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a b s t r a c t

Theory of complex variables is a very powerful mathematical technique for solving two-dimensional
problems satisfying the Laplace equation. On the basis of the conventional Cauchy integral formula, the
conventional complex variable boundary integral equation (CVBIE) can be constructed. The limitation is
that the conventional CVBIE is only suitable for holomorphic (analytic) functions, however. To solve for a
complex-valued harmonic-function pair without satisfying the Cauchy–Riemann equations, we propose
a new boundary element method (BEM) based on the general Cauchy integral formula. The general
Cauchy integral formula is derived by using the Borel–Pompeiu formula. The difference between the
present CVBIE and the conventional CVBIE is that the former one has two boundary integrals instead of
only one boundary integral in the latter one. When the unknown field is a holomorphic function, the
present CVBIE can be reduced to the conventional CVBIE. Therefore, the conventional Cauchy integral
formula can be viewed as a special case applicable to a holomorphic function. To examine the present
CVBIE, we consider several torsion problems in this paper since the two shear stress fields satisfy the
Laplace equation but do not satisfy the Cauchy–Riemann equations. Using the present CVBIE, we can
directly solve the stress fields and the torsional rigidity simultaneously. Finally, several examples,
including a circular bar containing an eccentric inclusion (with dissimilar materials) or hole, a circular
bar, elliptical bar, equilateral triangular bar, rectangular bar, asteroid bar and circular bar with keyway,
were demonstrated to check the validity of the present method.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

For many engineering problems, their physical phenomena can be
described by certain mathematical models such as the Laplace,
Helmholtz, biharmonic or biHelmholtz equation, etc. For instance,
steady-state heat conduction problems [1], electrostatic potential [2],
torsion problems [3], and potential flow problems [4] satisfy the
Laplace equation; membrane vibration [5], water wave problems [6],
acoustics [7], electromagnetic radiation [8] and seismology [9] are
simulated by the Helmholtz equation; while Stokes's flow [10] and
plate vibration [11] are governed by the biharmonic and biHelmholtz
equations, respectively. To simulate their physical behavior, we must
solve the corresponding mathematical models. For this reason,
researchers and engineers paid more attention to develop various
kinds of numerical methods such as the finite difference method

(FDM), the finite difference method (FEM), the boundary element
method (BEM), meshless methods, etc.

Although the FEM is one of the most popular methods, it costs
time on constructing the geometry model and needs to generate
meshes over the whole domain. In recent years, the BEM is an
alternative approach to solve engineering problems. It is more
efficient than the FEM since it is a mesh reduction method and
only boundary discretization is required. From the viewpoint of
mesh generation, the BEM [12,13] is a well-developed numerical
approach for solving engineering problems with general geome-
tries. It results in errors of geometric discretization and boundary
contour integrals due to the fully populated influence matrix.

Regarding the above literatures, researchers paid more attention on
the BIE and BEM in the real-variable space. The complex analysis is a
very powerful mathematical technique for solving engineering pro-
blems [14]. Accordingly, Muskhelishvili [15] developed a theorem of
conventional CVBIE to solve engineering problems. The conventional
CVBEM [16–18] is based on the conventional Cauchy integral formula,
residue theorem and Cauchy–Riemann equations in the complex
analysis. For examples, applications to torsion problems [19], elasticity
[20] plate problems [21], corner and crack problems [22] can be found.
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By taking the derivative for the conventional Cauchy integral formula,
the Hadamard integral formula can be obtained. In this way, Chen and
Chen [23] proposed the dual CVBEM to solve two-dimensional
potential problems containing a degenerate boundary. It is more
efficient for solving two-dimensional potential problems and plane
elasticity than using the real-variables boundary element method
(RVBEM) since a complex-valued function of one complex variable
contains two parts. Therefore, there is a binocular view for solving an
engineering problem by using the CVBEM. From the view point of
mathematics, the CVBEM can deal with two field solutions for the
same problem at the same time. Besides, these two field solutions are
orthogonal to each other. From the view point of physics, the real part
stands the potential function and the imaginary part is the stream
functions for the two-dimensional potential problems.

Nevertheless, it still has a limitation. The conventional CVBEM
based on the conventional Cauchy integral formula is only suitable
for the holomorphic (analytic) functions. When the two unknown
real-valued harmonic fields for the same problem are not the
Cauchy–Riemann equation pair, the conventional one cannot be
used to solve any complex-valued harmonic functions such as two
shear stress fields in Saint-Venant's torsion problem. There are two
ways that the two shear stress fields can be determined at once by
using the conventional CVBEM. One is that Di Paola et al. [24]
transformed the two shear stress fields to satisfy the Cauchy–
Riemann equations by adding some terms and employed the line
element-less method to solve it. Later, Barone and Pirrotta [25]
used the complex polynomial method proposed by Hromadka and
Guymon [26] to solve the same problem. Besides, Pirrotta [27]
recently considered the shear problems in terms of a complex
potential function through line integrals. Barone and Pirrotta [28]
solved the problems of the same type by using the conventional
CVBEM. Therefore, the conventional CVBEM can be employed to
solve the two shear stress fields and the torsional rigidity at once.
However, the corresponding complex-valued function is still a
holomorphic function. The other way is to propose a general
singular complex variable boundary integral equation (CVBIE) that
is suitable for all complex-valued harmonic functions for two
dimensional problems. This is the main focus of the present paper.

