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ARTICLE INFO ABSTRACT

MSC: In this paper, we propose a new approach to improve the method of angular basis function (MABF) proposed by
65N22 Young et al. (2015) for the Laplace equation in two-dimensional settings. Instead of the fundamental solution Inr
65N35 used in the traditional Method of Fundamental Solution (MFS), MABF employs a different basis function 6 and
Keywords: produces good approximate solutions on the domains with acute, narrow regions and exterior problems (Young

et al., 2015). However, the definition of # inevitably incurs a singularity situation for many different types of
domains. Therefore, the selection of source points of MABF is not as convenient as the traditional MFS. To avoid
the singularity situation in implementing, we introduce a transformation so that the transformed angular basis
function does not exhibit this type of singularity for commonly used distributions of source points. As a result,
source points for the method of transformed angular basis function (MTABF) can then be chosen in a similar way
to traditional MFS. Numerical experiments demonstrate that the proposed approach significantly simplifies the
selection of source points in MABF for different types of domains, which makes MABF more applicable. Numerical

Method of fundamental solution
Angular basis functions
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results of MTABF and MFS are presented for comparison purposes.

1. Introduction

The method of fundamental solution (MFS) was originally intro-
duced by Kupradze and Aleksidze [11]. The implementation of MFS
was studied for the first time by Mathon and Johnston [15]. MFS ap-
proximates the solution of the problem by a linear combination of fun-
damental solutions over a discrete set of source points placed outside of
the domain. Therefore, the coefficients of the MFS approximation are
determined by solving a linear problem. In the past two decades, MFS
has attracted a lot of attentions from science and engineering commu-
nity [2,5,8,10,12-14,16]. One of the main advantage of MFS is that it
voids the complex mesh generations and numerical integrations. Survey
papers of the MFS and related methods can be found in [4,6,7,9].

It is well-known that traditional method of fundamental solution
(MFS) adopts the fundamental solution Inr of the 2-D Laplace equa-
tion. Actually, the function Inr, as a function of the radial variable, is
the real part of the complex fundamental solution of the Laplace equa-
tion. Through the complex variable theorem, the solution could be fully
expressed in terms of radius and argument (see [3,17]). Furthermore,
the imaginary part discussed in [3] can be simplified as a function of ar-
gument satisfying the Laplace equation when the source point is taken
at the origin. This simplified function was called an angular basis func-

* Corresponding author.

tion and has been used to construct the method of angular basis func-
tions (MABF) in [17]. Therefore, MABF studied in [17] can be viewed
as the MFS using this angular basis function, which is different from
the traditional MFS using Inr. MABF has been numerically shown to
be a good substitute for the traditional method of fundamental solu-
tion (MFS) in solving the Laplace equation. However, to determine the
locations of source points for this method is not straightforward. The
authors of [17] proposed a distribution of source points to avoid any
pair of a collocation point and a source points resting on a horizontal
line so that the angular basis function 6(x, y) can be well defined. There-
fore, there remains a crucial question of developing a simple approach
for the selection of source points for MABF. Another study involving
angular-type fundamental solution has been reported in [3] the Trefftz
methods by using degenerate kernels and Fourier series to formulate the
angular-type fundamental solution and then to successfully solve an in-
finite domain with circular holes and/or inclusions subject to a screw
dislocation.

The aim of this paper is to develop an algorithm for MABF so that
source points can be easily chosen as in MFS that uses radial basis func-
tion Inr. Toward this end, we propose a transformation for angular basis
function 0 to avoid possible singular situations. The implementation of
this transformation proceeds in three steps. Firstly, source points are
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Fig. 1. The angle j; for the transformation from ©; to 0, ;- Solid dot: a source
point x}; open circles: boundary collocation points x)foralli=1,2,...,N.

placed surrounding the domain of the problem such that any source
point should not stay interior of a convex region that contains all colloca-
tion points. Secondly, we calculate the average angle of all vectors point-
ing from a source point toward all collocation points. Then, we rotate
all vectors about this source point through the average angle counter-
clockwise so that all angles are distributed quite evenly on (- /2, z/2).
This process can be done by multiplying a rotation matrix generated
by the average angle to each vector. As a result, all vectors are trans-
formed to their reference positions (see Fig. 1). Thirdly, a transformed
angular basis function (TABF) is then defined to be the direction angle
of a transformed vector, which falls into (—z/2, z/2). It can be verified
that a TABF is also a fundamental solution of Laplace equation. The cal-
culation of these TABFs on a set of source points results in the method
of transformed angular basis function (MTABF), which can be seen as
an improvement of MABF. Numerical experiments show that the effort
in selecting source points is substantially reduced for different types of
domains. Actually, many source point distributions that are commonly
used in MFS also work for MTABF.

