p=4 can be also explained by

previous analysis in terms of symmetry. The growth factor C�1
 !

,

and the maximum norm of C�1
 !

is evaluated by the right-hand side

of Eq. (99) in Appendix C. If the error vector DJ multiplied to C�1
 !

is
known, the error growth can be estimated precisely using Eq.

(98). The significant error at every corner is DJni
fug as discussed

above, which magnitude and direction are shown in Eqs. (63) and
(61), respectively. There are two dominant elements within this
error source: namely the two non-singular elements adjoining to
two singular elements, where the normal vectors point in
different directions. Estimating sum of them for two corners
(upper-right and upper-left), we can find that both the absolute
magnitudes of error are same but the directions of the error
vectors are different each other. The vector component satisfies,

respectively, DJ � e1 ¼DJ � e2 and DJ � e1 ¼�DJ � e2 for the upper-
right corner and for the upper-left corner. Using these relations

the norm of C�1
 !

can be evaluated. The norms at both corners for

fk ¼ p=4 become

C�1
 !
�����

�����¼
C�1
 !

�D J

�����
�����

D J
�� �� ¼

4p
pþ2

� 2:4: ð72Þ

This result is almost equal to the norm for Dy¼ p, which is equal
to 2 as shown in Eq. (68).

5.2. Error properties for the uneven-type configuration

Fig. 5 shows the effect in the case where smaller sized
elements are included. Although the uneven-type configuration
uses smaller sized elements, the growth of error is found from a
comparison of the zoomed graphs around the replaced elements.
The growth is not limited to only this example. The detail results
are not shown here, but we have obtained that the amplitude
each error obeys 1=N as similar to the case of even-type
configuration shown in Fig. 4. It means that the significant error
is DJni

fug shown in Eq. (63) even in the case of uneven-type
configuration. The error at the additional node on the bottom side
is almost twice as large as neighboring ones. Although the
element size of the singular element is reduced by appending a
new node, the size of the non-singular element L is not changed.
However, since b appeared in the denominator in the equation is
proportional to the distance between the center of the element
and the singular node, the b does become smaller by appending
the new node. It means b¼ 3

2 for the even-type configuration, and
b¼ 1 for the uneven-type configuration. Thus, the error from the
non-singular element which connects to the singular elements
increases by appending the new node. From Eq. (63), the growth
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Fig. 5. Comparison of error vectors in the even-type configuration (a), and the

uneven-type configuration (b): the graph at top left side of each figure shows the

error in whole region, while those at top right side and at bottom are zoomed

vectors in the vicinity of the circled area in the figure of whole region. In the

zoomed figures of uneven-type (b) the additional nodes are marked by diamond

shaped symbols. All results are of N¼ 10, fk ¼ 0.
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Fig. 6. Error reduction around corners: (N ¼ 10, f¼ p=6) (a) Even sized elements: sizes

elements connected to the corner node is replaced by four elements with a quarter size

these is replaced by two elements of half size. (c) Fine resolution into 16 elements: eac

elements of quarter size.
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of DJni
fug by appending the new node is estimated as 9

4 times
larger than the even-type configuration.

The error near a corner is similar to the case where the
additional node is located on the bottom side. The error at the
additional nodes has larger error than that at the adjacent node
located opposite to the corner node. At the corner node a little
improvement is gained. The dominant error at the corner is
caused by the DJni

fug from horizontal side as discussed in the
previous subsection. Since the element with the most significant
error is the one adjacent to the additional node that is opposite to
the corner, the element size becomes half of the size of the
original element and b is same as the original configuration. Thus,
the error from this element decreases. Note that the error is not
reduced to exactly half, since the error from the other elements is
not reduced.

From the above discussion we can conclude that when the
configuration contains uneven sized elements even if their sizes
are finer than the other even sized elements, it may still result in
larger error around them.
5.3. Error reduction around the corner