In this paper, we propose a general CVBEM that can be utilized
to solve any complex-valued harmonic function for the two
dimensional problems. We recall the Borel–Pompeiu formula
[29], which is valid for essentially arbitrary complex-valued func-
tions, and a general Cauchy integral formula for complex-valued
harmonic functions [30]. On the basis of these formulae, we
formulate the general singular CVBIE. Not only holomorphic
functions but also complex-valued harmonic functions satisfy the
general one. Thus, the corresponding general CVBEM can be
developed. In this way, the general CVBEM can be employed to
deal with two real-valued harmonic functions (one complex-
valued harmonic function) that do not satisfy the Cauchy–Rie-
mann equations. To check the validity of the proposed CVBEM, the
two shear stress fields and the torsional rigidity of Saint-Venant's
torsion problems are considered.

2. Problem statement

Let us agree with the convention: Latin indices i; j; k¼ 1;2;3:
For a homogeneous, isotropic, linearly elastic body CDℝ3; the
governing equations may be expressed as, for ðx1; x2; x3ÞAC;

σij ¼ Gðui;jþuj;iÞþλuk;kδij; ð1Þ

σij;jþbi ¼ 0; ð2Þ

where G is the shear modulus, λ is one of Lamé's constants and bi is
the xi-component of the body force. These are a coupled system of 9

first-order partial differential equations in terms of 9 unknown func-
tions, uiðx1; x2; x3Þ and σijðx1; x2; x3Þ: For Saint-Venant's (pure) torsion
problem containing an inclusion as shown in Fig. 1, a prismatic shaft is
subjected to end torques M and the geometry of the shaft is C ¼Ω�
I; ðΩDℝ2; IDℝÞ: The displacements are

u1 ¼ �αx3x2; ð3Þ

u2 ¼ αx3x1; ð4Þ

u3 ¼wðx1; x2Þ; ð5Þ
and the stresses are

σij ¼
0 0 τ1
0 0 τ2
τ1 τ2 0

2
64

3
75; ð6Þ

where α is the twist angle per unit length of the bar and wðx1; x2Þ is
the warping function. Equation (1) reduces to

τ1 ¼ Gðw;1�αx2Þ; ð7Þ

τ2 ¼ Gðw;2þαx1Þ: ð8Þ
Then, Equation (2) reduces to

∂τ1
∂x1

þ∂τ2
∂x2

¼ 0: ð9Þ

The compatibility equation for the stress fields are

�∂τ2
∂x1

þ∂τ1
∂x2

¼ �2Gα ð10Þ

The process of ð∂ð9Þ=∂x2Þ�ð∂ð10Þ=∂x1Þ gives
τ2;jj ¼ 0: ð11Þ

Similarly, the result of ð∂ð10Þ=∂x2Þþð∂ð9Þ=∂x1Þ is
τ1;jj ¼ 0: ð12Þ

According to Eqs. (11) and (12), it is found that the two shear
stress fields τ2 and τ1 are real-valued harmonic functions. In this
paper, we intend to investigate the two shear stress fields directly
by formulating a general Cauchy integral formula for the complex-
valued harmonic function

f ðzÞ ¼ τ2þ iτ1 ¼
τm2 þ iτm1 ; zAΩ0;

τi2þ iτi1; zAΩ1;

(
ð13Þ

where

z¼ x1þ ix2; ð14Þ
the superscripts “m” and “i” denote the matrix and inclusion,
respectively, and Ω 0 and Ω 1 stand for the domain of the cross
section for the matrix and inclusion, respectively. However, it
should be noted that the above complex-valued function does not
satisfy the Cauchy–Riemann equations since the right hand side of
the compatibility equation in Eq. (10) is not equal to zero. Note
that f ðzÞ is a complex-valued harmonic function, rather than a
holomorphic function. That is to say, τ2 and τ1 satisfy only one of

Fig. 1. The cross-section of a torsion bar containing an inclusion.

J.-W. Lee et al. / Engineering Analysis with Boundary Elements 54 (2015) 86–96 87



the Cauchy–Riemann pair. The set of complex-valued harmonic
functions includes the set of holomorphic functions and their
relationship is shown in Fig. 2. For this reason, the conventional
CVBIE based on the conventional Cauchy integral formula is not
suitable for solving a complex-valued harmonic function. In this
paper, we propose a general Cauchy integral formula that can be
employed to solve all complex-valued harmonic functions. Since
no external forces act on the lateral surface of the bar, we have the
traction free boundary condition as given below

ðτm1 ; τm2 Þ � ðnm
1 ;n

m
2 Þ ¼ τm1 n

m
1 þτm2 n

m
2 ¼ 0; zA∂Ω0; ð15Þ

where nm
1 and nm

2 are the horizontal and vertical components of
the unit outward normal vector along the outer boundary ∂Ω0,
respectively. The static equivalence condition for the torque M is
defined as

M¼∬Ωð�x2τ1þx1τ2Þdx1 dx2; zAΩ; ð16Þ
where Ω stands for the all domain of the cross section. Besides, we
can obtain the second boundary condition in terms of the complex
function f ðzÞ from Eqs. (10) and (11) as shown below

∂f ðzÞ
∂z

¼ Gα; zAΩ: ð17Þ

The interface condition for the ideal boundary between the
matrix and the inclusion, we have the continuity condition of the
warping function

wm ¼wi; zA∂Ω1; ð18Þ
and the equilibrium condition for the normal traction

ðτm1 ; τm2 Þ � ðnm
1 ;n

m
2 Þþðτi1; τi2Þ � ðni

1;n
i
2Þ ¼ 0; zA∂Ω1; ð19Þ

where ðnm
1 ;n

m
2 Þ ¼ �ðni

1;n
i
2Þ:

3. Derivation of the general Cauchy integral formula

In this section, we derive the general Cauchy integral formula
in terms of boundary integrals starting from the Borel–Pompeiu
formula [29]. First, we revisit the Borel–Pompeiu formula. The
Gauss theorem for the two-dimensional case isZ
Ω
∇ � ðu; vÞdA¼

Z
∂Ω
ðu; vÞ � n dS; ð20Þ

where ∇ is the gradient operator, n is the unit outward normal
vector field along the boundary, and u and v are real-valued
functions. In complex analysis, from the above equation we can
obtain the complex-valued form of the Gauss theorem,Z
Ω

∂wðsÞ
∂s

ds1 ds2 ¼
1
2i

Z
∂Ω
wðsÞds; ð21Þ

and its conjugate formZ
Ω

∂wðsÞ
∂s

ds1 ds2 ¼ � 1
2i

Z
∂Ω
wðsÞds; ð22Þ

where s¼ s1þ is2 and wðsÞ ¼ uðsÞþ ivðsÞ is a complex-valued func-
tion. Substituting wðsÞ ¼ ðf ðsÞ=s�zÞ into Eq. (21), we have the
Borel–Pompeiu formula for zAℂ\Ω,

0¼ 1
2i

Z
∂Ω

f ðsÞ
s�z

ds�
Z
Ω

1
s�z

∂f ðsÞ
∂s

ds1 ds2: ð23Þ

Then substituting ð∂f ðsÞ=∂sÞln j s�zj 2 for wðsÞ in Eq. (22), we
have

�
Z
Ω

1
s�z

∂f ðsÞ
∂s

ds1 ds2 ¼
1
2i

Z
∂Ω

∂f ðsÞ
∂s

ln s�zj j2dsþ
Z
Ω

∂2f ðsÞ
∂s∂s

ln s�zj j2ds1 ds2;

ð24Þ
where f ðsÞAC1ðΩÞ \ C2ðΩÞ: Substituting Eq. (24) into Eq. (23), we
have

0¼ 1
2i

Z
∂Ω

f ðsÞ
s�z

dsþ 1
2i

Z
∂Ω

∂f ðsÞ
∂s

ln s�zj j2 dsþ
Z
Ω

∂2f ðsÞ
∂s∂s

ln s�zj j2ds1 ds2:

ð25Þ
If f ðsÞ satisfies the two-dimensional Laplace equation

ð∂2f ðsÞ=∂s∂sÞ ¼ 0; i.e., f ðsÞ is a complex-valued harmonic function,
the area integral in Eq. (25) vanishes. Therefore, we have

0¼ 1
2i

Z
∂Ω

f ðsÞ
s�z

dsþ 1
2i

Z
∂Ω

∂f ðsÞ
∂s

ln s�zj j2 ds: ð26Þ

When zAΩ, a singular point exists in the domain Ω in Eq. (26).
To deal with this problem to obtain the general Cauchy integral
formula in terms of boundary integrals for zAΩ, we need to
employ the limiting process. In this way, we obtain

f ðzÞ ¼ 1
2πi

Z
∂Ω

f ðsÞ
s�z

dsþ 1
2πi

Z
∂Ω

∂f ðsÞ
∂s

ln s�zj j2 ds; zAΩ: ð27Þ

If the field point z is outside the domain (zAℂ\Ω), we can also
obtain the general Cauchy integral formula for the null field point
from Eq. (27) as follows:

0¼ 1
2πi

Z
∂Ω

f ðsÞ
s�z

dsþ 1
2πi

Z
∂Ω

∂f ðsÞ
∂s

ln s�zj j2 ds; zAℂ\Ω: ð28Þ

If the field point z is located on the boundary ðzA∂ΩÞ, Eq. (28)
yields the singularity since z¼ s may occur. Therefore, we also
need to employ the limiting process and introduce the concept of
Cauchy principal value. Then, we have,

α

2π
f ðzÞ ¼ 1

2πi
C:P:V :

Z
∂Ω

f ðsÞ
s�z

dsþ 1
2πi

Z
∂Ω

∂f ðsÞ
∂s

ln s�zj j2 ds; zA∂Ω;

ð29Þ
where α is the solid angle and the C:P:V : stands for the Cauchy
principal value. Summarizing Eqs. (27)–(29), we have

cðzÞf ðzÞ ¼ 1
2πi

Z ðzÞ

∂Ω

f ðsÞ
s�z

dsþ 1
2πi

Z
∂Ω

∂f ðsÞ
∂s

ln s�zj j2 ds; ð30Þ

where

cðzÞ ¼
1; zAΩ;
α
2π; zA∂Ω;

0; zAℂ\Ω;

8><
>: ð31Þ

and

Z ðzÞ

∂Ω
¼

R
∂Ω; zAΩ;

C:P:V :
R
∂Ω; zA∂Ω;R

∂Ω; zAℂ\Ω:

8><
>: ð32Þ

Eq. (30) is the so-called general Cauchy integral formula in
terms of boundary integral. Note that all of complex-valued
harmonic functions satisfy Eq. (30). If the complex-valued function
f ðzÞ is a holomorphic function (ð∂f ðzÞ=∂zÞ ¼ 0), the general Cauchy
integral formula can be reduced to the conventional Cauchy
integral formula. Therefore, the conventional Cauchy integral

Holomorphic 

functions

Complex-valued

harmonic functions 

Fig. 2. The sketch of relation between the set of holomorphic functions and
complex-valued harmonic functions.
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formula can be viewed as a special case applicable to a holo-
morphic function. Besides, when we employ the general Cauchy
integral formula to solve a complex-valued harmonic function, this
formula can be known as the general complex variable boundary
integral equation (CVBIE).