The rest of the paper is organized as follows: in Section 2 we in-
troduce transformed angular basis functions. Formulation of MTABF is
presented in Section 3. Numerical results and comparison are presented
in Section 4. We end by some concluding remarks in Section 5.

2. Transformed angular basis functions

Let Q be a bounded domain. Its boundary is denoted by 9Q. Let

X0 = {x) = (<l yDi=1.. N}
be a set of collocation points on 0L, and

S . S S S —
X' = {x/. = (xj,yj),J =1...N}
be a set of source points on the boundary of a convex region containing
Q. Here, N denotes the number of collocation points. In this paper, we
use the same number of source points as collocation points.

Furthermore, we denote by X and Y the distance matrices for variable
x and y, respectively, i.e.,

X =(X;) and Y =(Y;), (X))
where
X;; ::x‘.b—x;, and Y,-j::yl.b—yjﬁ, 2.2)

foranyi,j=1...N.

We now calculate the angle of each vector pointing from a source
point x; toward a boundary collocation point x? with respect to x-axis.
These angles can be written into the following original angular matrix

®12 ®1N

0:= a.rctan(

|~
SN—
I

(2.3)

®NN

73
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Here each entry ©; will be calculated by

\
©;; = arctan .
X

Note that function 0(x, y) := arctan X, that is known as the angular

basis function (see [17]), can be usedxto construct the expression of
the argument of complex number z = x + iy, which is usually denoted
by arg(z). A branch cut, usually along the negative real axis, can limit
arg(2) so it lies between (-, z]. As pointed out in [17], the value of ®i]—
obtained from commonly used source point distributions would result
in an ill-conditioning linear system. Therefore, the location of source
points must be carefully determined. In order to alleviate the difficulty
in choosing source points, we will design a transformation for ®; so that
source points can be selected in an easy way as for MFS. To illustrate
this idea, we consider a disk domain Q (see Fig. 1). We plot vectors
W (i=1,2,...,N) from a given source point x‘;. toward all collocation
points x’ on the boundary oQ.

We first find the average angle line by averaging the maximal
and minimal angles among all angles of these vectors. Then an angle
p €0, 27) between the average angle line and the horizonal line can
be figured out. Secondly, we transform all vectors by using a rotation
matrix with angle f; so that angles of these transformed vectors fall into
the interval (—x/2,7/2). This transformation can be designed for any
given domain if the locations of sources points are properly selected.

2.1. Calculation of f

Next, we will give a detailed description about the calculation of
angle p; that labeled in Fig. 1. Without loss of generality, we work out

B; for vectors xj xf (i=1,2,..., N). The g values for vectors starting from
other source points can be found in a similar manner. Actually, we have

zr—%(y1+y2), if y3—ys>7 and y3+y, <2x7,

B; = 37[—%(1/14-}/2), if y3—y,>n and y3 +y4 > 2m, 2.4
2 — %(;@ +74), otherwise,

where

yi=max{9 € (01N [9<x), p:i=min{de{0;}} 9>z},

N

r3 t=max{6;},.,, Ya ::min{HU}N

=1’

0;; 1= arg(z;;), zj; 1= (xll.’ - x;) + i(yf - y;).

Multiplying the rotation matrix on each vector x‘;x".’ we obtain

Yij _(cosp —sinf\[X;;
?U T \sinp cosp )|V |
As a consequence, each entry of matrix ® can be transformed into a
new matrix @ as follows
> > NxN

_ Y.
® :=arctan (é) = [ arctan _”
X X

We already complete the design of the transformation for the angle
matrix ©. Next, we will consider the transformation of the angular basis
function.