As discussed above, the errors at corners are generally larger
than at other nodes. Furthermore, replacement of an element
around corner to several smaller sized elements induces a larger
error in the areas around the corners. However, it does afford a
little improvement exactly on the corner nodes. To reduce the
error at the corner nodes, we evaluated two configurations. One is
a gradual size-variation configuration. In this configuration, the
element adjacent to the corner node on either side is replaced by
four smaller elements with a quarter size of the original element;
moreover, the next consecutive element following this replaced
element is also replaced two half-sized elements. In the other
configuration the two elements adjacent to the corner node are
replaced by eight quarter-sized elements on each side, i.e., the
number of new fine elements is sixteen. Both of these results are
shown in Fig. 6, together with the result of the original even-type
configuration. The results of both new configurations
demonstrate the error reduction at the corner. However, the
errors at the additional nodes are relatively larger than the errors
on the side near the corner. The growth of the error on the side in
the case of gradual size varying is smaller than that of the
replacement by eight quarter-sized elements on each side. These
results agree with the results discussed in the above subsections.
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of all elements are equal. (b) Gradual element size variation: each of two original

of the original element, respectively; moreover, each of the elements adjacent to

h of two original elements connected to the corner are, respectively, replaced by 8
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6. Conclusion

This paper shows the regularization of the hypersingular term
that appears in the gradient representation of a boundary integral
equation for a two-dimensional Helmholtz equation. Since this
regularization is achieved by an analytical approach and it does
not use the double integral technique [2], a computational cost
may be significantly reduced. Moreover, this regularization is
applicable even if the nodes include corner locations or if the size
of elements is non-uniform. This paper also shows that the error
from this regularization in terms of linear elements is estimated
roughly by separation into the error from the singular elements
and that from non-singular elements. The computational result
from evaluated examples demonstrates that the calculated errors
are in agreement with the roughly estimated error. The error
caused by the hypersingular element regularized in the proposed
method is negligibly small in comparison to the non-singular
element. The dominant non-singular error decreases with in-
creasing of the number of elements, N, such that the total error is
proportional to 1=N. When some nodes are modified by
appendage of evenly sized boundary elements, the properties of
the error vary according to the location of the appended nodes. In
the case where the additional node is located on a flat boundary,
in which the size of two adjacent boundary elements to the node
are different, the error increases in spite of the reduced boundary
size. In the case where the additional node is located in the
vicinity of a corner, the error at the corner decreases, but
the error at adjacent nodes along a flat boundary increases.
In order to reduce the error effectively by the regularization
technique proposed in this paper, it is recommended to use even
sized elements for flat boundaries, and for corner areas to employ
a configuration of gradual variation of element sizes.
Appendix A. Representation of the second order derivative of
the field at the singular point

The purpose of this appendix is to reformulate the two second
order derivatives in Eq. (28) as the linear combination of u and q

at the singular point y or at adjacent nodes. The two variables that

should be represented finally are ð@2u=@tgngjÞy and ð@2u=@t2
g jÞy

where g is a or b and the unit vectors ng; sg are shown in Fig. 1. Let

us label g0 which expresses associated quantities with the
opposite side of the boundary Gg to y. Notice that ðg; g0Þ can be

taken as either pair ða;bÞ, or ðb; aÞ; however, their identification is
not important because no quantities dependent on the difference
between them are found in the following formulation.

We assume the second derivative of u is defined at a point x
located on each boundary element, and derivatives of third or
higher orders are negligibly small. Accordingly, the Taylor
expansion around y can be given as follows.

uðxÞ � uðyÞþðx�yÞ � ðruÞyþ
1
2ðx�yÞ � ðx�yÞ � ðrruÞy: ð73Þ

Since the quantity q has been already applied to the differential
operator, the Taylor expansion is represented up to the first order:

qgðxÞ � qgðyÞþðx�yÞ � ðrqgÞy; ð74Þ

where qg ¼ru � ng.
The relation between the pairs of unit vectors ðsg;ngÞ and

ðsg0 ;ng0 Þ are represented by the internal angle Dy at the singular
point y. The following inner products are corresponding to the
components of the coordinate transform matrix:

Tt0t9sg0 � sg ¼ cosDy; Tt0n9sg0 � ng ¼�sinDy;

Tn0t9ng0 � sg ¼�sinDy; Tn0n9ng0 � ng ¼�cosDy: ð75Þ
The derivative operators can be transformed by the coordinate
transform matrix between ðtg;ngÞ system and ðtg0 ;ng0 Þ given by the
following derivative operators:

@t0

@n0

 !
¼

Tt0t Tt0n

Tn0t Tn0n

 !
@t
@n

 !
¼

Tt0 j@j

Tn0j@j

 !
; ð76Þ

where the notation of @a is an abbreviation of @=@a. Moreover, the
summation symbol with respect to j for t;n is omitted in the final
notation.