4. Application of general Cauchy integral formula for a torsion
bar containing an inclusion

According to the concept of domain decomposition, the torsion
problem containing an inclusion in Fig. 1 can be decomposed into
two subdomains as shown in Fig. 3(a) and (b). One is the part of
the matrix and the other is the part of the inclusion. For the first
part as shown in Fig. 3(a), we have two following CVBIEs for the
collocation point on the boundary ∂Ω0 or ∂Ω1,

α

2π
f m0 ðzÞ ¼

C:P:V :
2πi

Z
∂Ω0

∂ ln s�zj j2
∂s

f m0 ðsÞdsþ
1
2πi

Z
∂Ω1

∂ ln s�zj j2
∂s

f m1 ðsÞds

þ 1
2πi

Z
∂Ω0

ln s�zj j2∂f
m
0 ðsÞ
∂s

dsþ 1
2πi

Z
∂Ω1

ln s�zj j2∂f
m
1 ðsÞ
∂s

ds;

zA∂Ω0; ð33Þ

α

2π
f m1 ðzÞ ¼

1
2πi

Z
∂Ω0

∂ ln s�zj j2
∂s

f m0 ðsÞdsþ
C:P:V :
2πi

Z
∂Ω1

∂ ln s�zj j2
∂s

f m1 ðsÞds

þ 1
2πi

Z
∂Ω0

ln s�zj j2∂f
m
0 ðsÞ
∂s

dsþ 1
2πi

Z
∂Ω1

ln s�zj j2∂f
m
1 ðsÞ
∂s

ds; zA∂Ω1;

ð34Þ

where f m0 ðU Þ and f m1 ðU Þ stand for the two shear stresses along ∂Ω0

and ∂Ω1 of the matrix, respectively. Similarly for the second part as
shown in Fig. 3(b), we also have the CVBIE for the collocation point
on the boundary ∂Ω1,

α

2π
f i1ðzÞ ¼

C:P:V :
2πi

Z
∂Ω1

∂ ln s�zj j2
∂s

f i1ðsÞdsþ
1
2πi

Z
∂Ω1

ln s�zj j2∂f
i
1ðsÞ
∂s

ds; zA∂Ω1;

ð35Þ

where f i1ðUÞ stands for the two shear stresses along ∂Ω1 of the
inclusion.

5. Discretization of the complex variable boundary integral
equations and matching of boundary conditions

In this section, we employ the constant element scheme to
discretize the CVBIEs of Eqs. (33)–(35) in the following:

1
2 fm0
� �¼ ~T

m
00

h i
fm0

� �þ Tm
01

� �
fm1

� �þ Um
00

� �
gm
0

� �þ Um
01

� �
gm
1

� �
; ð36Þ

1
2 fm1
� �¼ Tm

10

� �
fm0

� �þ ~T
m
11

h i
fm1

� �þ Um
10

� �
gm
0

� �þ Um
11

� �
gm
1

� �
; ð37Þ

1
2 f i1
n o

¼ ~T
i
11

h i
f i1

n o
þ Ui

11

h i
gi
1

n o
: ð38Þ

Note that the Cauchy principal value needs to be considered for
the diagonal elements in the influence matrices ~T

m
00

h i
, ~T

m
11

h i
and

~T
i
11

h i
. After arrangement for Eqs. (36)–(38), we have

Tm
00

� �
fm0

� �þ Tm
01

� �
fm1

� �þ Um
00

� �
gm
0

� �þ Um
01

� �
gm
1

� �¼ 0f gN0�1; ð39Þ

Tm
10

� �
fm0

� �þ Tm
11

� �
fm1

� �þ Um
10

� �
gm
0

� �þ Um
11

� �
gm
1

� �¼ 0f gN1�1; ð40Þ

Ti
11

h i
f i1

n o
þ Ui

11

h i
gi
1

n o
¼ 0f gN1�1; ð41Þ

where

fm0
� �¼ f m0l

� �
N0�1; fm1

� �¼ f m1l
� �

N1�1; f i1
n o

¼ f i1l
n o

N1�1
ð42Þ

gm
0

� �¼ gm0l
� �

N0�1; gm
1

� �¼ gm1l
� �

N1�1; gi
1

n o
¼ gi1l
n o

N1�1
ð43Þ

Trv½ � ¼ Tjl
rv

h i
; Urv½ � ¼ Ujl

rv

h i
; ð44Þ

where N0 and N1 are the number of elements on boundaries ∂Ω0

and ∂Ω1, respectively. The subscript r in Trv½ � stands for the index
the rth boundary where the collocation point is located and the
subscript v in Urv½ � stands for the index of the vth boundary where
the path of boundary integral is considered. Each element in
influence matrices Tjl

rv

h i
and Ujl

rv

h i
is determined by

Tjl
rv ¼

1
2πiC:P:V :

R
∂Ωl

1
sl � zj

dsl�1
2¼ 0; ðr¼ vÞ \ ðj¼ lÞ;

1
2πi

R
∂Ωl

1
sl � zj

dsl ¼ 1
2πi lnðsl�zjÞ

��sl ¼ sRl
sl ¼ sL

l
; ðravÞ [ ðja lÞ;