(2.5)

(2.6)

2.2. The ABF ¢(x, y) = 0 and the corresponding TABF ¢(x,y) = 6

Consider the angular basis function (see [17]):

¢(x,y) = 0 = arctan (%),

where (X,Y) = (x — x(,y — ) denotes a vector in xy-plane starting at
(9, ¥o)- It is straightforward to verify that (x, y) is a fundamental so-
lution of the Laplace equation. We define the transformed angular basis
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Fig. 2. Left Plot: Boundary collocation points (Blue) and source points distributed on a square (Red); Right Plot: boundary collocation points (Blue) and source points
distributed on a circle (Red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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Fig. 3. Error curves of MFS using TABF (Left Plot) and RBF (Right Plot) w.r.t. distance d when N = 80 source points are used.
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Table 1
Errors of MTABF.
N RMSE €max d, d, Cond.
30 7.3565E-13 1.1047E-11 6.04 2.18 1.4507E+16
40 2.8204E-14 1.1635E-13 1.92 1.92 1.1897E+18
50 1.7240E-14 4.8406E-14 5.21 5.21 2.7277E+18
60 9.6974E-15 3.5083E-14 3.69 4.59 3.7423E+18
70 6.6166E—15 1.9540E-14 3.64 3.64 2.5692E+19
80 6.8347E-15 2.2204E-14 3.84 3.84 4.2459E+18
90 7.9716E-15 2.7423E-14 3.56 3.65 1.3031E+19
100 9.3305E-15 2.5979E-14 3.44 3.64 6.3588E+18

function ¢(x, y) as follows:

@(x,y) 1= 0 = arctan (

where
Y —_—
Y

Y>,

X

cosff —sinf
sin cos f

for a given g € [0, 2x).

)

2.7

Theorem 2.1. Assume that (x,, y,) € Q. Then the function ¢(x, y) defined
in (2.7) is a fundamental solution of the Laplace equation, i.e.,

Ag(x,y)=0, on Q. (2.8)

Proof. Note that ¢(x, y) = 8. By direct calculation, one has

26 9 sin fX — cos fY

ox2  Ox }2 +?2
2 [ F(sin? g —cos g) 4 (X2~ T2 ) s
e [X Y(sm B —cos ﬂ) + (X -Y )smﬂcosﬂ].
(X +Y )
2.9)
Meanwhile, we have
926 _ 9 |cospX +sin Y
a2 0y 72 + 72
= % [} ?(sin2 p— cos? ﬂ) + (}2 - ?2> sin f cos ﬂ].
(X +7)
(2.10)

74
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Table 2

Errors of MFS using RBF.
N RMSE Cnax d; d, Cond.
30 2.0568E—-113 1.4655E-12 6.38 5.21 1.6760E+17
40 6.6359E—16 6.6613E—-15 1.86 1.61 8.3350E+17
50 4.1191E-16 1.7764E-15 1.1 1.12 6.1203E+18
60 3.7088E-16 2.2204E-15 0.98 0.86 1.7987E+18
70 3.8737E-16 2.2204E-15 0.66 0.77 2.7732E+18
80 3.9322E-16 1.7764E-15 0.53 0.58 3.0972E+18
90 4.0149E-16 2.2204E-15 0.46 0.5 1.2992E+19
100 4.2694E-16 2.2204E-15 0.83 0.65 3.1384E+18

Therefore, by adding (2.9) and (2.10) we obtain
Ap(x,y) = A0 =0.
Od

Remark 2.2. It is clear that by setting (x, yy) = xj, we get a group of
transformed angular basis functions (pj(x, ¥),j=1,2,..., N satisfying
@,(x1)=0,. (.11
Furthermore, function § + C also defines a transformed angular basis
function for any fixed constant C.

3. Formulation of MTABF

We consider the Laplace equation with boundary conditions:

Au=0 in Q,
u=g on 09Q, A3.1)
du
— = on 09Q,,
on 82 2

where 0Q is the boundary of Q, and 0Q = 0Q; U 0Q,.
We assume that MTABF approximation to the solution of Problem
(3.1) can be written as follows:

N

U= Z a;@;(x, ).
j=1

where ¢ is defined in (2.7). It is straightforward to verify that the MTABF

approximation u satisfies the Laplace equation. By (2.11), the numerical

solutions can be solved from the following linear system

(3.2)

Qa=g (3.3)
where @ = (a,a,,...,ay)", and g = (g(x?),g(xg), ,g(x’l’v))T.

Condtion Number

Condtion Number
(&)
T
L

30

Boundary Points
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4. Numerical experiments
In this section, we consider Problem (3.1) on several simply con-
nected domains in R2. Suppose that u(x, y) and i(x, y) are the exact so-

lution and its MTABF approximation, respectively. The error between u
and & will be measured by E, ., and RMSE, which are defined as follows:

— @.1)
1 _ 2
RMSE = 4| - Z{ (u(x) — a(x'))".

where test points {x;( k=1,2,....M } are uniformly distributed in Q.

