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Abstract

In this paper, the vibration of a suspension bridge due to moving loads of equidistant, identical forces and shaken by vertical support motions
caused by earthquake is studied. The suspension bridge is modelled as a single-span suspended beam. To conduct the beam vibration with time-
dependent boundary conditions, the total response of the suspended beam is decomposed into two parts: the quasistatic component and the
dynamic part based on the decomposition method. Since the quasi-static component of the suspended beam under the static action of multiple
support motions has been obtained analytically, the remaining dynamic part can be solved using Galerkin’s method. The numerical results indicate
that the contribution of higher modes on the maximum acceleration of the suspended beams to moving loads will become significant as the
propagation effect and multiple support motions of seismic waves in the subsoil of bridge supports has been taken into account.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Structural engineers often encounter a dynamic problem of
multiple support motions when dealing with the analysis of
long-span structures shaken by earthquake excitations [1–5,12].
For instance, the earthquake-induced response of a suspension
bridge is a typical multipoint support vibration problem due to
the propagation effect of seismic waves at construction site.
Along with the rapid development of modern transportation
networks, suspension bridges are often employed to span wide
rivers or deep valleys in the infrastructure of a country. In
recent years, numerous researchers have studied the dynamic
behaviour of suspension bridges caused by moving loads [1,6,9,
10,16,17,20]. An important conclusion in these works revealed
that the cable tensions of short-span suspension bridges
induced by moving loads would be amplified significantly.

In addition, the Honshu-Shikoku Bridge project in Japan,
which includes a series of long-span suspension bridges such as
the Kita Bisan-Seto Bridge with a main span of 990 m and the
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Minami Bisan-Seto Bridge with a main span of 1100 m, enables
the bridges to carry high-speed trains in addition to vehicular
loads [27]. This represents a technology promotion in modern
bridge construction. Recently, Diana et al. [28,29] adopted a
train-track interaction model to study the railway runnability
of long-span suspension bridges. Obviously, the riding comfort
of passengers and the manipulation of a train running over a
suspension bridge are of importance in studying the dynamic
response of a vehicle–bridge system.

However, comparatively few studies have been conducted on
the train-induced vibration for suspension bridges shaken by
earthquake support excitations. Using an analytical approach,
Fryba [7], Yang et al. [18], and Xia et al. [25] presented a
resonant condition for the train-induced response of simply
supported bridges. Such a condition provides a useful criterion
for predicting the resonant speeds of a high speed train
travelling on railway bridges. Concerning the stability problem
of a train moving over a bridge shaken by earthquakes, Yang
et al.’s book [19] pointed out that the presence of vertical ground
excitations would affect drastically the stability of a moving
train, especially, near the resonant excitations prescribed above.
Xia et al. [26] revealed that for a train travelling over a
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Fig. 1. Suspended beam under moving loads and vertical support motions.

continuous seven-span viaduct shaken by earthquakes, lack of
considering seismic travelling wave effect might lead the train
manipulation to an unsafe conclusion.

The resonant vertical vibration of bridges has appeared
recently that alarmed the civil engineers and initiated the
papers [7,8]. This motivation suppressed the other important
excitations and preferred the acceleration calculations. We are
aware of the fact that the horizontal seismic forces are more
important than the vertical one. Thus, the present study should
be grasped as an introduction to a spatial problem of the
interaction vehicle–bridge. The substantial simplifications in
the paper emphasize the effect of vertical axle forces of vehicles
and show the phenomenon of resonance for this particular case.

The conclusions of the paper might be served as a design
basis for the selection of span length of a suspension bridge
located at construction site in seismic regions. The method was
also applied to the calculation of the world’s largest designed
suspension bridge, Messina Bridge of span 3.3 km, see [24].