The position vectors xg and xg0 are expressed by the unit
tangential vectors sg of Gg, as well as the vectors sg0 of Gg0 ,

xg�y¼ Lgsg; xg0�y¼ Lg0sg0 ; ð77Þ

where Lg and Lg0 denote the size of Gg and Gg0 , respectively.
The result of expansion of uðxgÞ can be written simply as

uðxgÞ � uðyÞþLgð@tuÞyþ
L2
g

2
ð@2
ttuÞy: ð78Þ

The second derivative at the last term is the variable to be solved,
while both uðxgÞ and uðyÞ are the variables in the final expression
of a linear combination.

In the case of uðxg0 Þ the derivative operator is replaced
by the transform matrix in Eq. (76), and then the expansion is
written as

uðxg0 Þ � uðyÞþLg0 ð@t0uÞyþ
L2
g0

2
ð@2
t0t0uÞy ¼ uðyÞþLg0 ðTt0tð@tuÞy

þTt0nð@nuÞyÞþ
L2
g0

2
ðT2

t0tð@
2
ttuÞyþ2Tt0tTt0nð@

2
tnuÞyþT2

t0nð@
2
nnuÞyÞ:

ð79Þ

In this equation the variable ð@nuÞy is identical to qgðyÞ,

ð@nuÞy ¼ qgðyÞ: ð80Þ

Taking a tangential derivative of this equation, we obtain the
other second derivative ð@2

tnuÞy that is one of the variable to be
represented finally,

ð@2
tnuÞy ¼

@2u

@tgng

����
y

¼
@qg
@tg

����
y

�
qgðxgÞ�qgðyÞ

Lg
: ð81Þ

The relation between the quantities ð@2
nnuÞy and ð@2

ttuÞy can be
given by a Helmholtz equation, because the sum of these
quantities equals the Laplacian,

ð@2
nnuÞyþð@

2
ttuÞyþk2uðyÞ ¼ 0: ð82Þ

Eliminating the derivatives except ð@2
ttuÞy from five indepen-

dent equations (78)–(82), we can represent the ð@2
ttuÞy using a

linear combination form

ð@2
ttuÞy ¼

@2u

@t2
g

�����
y

¼
X

i

Wfi
g fi; ð83Þ

where fi denotes one of the quantities u and qg at y, xg and xg0 ,

fiAfuðyÞ;uðxgÞ;uðxg0 Þ; qgðyÞ; qgðxgÞg; ð84Þ

and, each factor for fi is obtained as follows:

W
uðxgÞ
g

WuðyÞ
g

W
uðxg0 Þ
g

W
qgðxgÞ
g

W
qgðyÞ
g

0
BBBBBBBBB@

1
CCCCCCCCCA
¼

1

D

�2Lg0cosDy

þ2Lg0cosDy�2Lg 1�
ðkLg0 Þ

2

2
sin2Dy

 !

þ2Lg

þL2
g0sin2Dy

�L2
g0sin2Dyþ2LgLg0sinDy

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

D¼ LgLg0 ðLg0cos2Dy�LgcosDyÞ: ð85Þ
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These factors depend on the quantity Dy as well as the sizes of
elements.
Appendix B. Analytical representation of integrals appeared
in the singular element

The purpose of this appendix is to show the analytical
representation of the two integrals in Eq. (28). A numerical
integral is obtainable because these integrals are regular or
weakly singular. However, analytical representation is useful to
improve the accuracy and to understand the nature of the
integrals.

The second integral in Eq. (28) is transformed to the following
relation by partial integration:Z Lg

0
r
@u�

@r
dr¼ ½ru��r ¼ Lg�

Z Lg

0
u� dr ¼

Lg
4j

Hð2Þ0 ðkLgÞ�
1

4j

Z Lg

0
Hð2Þ0 ðkrÞ dr;

ð86Þ

where the second term has a weakly singularity. This integration
is given by Struve function, HnðxÞ [30],Z x

0
Hð2Þ0 ðxÞdx¼ xHð2Þ0 ðxÞþ

px

2
ðH0ðxÞH

ð2Þ
1 ðxÞ�H1ðxÞH

ð2Þ
0 ðxÞÞ: ð87Þ

Since the first term of the integral of Eq. (86) and the first term of
Eq. (87) are canceled, the integral of Eq. (86) is reduced toZ Lg

0
r
@u�

@r
dr¼

jpLg
8
ðH0ðkLgÞH

ð2Þ
1 ðkLgÞ�H1ðkLgÞH

ð2Þ
0 ðkLgÞÞ: ð88Þ

The integer order of the Hankel function, Hð2Þn ðxÞ, and the Struve
function, HnðxÞ, are given by the following infinite series:

Hð2Þn ðxÞ ¼ JnðxÞ�jYnðxÞ; ð89Þ

JnðxÞ ¼
x

2

� 
n X1
m ¼ 0

anm
x

2

� 
2m

; ð90Þ

YnðxÞ ¼
�1

p
Xn�1

m ¼ 0

ðn�m�1Þ!

m!

x

2

� 
2m�n

þ
2

p log
x

2
JnðxÞ

�
1

p
X1

m ¼ 0

ðcmþ1þcnþmþ1Þanm
x

2

� 
2mþn

; ð91Þ

anm ¼
ð�1Þm

m!ðnþmÞ!
; cmþ1 ¼�gþ

Xm

l ¼ 1

1

l
; ð92Þ

HnðxÞ ¼
x

2

� 
nþ1 X1
m ¼ 0

ð�1Þm

Gðmþ 3
2ÞGðnþmþ 3

2Þ

x

2

� 
2m

; ð93Þ

where g is the Euler constant, and G represents the Gamma
function. In the case of kLg51 the infinite series converges
rapidly. The integral around kLg � 0 can be approximated asZ Lg

0
r
@u�

@r
dr�

�Lg
2p ; ðkLg � 0Þ: ð94Þ

Similarly, the other integral in Eq. (28) that is a weakly singular
integral can be represented without any singularity using Eqs.
(89)–(92),Z Lg

0

1

r

@du�

@r
dr¼

Z Lg

0

1

r

�k

4j
Hð2Þ1 ðkrÞ�

�1

2pr

� �
dr

¼
�k

4j

X1
m ¼ 0

a1m

2mþ1

kLg
2

� �2mþ1

� 1þ
j

p cmþ1þcmþ2þ
1

mþ 1
2

�2log
kLg
2

 ! !
: ð95Þ
Appendix C. Inverse matrix of the coefficient matrix

To ensure the existence of an inverse matrix of C
 !

the

determinant of C

 !

must not be 0. The evaluation of the
determinant is shown in this appendix. Both the differences

Diffg:a�b sin2yg
� �

and Diffg:a�b cos2yg
� �

in the definition of C
 !

(Eq. (41)) are reduced to the following relation:

Diff
g:a�b

sin2yg
� �

Diff
g:a�b

cos2yg
� �

0
B@

1
CA¼ 2sinDy

cos2y0

�sin2y0

 !
; y0 ¼

yaþyb

2
: ð96Þ

Using this relation the determinant of C
 !

is represented as

det C
 !

¼
1

4p2
ððDyÞ2�sin2DyÞþ Diff

g:a�b
u�ðLgÞ
� �� �2

¼
1

4p2
ððDyÞ2�sin2DyÞþ R Diff

g:a�b
u�ðLgÞ
� �� �� �2

� I Diff
g:a�b

u�ðLgÞ
� �� �� �2

( )

þ2jR Diff
g:a�b

u�ðLgÞ
� �� �

I Diff
g:a�b

u�ðLgÞ
� �� �

: ð97Þ

The first and second terms on the right-hand side are real
numbers. In contrast, the last term is a pure imaginary number. In
order to satisfy the condition that the determinant is not equal to
0, either the real or the imaginary part must have a non-zero
value. The first term is always positive. The second term depends
on Lg. In general, the element size is chosen as a size sufficiently

small compared to the wave length, i.e., Lg51=k. In this case the

fundamental solution u�ðLgÞ has a larger real part than its

imaginary part; therefore, the second term has also a positive
real number. Since the real part of the determinant given by the
sum of the first term and the second term is a positive number,
hence the determinant has a non-zero value and we can conclude

that C
 !

has an inverse matrix in the case Lg51=k.

The inverse matrix C�1
 !

can be readily obtained from Eqs. (41)
and (96) as follows:

C�1
 !

¼
1

det C
 !

Dy
2p �Diff

g:a�b
u�ðLgÞ
� �

þDiff
g:a�b

u�ðLgÞ
� � Dy

2p

0
BBB@

1
CCCA

2
6664

þ
sinDy

2p
�cos2y0 �sin2y0

�sin2y0 þcos2y0

 !#
: ð98Þ

Since the second matrix in the square bracket is an orthogonal
matrix, the second order norm becomes unity. Taking a maximum
norm for the first matrix, we can obtain the following relation:

C�1
 !
�����

�����r 1

det C
 !