8><
>: ð45Þ

Ujl
rv ¼

1
2πi

Z
∂Ωl

ln sl�zj
�� ��2 dsl ¼ e� iθl

πi

Z
∂Ωl

ln sl�zj
�� ��dtðslÞ; ð46Þ

where sLl and sRl are the coordinates of the starting and ending
points for the lth element, respectively, θl and dtðslÞ are the
azimuth and the path integral of the lth element, respectively, and

gm0l ¼
∂f m0 ðsÞ
∂s

����
s ¼ sl

¼ G0α; ð47Þ

gm1l ¼
∂f m1 ðsÞ
∂s

����
s ¼ sl

¼ G0α; ð48Þ

gi1l ¼
∂f i1ðsÞ
∂s

�����
s ¼ sl

¼ G1α: ð49Þ

After substituting the boundary condition in Eqs. (47)–(49) to
Eqs. (39)–(41), we have

Tm
00

� �
fm0

� �þ Tm
01

� �
fm1

� �þG0α pm
0

� �¼ 0f gN0�1; ð50Þ

Tm
10

� �
fm0

� �þ Tm
11

� �
fm1

� �þG0α pm
1

� �¼ 0f gN1�1; ð51Þ

Ti
11

h i
f i1

n o
þG1α pi

1

n o
¼ 0f gN1�1; ð52Þ

where

Fig. 3. Each cross-section of a torsion bar containing an inclusion. (a) Matrix and
(b) Inclusion
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pm
0

� �¼ Um
00

� �
l

� �þ Um
01

� �
l

� �
; ð53Þ

pm
1

� �¼ Um
10

� �
l

� �þ Um
11

� �
l

� �
; ð54Þ

pi
1

n o
¼ Ui

11

h i
l

� �
: ð55Þ

To satisfy the traction free condition on the boundary ∂Ω0, we
can assume

f m0 ðzÞ ¼ nm
0 ðzÞβm0 ðzÞ; nm

0 ðzÞ ¼ nm
01� inm

02; zA∂Ω0; ð56Þ
where ðnm

01;n
m
02Þ is the unit outward normal vector along the

boundary ∂Ω0 and

βm0 ðzÞ ¼ ðτm01; τm02Þ � ðnm
01;n

m
02Þ; zA∂Ω0; ð57Þ

is the tangential traction along the boundary ∂Ω0. In this way, the
traction free boundary condition on the boundary ∂Ω0 is auto-
matically satisfied. Also using the constant element scheme to
discretize Eq. (56), we have

fm0
� �¼ nm

0

� �
βm0

� �
; ð58Þ

where

βm0
� �¼ βm0l

� �
; l¼ 1;2;…;N0; ð59Þ

nm
0

� �¼ nm
0jl

h i
N0�N0

; ð60Þ

where nm
0jl

h i
is a diagonal matrix as given below

nm
0jl ¼

nm
0 ðzjÞ; j¼ l;

0; ja l:

(
ð61Þ

Similarly, we have

f m1 ðzÞ ¼ nm
1 ðzÞβm1 ðzÞþ inm

1 ðzÞτmn ðzÞ; zA∂Ω1; ð62Þ

f i1ðzÞ ¼ ni
1ðzÞβi1ðzÞþ ini

1ðzÞτinðzÞ; zA∂Ω1; ð63Þ
where

nm
1 ðzÞ ¼ �ni

1ðzÞ; zA∂Ω1; ð64Þ
τmn ðzÞ and τinðzÞ are the normal tractions along the boundary ∂Ω1 in
the domains of ∂Ω0 and ∂Ω1: After using the constant element
scheme to discretize Eqs. (62) and (63), we have

fm1
� �¼ nm

1

� �
βm1

� �þ i nm
1

� �
τmn

� �
; ð65Þ

f i1
n o

¼ ni
1

h i
βi1

n o
þ i ni

1

h i
τin

n o
; ð66Þ

where

βm1
� �¼ βm1l

� �
; τmn

� �¼ τmnl
� �

; βi1
n o

¼ βi1l

n o
; τin

n o
¼ τinl

n o
; l¼ 1;2;…;N1;

ð67Þ

nm
1

� �¼ � ni
1

h i
¼ nm

1jl

h i
N1�N1

; ð68Þ

where nm
1 jl

h i
is a diagonal matrix as given below

nm
1jl ¼

nm
1 ðzjÞ; j¼ l;

0; ja l:

(
ð69Þ

Substituting Eqs. (58) and (65) to Eqs. (50) and (51), we have

Tm
00n

m
0

� �
βm0

� �þ Tm
01n

m
1

� �
βm1

� �þ i Tm
01n

m
1

� �
τmn

� �þG0α pm
0

� �¼ 0f gN0�1;

ð70Þ

Tm
10n

m
0

� �
βm0

� �þ Tm
11n

m
1

� �
βm1

� �þ i Tm
11n

m
1

� �
τmn

� �þG0α pm
1

� �¼ 0f gN1�1:

ð71Þ
Similarly, substituting Eq. (66) in Eq. (52), we have

Ti
11n

i
1

h i
βi1

n o
þ i Ti

11n
i
1

h i
τin

n o
þG1α pi

1

n o
¼ 0f gN1�1: ð72Þ

According to the continuity condition of the warping function
and the equilibrium condition for the normal traction, we have

G1

G0
βm1 ðzÞþβi1ðzÞ ¼ 0; zA∂Ω1; ð73Þ

τmn ðzÞþτinðzÞ ¼ 0; zA∂Ω1: ð74Þ
After discretizing Eqs. (73) and (74) by employing the constant

element scheme, we have

G1

G0
I½ � βm1
� �þ I½ �A βi1

n o
¼ 0f gN1�1; ð75Þ

I½ � τmn
� �þ I½ �A τin

n o
¼ 0f gN1�1: ð76Þ

Since the distributions of the elements along the boundary ∂Ω 1

in the matrix and the inclusion are counterclockwise and clock-
wise, respectively, I½ � and I½ �A stand for the identity matrix and the
anti-identity matrix.