The numerical results show that MTABF produces accurate numeri-
cal approximation which is comparable to traditional MFS which uses a
RBF Inr, i.e., the fundamental solution of 2d Laplace equation. In partic-
ular, in Examples 4.3 and4.4, we consider the same numerical examples
as those studied in [17], so that the improvement of the algorithm by
using TABF can be clearly observed from the distribution of the source
points. These examples verify that MTABF does not require any special
source point distribution in the computation. All numerical examples
provided in this section adopt similar source point distributions as that
of traditional MFS.

Example 4.1. In this example, we consider Problem (3.1) on a disk
domain with a harmonic boundary condition g, = e* cos y on 9Q.

The purpose of this example is to validate the efficiency of the pro-
posed algorithm. It can be seen later from numerical results that MTABF
is comparable with the traditional MFS.

We consider two types of source points that are distributed on a
square and a circle (see Fig. 2). There are 76 source points and boundary
collocation points in both graphs. For simplicity, we only use uniformly
distributed source points and boundary collocation points.

Let d be the distance between the circle of source points and the
boundary of Q. Different d values are used to test the accuracy of the MFS
approximation using the transformed angular basis function 6. It has
been known that if angular basis function 6 is used instead, a specially
designed distribution of source points is required to obtain decent results
(see [17, Figure 5]).

Next, we present numerical results of the proposed method when
source points are distributed on a circle and a square.

(1) Source points distributed on a circle outside of 0Q. To increase the
stability, source points are slightly rotated counterclockwise by an an-

Optimal d-value

Optimal d-value

30 60 70

Boundary Points

100

Fig. 4. Condition numbers of coefficient matrices in MFS using TABF (Left Plot) and RBF (Right Plot) w.r.t. N.

75
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Table 3
Errors of MFS using TABF.
N RMSE Cnax d; d, Cond.
28 3.4880E-12 1.5430E-11 9.92 9.99 1.8255E+17
40 5.8142E-14 2.1894E-13 4.88 5.06  7.4657E+17
48 2.8842E-14  7.8049E-14 3.4 3.4 7.9216E+17
60 9.9171E-16 3.9968E-15 1.66 1.82 4.6207E+18
68 6.2346E-16 3.1086E-15 1.63 1.47 4.1120E+18
80 7.3680E-16  4.6629E-15 1.3 1.42 3.8081E+18
88 7.0708E-16 3.9968E-15 1.48 1.38 3.0443E+19
100 9.7743E-16 3.4417E-15 1.25 1.25 4.8391E+18
gle ¢ = 2. The values of distance where minimal E,,,,, and RMSE are ob-

served are denoted by d; and d,, respectively. Table 1 demonstrates the
efficiency of the proposed method by showing the E,,,, and RMSE with
respect to different number of source and collect points, while M = 1941
testing points are used in the calculation of E,,,, and RMSE. The condi-
tion number of the coefficient matrix, d;, d, are also listed. Addition-
ally, we present numerical approximation by using MFS with RBF Inr
in Table 2. It can be seen that both methods can solve this problem effi-

TABF
1010 T T T T T T T T 4
10°H B
100+ b
10-5 L
10-10 L
10-15 L
1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
<101 Condtion Number

10 T T T T T T

Condtion Number
(&)
T
1

Boundary Points
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Table 4

Errors of MFS using RBF.
N RMSE Cnax d; d, Cond.
28 5.8499E-11 2.4394E-10 8.02 8.02 3.5970E+17
40 2.7687E-14 2.1605E-13 2.84 2.66 3.8882E+18
48 5.5865E—-15 2.1316E-14 2.86 2.99 1.0617E+18
60 1.5924E-15 6.5503E-15 1.85 1.78 9.0967E+17
68 1.1259E-15 4.2188E-15 1.43 1.43 3.1119E+18
80 7.1544E-16 2.4980E-15 1.01 1.01 3.1133E+18
88 6.6540E-16 2.6645E—-15 0.95 0.97 6.8904E+18
100 6.0403E-16 2.6645E—-15 0.85 0.82 8.1619E+18

ciently and produce comparable numerical approximations. To compare
these two methods from other points of view, we plot the error curves
of these two methods with respect to the distance d in Fig. 3, and condi-
tion numbers of coefficient matrices in these two methods with respect
to the number of collocation points N in Fig. 4.