����
����
jDyjþjsinDyj

2p
þ Diff

g:a�b
u�ðLgÞ
� �����

����
� �

: ð99Þ

Appendix D. Error due to truncated terms of the singular
element

D.1. In the case of the node on flat boundary

Since the second order derivatives of u in Eqs. (44) and (45) are
represented using the quantities u and q at the singular node y, as
well as adjacent nodes, xg and xg0 , as shown in Appendix A, the
third or higher derivatives cause error of truncation. To estimate
the error due to the truncation we must estimate the third
derivative. However, since there is a case where the third
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derivative vanishes under a certain condition, we also consider
the fourth derivative.

In the case of a flat boundary ðDy¼ pÞ, the factors of coordinate
transform matrix in Eq. (76) are given by Eq. (75) as follows:

Tt0t ¼�1; Tn0n ¼ þ1; Tt0n ¼ Tn0t ¼ 0: ð100Þ

From these factors the fourth order of the Taylor expansions at the
nodes, xg and xg0 , around the singular node, y, are obtained as
follows:

uðxgÞ � uðyÞþLð@tuÞyþ
L2

2
ð@2
ttuÞyþ

L3

6
ð@3
tttuÞyþ

L4

24
ð@4
ttttuÞy; ð101Þ

uðxg0 Þ � uðyÞ�aLð@tuÞyþ
ðaLÞ2

2
ð@2
ttuÞy�

ðaLÞ3

6
ð@3

tttuÞyþ
ðaLÞ4

24
ð@4
ttttuÞy;

ð102Þ

where sizes of elements are set as Lg ¼ L and Lg0 ¼ aL. Eliminating
ð@tuÞy and rearranging with respect to ð@2

ttuÞy , we can obtain the
following representation of ð@2

ttuÞy .

ð@2
ttuÞy �

2ðauðxgÞ�ð1þaÞuðyÞþuðxg0 ÞÞ

að1þaÞL2
þDð3Þ

@2
ttu
þDð4Þ

@2
ttu
; ð103Þ

Dð3Þ
@2
ttu

9�
Lð1�aÞ

3
ð@3
tttuÞy ; ð104Þ

Dð4Þ
@2
ttu

9�
L2ð1þa3Þ

12ð1þaÞ
ð@4
ttttuÞy; ð105Þ

where the variable shown as DðnÞf represents the truncated term
for some function f associated with n-th order of derivative. In the
case of a¼ 1, the error due to the third derivative vanishes and the
fourth one becomes dominant.

In contrast, the derivative of q is simpler because it can be
given by only the Taylor expansion at uðxgÞ. The Taylor expansion
of q using third derivative of u, which is equivalent to the second
derivative of q, is given as

qgðxgÞ � qgðyÞþLð@tqgÞyþ
L2

2
ð@2
ttqgÞy; ð106Þ

where qg ¼ru � ng. Rearranging about ð@tqgÞy , we can estimate the
error of truncation of qg as follows:

ð@tqgÞy �
qgðxgÞ�qgðyÞ

L
þDð3Þ

@2
tnu

ð107Þ

Dð3Þ
@2
tnu

9�
L

2
ð@2
ttqgÞy ¼�

L

2
ð@3
ttnuÞy: ð108Þ

D.2. In the case of the node at a corner with a right angle

This case ðDy¼ p=2Þ is simple because the third derivative of u

is not canceled. Since the factors of geometry are given as

Tt0t ¼ Tn0n ¼ 0; Tt0n ¼ Tn0t ¼�1; ð109Þ

the Taylor expansion of u at xg0 is given as follows:

uðxg0 Þ � uðyÞ�aLð@nuÞyþ
ðaLÞ2

2
ð@2

nnuÞy�
ðaLÞ3

6
ð@3

nnnuÞy: ð110Þ

The normal derivative ð@nuÞy at the second term is identical to
qgðyÞ, and also ð@2

nnuÞy at the third term can be represented by
ð@2
ttuÞy using Eq. (82). Consequently, ð@2

ttuÞy is reduced as follows:

ð@2
ttuÞy �

2 1�
ðkaLÞ2

2

 !
uðyÞ�uðxg0 Þ�aLqgðyÞ

 !

ðaLÞ2
þDð3Þ

@2
ttu

ð111Þ

ð@2
ttuÞy �Dð3Þ

@2
ttu

9�
ðaLÞ

3
ð@3

nnnuÞy: ð112Þ
In terms of the tangential derivative of qg we can derive the same
relation to that in the case of the flat boundary shown in Eq. (107).
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