Furthermore, to easily calculate the static equivalence condition,
we transform it into the form of contour integrals as shown below

M¼
Z
∂Ω0

Fβm0 ðzÞdtðzÞþ
Z
∂Ω1

Fβm1 ðzÞdtðzÞþ
Z
∂Ω1

Fβi1ðzÞdtðzÞ

�G0αIp0 �G1αIp1 ; ð77Þ

where

F ¼ 1
2 zz; ð78Þ

Ip 0 and Ip1 are the polar moments of inertia of the areas Ω0 and Ω1,
respectively. Also, we employ the constant element scheme to
discretize the static equivalence condition in Eq. (77) and we have

qm
0

� �T βm0
� �þ qm

1

� �T βm1
� �þ qi

1

n oT
βi1

n o
�G0αIp0 �G1αIp1 ¼M;

ð79Þ
where

qm
0

� �¼ qm0j
n o

1�N0

; qm
1

� �¼ qm1j
n o

1�N1

; qi
1

n o
¼ qi1j
n o

1�N1

; ð80Þ

in which

qj ¼
1
2

Z
∂Ωj

zz dtðzjÞ: ð81Þ

Furthermore, to ensure the warping function to be single-
valued, we have the three external constraint equationsZ
∂Ω0

βm0 ðzÞdtðzÞ�2G0αA0 ¼ 0; ð82Þ

Z
∂Ω1

βm1 ðzÞdtðzÞ�2G0αA1 ¼ 0; ð83Þ

Z
∂Ω1

βi1ðzÞdtðzÞ�2G1αA1 ¼ 0; ð84Þ

where A0 and A1 stand for the areas of the matrix and inclusion,
respectively. After discretization Eqs. (82)–(84), we have

lm0
� �T βm0

� ��2G0αA0 ¼ 0; ð85Þ

lm1
� �T βm1

� ��2G0αA1 ¼ 0; ð86Þ

li1
n oT

βi1
n o

�2G1αA1 ¼ 0; ð87Þ

where

lm0
� �¼ lm1l

� �
; lm1

� �¼ lm1l
� �

; li1
n o

¼ li1l
n o

; ð88Þ

where l is the length of the element.
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Then we have the following linear algebraic equation by
combining Eqs. (70)–(72), (75), (76), (79), (85)–(87):

A½ � xf g ¼ b
� �

; ð89Þ

where

A½ � ¼

Tm
00n

m
0

� �
Tm
01n

m
1

� �
i Tm

01n
m
1

� �
0 0 G0 pm

0

� �
Tm
10n

m
0

� �
Tm
11n

m
1

� �
i Tm

11n
m
1

� �
0 0 G0 pm

1

� �
0 0 0 Ti

11n
i
1

h i
i Ti

11n
i
1

h i
G1 pi

1

� �
0 G1

G0
I½ � 0 I½ �A 0 0

0 0 I½ � 0 I½ �A 0

qm
0

� �T qm
1

� �T 0 qi
1

� �T
0 �G0Ip0 �G1Ip1

lm0
� �T

0 0 0 0 �2G0A0

0 lm1
� �T

0 0 0 �2G0A1

0 0 0 li1
n oT

0 �2G1A1

2
66666666666666666666664

3
77777777777777777777775

; ð90Þ

xf g ¼

βm0
βm1
τmn
βi1
τin
α

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
; ð91Þ

and

b
� �¼

0
0
0
0
0
M

0
0
0

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

: ð92Þ

To ensure the influence matrix in Eq. (89) to be of full rank, we
update it to be

~A
h i

xf g ¼ ~b
n o

; ð93Þ

where

~b
n o

¼

0
0
0
0
0
0
0
0
M

0
0
0

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

: ð95Þ

Note that all elements of the influence matrix in Eq. (94) are
real-valued. Since the influence matrice is over-determined, we
employed the pseudoinverse matrix method to evaluate its inverse
matrix. Regarding the present approach for solving the torsion
problems, the torsional rigidity, D; can be straightforward obtained
as expressed below

D¼M
α
: ð96Þ

Without loss of generality, we set the torque M to be 1 in the
real implementation.

6. Numerical examples and discussions

In this paper, we consider three situations of the torsion
problem to demonstrate the validity of the present approach.
The first one is the case of inclusion, the second one is a hollow
case and the final one is a solid case.

6.1. A circular bar containing an eccentric inclusion

First, a circular torsion bar containing an eccentric inclusion is
considered as shown in Fig. 4(a). The radii of the outer circular and
inner circular are a0 ¼ 1 and a1 ¼ 0:3, respectively. The eccentric
distance is e1 ¼ 0:6. The dimensionless ratios of the torsional
rigidity versus different ratio of G1/G0 are shown in Table 1.
Besides, the exact solutions derived by Muskhelishvili [14], semi-
analytical solutions obtained from Chen and Lee [31], and the