(2) Source points distributed on a square outside of 0Q2. For the same
reason as in (1), we rotate all source points counterclockwise by 4 = 0.1
along the square. Similar numerical results as in (1) are presented here
in Tables 3, 4, and Fig. 5.

RBF

108 F |

\ \lWI ” I

1010k i

1072 F ) i ’W‘

I ¢ i iy

1071

§ '”wl

f\l'&'

10716 I I I I I I I I I

Optimal d-value
10 T T T T T T T

Optimal d-value

20 30 40 50 60 70 80 90
Boundary Points

100

Fig. 5. Upper Plots: error curves of MFS using TABF (Left Plot) and RBF (Right Plot) w.r.t. distance d when N = 80 source points are used. Lower Plots: condition
numbers of coefficient matrices in MFS using TABF (Left Plot) and RBF (Right Plot) w.r.t. N.

76
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RBFs

10y

1 1 1 1 1
0 0.5 1 1.5 2 25 3

Fig. 6. Maximum errors (Red) and RMSE errors (Blue) when source points on a square are used. Left Plot: MFS using TABF 0; Right Plot: MFS using RBF Inr. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

Table 5
Minimum values of maximum errors and RMSE errors in Fig. 4.

Source points on a square Source points on a circle

Method  RMSE €max RMSE €max
TABF 6.800e—03 1.274e—01 2.000e—03 3.380e—02
RBF 2.700e—03 3.360e—02 6.500e—03 1.213e-01

Example 4.2. As an extension of Example 4.1, we consider a non-
smooth boundary condition:

u=0, 6=0,0=nr,
u=1, 0<0<m, 4.2)
u=-1, n<60<2xn,

so that analytical solution can be found as follows:

u= % arctan (%) 4.3)
T T

10"

100 F

107 r

102 F
r

10% F E
0 075 1I 175 é 275 3

We also consider source points on a circle and a square. Due to
the discontinuity of the boundary condition, the approximation error
in a neighbourhood of the discontinuity points becomes very large so
that it pollutes the global errors E,,,, and RMSE. For source points dis-
tributed on a circle, we plot error curves of MFS using TABF and RBF in
Fig. 6 with the same value of M as in Example 4.1. Minimum values of
these error curves are reported in Table 5.

Similarly, rotating source points slightly by an angle e along the cir-
cle as we did in Example 4.1 improves the stability of the proposed
method. However, the value of ¢ does not significantly affect the error
if € are properly chosen so that source points and collocation points do
not stay on a radian line. Table 6 presents E,,,, and RMSE and corre-
sponding d-values when several different values of ¢ are used. The error
curves of MFS using TABF are plotted in Fig. 7 (Left) when € = 0.01. It
can be seen that both error curves of the MFS using TABF do not ex-
hibit oscillation when d < 1.3. Meanwhile, the right plot in Fig. 7 shows
the errors of MFS using the RBF Inr, which is quite stable when d <1.5.
Minimum values of E,,,, and RMSE are listed in Table 5.

RBFs

100 F (M

100 F E

0 0.5 1 15 2 25 3

Fig. 7. Maximum errors (Red) and RMSE errors (Blue) when shifted source points on a circle (with ¢ = 0.01) are used. Left Plot: MFS using TABF 5; Right Plot: MFS
using RBF Inr. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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Fig. 8. Boundary collocation points (Blue); source points on a square (Red, Left Plot); source points on a circle (Red, Right Plot); N = 50. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article).
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Fig. 9. Maximum errors (Red) and RMSE errors (Blue) when source points are distributed on a square. Left Plot: MTABF; Right Plot: MFS using Inr. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article).
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Fig. 10. Maximum errors (Red) and RMSE errors (Blue) when source points are distribute on a circle. Left Plot: MTABF; Right Plot: MFS using Inr. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article).
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Fig. 11. Four different distributions of source points (Red) and boundary collocation points (Blue). N = 147. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article).

Table 6

Minimum values of maximum errors and RMSE errors when source points

are shifted e units counterclockwise.

3 r RMSE Cmax

0.01 1.001 5.700e—03 6.490e—02
1.005 2.100e—-03 2.620e—02
1.01 2.000e—03 3.380e—02
1.05 4.900e-03 8.750e—02
1.1 5.900e—03 1.070e-01

0.1 1.001 2.380e—02 3.430e—01
1.005 7.700e—03 1.234¢-01
1.01 5.100e—03 8.190e—02
1.05 5.100e—03 9.230e—02
1.1 5.900e—03 1.082¢—01

0.2 1.001 2.950e—02 4.092¢-01
1.005 1.220e—02 2.017e-01
1.01 7.100e—03 1.267¢e—01
1.05 5.400e—03 9.820e—02
1.1 6.000e—03 1.100e-01

0.3 1.001 3.100e—02 4.267¢e-01
1.005 1.560e—02 2.546e—01
1.01 8.900e—03 1.640e—01
1.05 5.600e—03 1.035¢-01
1.1 6.100e—03 1.118¢—01
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Table 7
Minimum values of e,,,, and RMSE in Figs. 9 and 10.

Source points on a square Source points on a circle

Method  RMSE Cmax RMSE Cmax
TABFs 9.7175e-05 2.800e—03 9.1818e—-05 2.700e—03
RBFs 9.3104¢—05 2.500e—03 9.3063¢—05 2.700e—-03

Example 4.3. We consider an example studied in [17, Section 4.1.1],
which is the Laplace equation defined on a square domain [0, 1] x [0,
1] with a non-smooth boundary condition:

u=0, if x=0,
u=0, if x=1,
. 4.4
u=0, if x=y=0,
u=1, if x=y=1.
The analytical solution is therefore given by
"= Z 2(1 = cos (j))sinh (jrzy) sin (17rx)' @5)

Jj=1

jmsinh ()
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to the web version of this article).

Table 8
Minimum values of RMSE and Maximum error when distribution 4 is used.
Method RMSE Crnax RMSE Cnax
Distribution 1 Distribution 2
TABFs 1.0406e—04 4.5183e—-04 1.8407e—-07 3.9079¢—06
RBFs 4.4530e—-05 2.7909¢—04 8.4695e—07 2.4744e-06
Distribution 3 Distribution 4
TABFs 1.5200e—-02 1.5430e—01 9.9381e—05 4.1424e—-04
RBFs 1.6200e—02 1.2100e—-01 7.6895e—-05 3.8910e—04

In [17], a comparison of MFS approximation contour and MABF ap-
proximation contour showed that both methods generated decent re-
sults. However, MABF did not generate a good approximation if source
points were evenly distributed outside the domain. Therefore, the loca-
tion of source points in MABF needs to be specially designed to avoid
the singularity of the angular basis function. In this example, we com-
pare MTABF approximation with MFS approximation defined on similar
distributions of source points. More specifically, we use the two types
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of source points defined in Examples 4.1 and 4.2 (see Fig. 8). For both
cases, N source points are equally distributed. We use M = 2400 testing
points for the calculation of the error. Similar numerical results are ob-
served as in Example 4.2. Fig. 9 and Fig. 10 plot the error curves of MFS
and MABF, respectively, with respect to the distance d. The minimum
errors of both methods are listed in Table 7.

Example 4.4. In this example, we consider a domain with a cusp-point
(see Fig. 11). There are many engineering applications where cusp prob-
lems are encountered [1,8,16].

We choose the following boundary condition

u=0, if r=2, 0<6<m,
M _o,  if 2<r<3, 6=0, 4.6)
on
u=1, if r=3, 0<6<nm.
The analytical solution is given by (see [17])
12x
u=3- . 4.7
21y 4.7)
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The collocation points are equally distributed on 9Q. As for the se-
lection of source points, we use four different distributions which are
given in Fig. 11. We use M = 1070 testing points for calculating the er-
ror. We compute numerical solutions of MFS and MTABF on these four
types of source points. Distributions 2 and 3 are more regular than the
other two distributions. Numerical results presented in Figs. 12-15 and
Table 8 show that the best numerical approximation is obtained when
distribution 2 is used.

The comparison also demonstrates that numerical approximations of
MFS and MTABF are comparable on each type of source points.

5. Concluding remarks

In this paper, we propose an approach to improve the method of
angular basis functions that was investigated in [17]. As pointed out
in [17], MABF has some limitations on the selection of source points
because the range of angular basis function 6 should be restricted to
(—z/2,7/2), otherwise it will cause ill conditioning of the coefficient
matrix. The proposed method transforms all values of 8 associated with
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each source point to the interval (-z/2, #/2). Meanwhile, each trans-
formed angular basis function @ is still a fundamental solution of the
Laplace equation. As a consequence, there is no need to specially design
a source point distribution for 4. Therefore, The proposed method (i.e.
MTABF) can directly adopt source point distributions used in traditional
MFS. The effort in seeking proper location of source points for MABF is
then significantly reduced.
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