~A
h i

¼

Re Tm
00n

m
0

� �
Re Tm

01n
m
1

� �
Re iTm

01n
m
1

� �
0 0 Re G0 pm

0

� �� �
Im Tm

00n
m
0

� �
Im Tm

01n
m
1

� �
Im iTm

01n
m
1

� �
0 0 Im G0 pm

0

� �� �
Re Tm

10n
m
0

� �
Re Tm

11n
m
1

� �
Re iTm

11n
m
1

� �
0 0 Re G0 pm

1

� �� �
Im Tm

10n
m
0

� �
Im Tm

11n
m
1

� �
Im iTm

11n
m
1

� �
0 0 Im G0 pm

1

� �� �
0 0 0 Re Ti

11n
i
1

h i
Re iTi

11n
i
1

h i
Re G1 pi

1

� �� �
0 0 0 Im Ti

11n
i
1

h i
Im iTi

11n
i
1

h i
Im G1 pi

1

� �� �
0 G1

G0
I½ � 0 I½ �A 0 0

0 0 I½ � 0 I½ �A 0

qm
0

� �T qm
1

� �T 0 qi
1

� �T
0 �G0Ip0 �G1Ip1

lm0
� �T

0 0 0 0 �2G0A0

0 lm1
� �T

0 0 0 �2G0A1

0 0 0 li1
n oT

0 �2G1A1

2
66666666666666666666666666666664

3
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;
ð94Þ
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numerical results calculated by Tang [32] are also listed in Table 1.
After comparing with those results in the literature, the present
results are acceptable.

6.2. A circular bar containing an eccentric hole

For the second case, a circular bar containing an eccentric hole
is considered as shown in Fig. 4(b). This case can be seen as a
special case by setting G1 ¼ 0 in the first case. In this way, Eq. (87)
can be reduced to

Re Tm
00n

m
0

� �
Re Tm

01n
m
1

� �
Re G0 pm

0

� �� �
Im Tm

00n
m
0

� �
Im Tm

01n
m
1

� �
Im G0 pm

0

� �� �
Re Tm

10n
m
0

� �
Re Tm

11n
m
1

� �
Re G0 pm

1

� �� �
Im Tm

10n
m
0

� �
Im Tm

11n
m
1

� �
Im G0 pm

1

� �� �
qm
0

� �T qm
1

� �T �G0Ip0

lm0
� �T

0 �2G0A0

0 lm1
� �T �2G0A1

2
666666666666664

3
777777777777775

βm0
βm1
α

8><
>:

9>=
>;¼

0
0
0
0
M

0
0

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð97Þ

The dimensionless ratios of the torsional rigidity versus differ-
ent case are shown in Table 2. The present results are compared
with the exact solutions derived by Muskhelishvili [14] and semi-
analytical solutions obtained from Chen et al. [33]. After compar-
ison, the present results are acceptable.

6.3. A solid torsion bar

In this case, six kinds of solid torsion bars are considered. The
sketches of cross sections are depicted in Fig. 5. On the basis of the
present CVBIE, we have

Re Tm
00n

m
0

� �
Re G0 pm

0

� �� �
Im Tm

00n
m
0

� �
Im G0 pm

0

� �� �
qm
0

� �T �G0Ip0

lm0
� �T �2G0A0

2
666664

3
777775

βm0
α

( )
¼

0
0
M

0

8>>><
>>>:

9>>>=
>>>;
: ð98Þ

Fig. 4. The cross-section of a circular bar containing an eccentric inclusion or
a hole. (a) The case of an inclusion and (b) Eccentric case

Table 1
Torsional rigidity for a circular bar containing an eccentric inclusion.

G1
G0

2D=πG0a40

Present Chen and Lee [31] Muskhelishvili [14] Tang [32]

0 0.83520 (1.40%) 0.82370 0.82370 0.82377
0.2 0.89898 (0.81%) 0.89180 0.89180 0.89181
0.6 0.96874 (0.62%) 0.96246 0.96246 0.96246
1.0 1.00659 (0.66%) 1.00000 1.00000 1.00000
5.0 1.11797 (0.90%) 1.10800 1.10800 1.10794

20.0 1.27250 (1.62%) 1.25224 1.25224 1.25181

Table 2
Torsional rigidity for a circular bar containing an eccentric hole.

e0
a0 �a1 2D=πG0a40

Present Chen et al. [33] Muskhelishvili [14]

0.20 0.98237 0.97872 0.97872
0.40 0.95524 0.95137 0.95137
0.60 0.90736 0.90312 0.90312
0.80 0.82935 0.82473 0.82473
0.90 0.76612 0.76168 0.76168
0.92 0.74879 0.74455 0.74454
0.94 0.72835 0.72451 0.72446
0.96 0.70285 0.69991 0.69968
0.98 0.66711 0.66705 0.66555

a ab

h

a

b

a b a

Fig. 5. Geometry of the cross-section. (a) Circle, (b) Ellipse, (c) Equilateral triangle,
(d) Rectangle, (e) Astroid and (f) Circular cross section with a keyway

Table 3
Torsional rigidity of a circular bar versus the number of elements.

a¼ 1 Present CVBEM Analytical solution Relative error (%)

N¼10 1.58189 1.57080 0.706
N¼20 1.62912 3.713
N¼30 1.62123 3.211
N¼40 1.61288 2.679
N¼50 1.60649 2.272
N¼100 1.59063 1.263
N¼150 1.58445 0.869
N¼200 1.58120 0.662
N¼250 1.57920 0.535
N¼300 1.57784 0.448
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For the circular case with a radius (a¼ 1) as shown in Fig. 5(a),
numerical results for the torsional rigidity versus the number of
elements are listed in Table 3. Also, the convergence curve is plotted

in Fig. 6(a). However, the rate of convergence is not fast. After
comparing with the analytical solution, the numerical results obtained
by the present CVBEM are acceptable. In the conventional boundary
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Fig. 6. Sketches of the torsional rigidity versus the number of elements. (a) Circular bar, (b) Elliptical bar (c) Equilateral triangular bar (d) Rectangular bar (e) Bar with astroid
cross-section and (f) Circular cross section with a keyway
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integral formulations, only the normal derivative is required and the
tangent derivative is not. While the differential term in the present
CVBIE contains both normal and tangent derivatives along the
boundary. In our real implementation, the constant element scheme
is employed. The rate of convergence is not fast due to need of more
constant elements to simulate the tangent derivative. This can explain

why lower number of element cannot yield good results. Nevertheless,
the present CVBIE still has its benefits for solving the torsion problems.
Not only the torsional rigidity but also the stress fields can be
straightforward obtained. The stress flow of a circular bar subjected
to a torque is plotted in Fig. 7(a). For the other cases as shown in
Fig. 5(b)–(f), the torsional rigidities versus the number of elements are
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Fig. 7. Vector field of the two shear stress fields. (a) Circular bar, (b) Elliptical bar, (c) Equilateral triangular bar, (d) Rectangular bar, (e) Bar with astroid cross-section, and (f)
Circular cross section with a keyway
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given in Tables 3–8. For these five cases, our numerical results are also
acceptable after comparing with those in literature [34–36]. Also
the figures of the convergence curve are plotted in Fig. 6(b)–(f) and
Fig. 7(b)–(f) showing the vector field of the stress flow.

7. Conclusions

In this paper, we have successfully proposed a new complex
variable boundary integral equation (CVBIE) based on the general
Cauchy integral formula to solve the Saint-Venant's torsion pro-
blems in stress variables. The general Cauchy integral formula has
been derived from the Borel–Pompeiu formula. Different from the
conventional CVBIE based on the Cauchy integral formula, the
present one not only can solve for holomorphic (analytic) func-
tions but also for complex-valued harmonic functions. The main
character of the present method is that we can directly solve the
two shear stress fields at the same time. By using the present
approach for solving the Saint-Venant's torsion problems, two
benefits can be gained. The stress fields and the torsional rigidity
can be directly determined without any numerical differentiation
and integration again, respectively. Also, the torsional rigidity can
be obtained at once. From the above view point, the present CVBIE
is more general and convenient than the conventional one when
solving the Saint-Venant's torsion problems.
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Table 4
Torsional rigidity of an elliptical bar versus the number of elements.

a¼ 2; b¼ 1 Present CVBEM Analytical solution Relative error (%)

N¼10 5.36838 5.02655 6.800
N¼20 5.31295 5.698
N¼30 5.24362 4.319
N¼40 5.19911 3.433
N¼50 5.16925 2.839
N¼100 5.10251 1.511
N¼150 5.07821 1.028
N¼200 5.06567 0.778
N¼250 5.05803 0.626
N¼300 5.05288 0.524
N¼350 5.04918 0.450

Table 5
Torsional rigidity of an equilateral triangular bar versus the number of elements.

h¼ 3 Present CVBEM Analytical solution Relative error (%)

N¼3 10.43335 3.11769 234.650
N¼6 13.60130 336.262
N¼9 8.57845 175.154
N¼12 6.35489 103.833
N¼15 5.20880 67.072
N¼30 3.63319 16.535
N¼60 3.25438 4.384
N¼90 3.18463 2.147
N¼120 3.15925 1.333
N¼150 3.14690 0.937
N¼180 3.13981 0.710
N¼210 3.13531 0.565
N¼240 3.13223 0.466
N¼270 3.13001 0.395
N¼300 3.12834 0.341

Table 6
Torsional rigidity of a rectangular bar versus the number of elements.

a¼ 2; b¼ 1 Present CVBEM [34] Relative error (%)

N¼4 0.875 0.458 91.032
N¼8 1.022 123.088
N¼12 0.870 89.974
N¼16 0.782 70.667
N¼20 0.719 57.006
N¼40 0.580 26.727
N¼80 0.512 11.682
N¼120 0.490 7.093
N¼160 0.481 4.959
N¼200 0.475 3.748
N¼240 0.472 2.978
N¼280 0.469 2.448
N¼320 0.467 2.064

Table 7
Torsional rigidity of a bar with astroid cross-section versus the number of elements.

a¼ 1; m¼ 4 Present CVBEM CPM [35] Relative error (%)

N¼12 0.87235 0.19209 354.136
N¼24 0.40443 0.15965 153.325
N¼50 0.24658 0.15960 54.502
N¼75 0.21438 0.15960 34.326
N¼100 0.19934 0.15960 24.899
N¼150 0.18492 0.15960 15.863
N¼200 0.17831 0.15960 11.721
N¼250 0.17436 0.15960 9.248
N¼300 0.17182 0.15960 7.660
N¼350 0.17001 N.A. N.A.

Table 8
Torsional rigidity of a circular bar with a keyway versus the number of elements.

a¼ 2; b¼ 2
3a Present CVBEM Analytical solution [36] Relative error (%)

N¼6 62.93100 13.09329 380.636
N¼8 64.52612 392.818
N¼10 44.99025 243.613
N¼12 35.42487 170.557
N¼14 30.10976 129.963
N¼16 26.83087 104.921
N¼18 24.60360 87.910
N¼30 18.20703 39.056
N¼45 15.93643 21.714
N¼60 15.02877 14.782
N¼75 14.55172 11.139
N¼150 13.73927 4.934
N¼225 13.50720 3.161
N¼300 13.39773 2.325
N¼375 13.33403 1.839
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