2. Formulation of the problem

Due to the near-fault effect, the presence of vertical ground
excitations plays an important role on the vertical vibration
of bridge structures. For this reason, only the vertical support
motions acting on suspension bridges are concerned in this
study. To investigate the train-induced vibration of suspension
bridges shaken by vertical support motions, as shown in Fig. 1,
the suspension bridge is modelled as a single-span suspended
beam with two hinged ends, and appreciable simplifications for
the simulation of suspension bridge and train loads are outlined
as follows:

(1) The bridge is modelled as a linear elastic Bernoulli–Euler
beam.

(2) The linearized deflection theory of suspension bridges [6,
15] is adopted to formulate the equation of vertical motion
for a single-span suspension bridge.

(3) The bridge pylons are assumed to be undeformable during
vibration so that the cable and the suspended beam provide
the time-dependent boundary conditions as the earthquake
shakes the beam.

(4) Assuming the force travelling along the suspended beam,
the load has a good isolation device so that it can be
modelled as a sequence of equidistant and identical moving
forces.
Fig. 2. Cable subjected to a uniformly distributed load w.

2.1. Equation of motion

When a parabolic cable in Fig. 2 is under the action of a
uniform dead loadw, the horizontal component H in the tensile
cable is [11,15]:

H =
w

y′′
, (1)

where y = the sag function of the cable,

y(x) = 4y0[x/L − (x/L)2], (2)

and y0 = cable sag at mid-span, L = span length. Based on the
linearized deflection theory of suspension bridges [6,15], the
vertical equation of motion for a single-span beam suspended
by a parabolic cable is given by, [10]:

mü + cu̇ + E I u′′′′
− Hu′′

− ∆H y′′
= p(x, t), (3)

where a superscript prime denotes partial derivative with
respect to the coordinate x , the dot over a letter the partial
derivative with respect to time t , m = mass of the beam and
cable per unit length along x-axis, c = damping coefficient,
u(x, t) = total displacement of the beam, EI = flexural rigidity
of the beam, and p(x, t) = load function of moving loads
passing the beam. The increase of horizontal component ∆H
in the cable under the action of live loads and vertical support
movements (u(0, t), u(L , t)) can be written as, [11]:

∆H =
Ec Ac

Lc

∫ L

0
y′u′dx =

Ec Ac

Lc

[
y′u |

L
0 −

∫ L

0
y′′udx

]
=

Ec Ac

Lc

[
−

4y0

L
(u(0, t)+ u(L , t))+

8y0

L2

∫ L

0
udx

]
,(4)

where Ec Ac = axial rigidity of the cable, and the effective
length Lc of the cable curve is given by, [11]:

Lc =

∫ L

0

(
ds

dx

)3

dx =

∫ L

0

(√
1 + y′2

)3

dx . (5)

Substituting Eqs. (1), (2) and (4) into Eq. (3) yields the
following equation for a suspended beam under the action of
external loads and vertical support motions

mü + cu̇ + E I u′′′′
− Hu′′

+ A
∫ L

0
udx

= p(x, t)+
AL

2
[u(L , t)+ u(0, t)], (6)

where

A =

(
8y0

L2

)2 Ec Ac

Lc
. (7)
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As shown in Fig. 1, a row of moving forces with identical
weights P and equal intervals d is crossing a single-span
suspended beam at constant speed v. The load function p(x, t)
describing the action of train movements on the beam is
expressed as, [7,8,21,22]:

p(x, t) = P
N∑

k=1

δ
[
x − v(t − tg − tk)

]
×

[
H(t − tg − tk)− H(t − tg − tk − L/v)

]
, (8)

in which δ = Dirac’s delta function, H(t)= Heaviside unit step
function, k = 1, 2, 3, . . . , N — the number of moving load
on the beam, tg = time lag for the moving loads entering the
suspended beam after earthquake support motion has shaken
the beam, and tk = (k − 1)d/v = arriving time of the k-th load
at the beam.

The boundary conditions for the suspended beam with two
hinged ends shaken by vertical support movements are:

u(0, t) = a(t), (9a)

u(L , t) = b(t), (9b)

E I u′′(0, t) = E I u′′(L , t) = 0, (9c)

where a(t) and b(t) represent the vertical displacements at the
two bridge supports, as depicted in Fig. 1.

The initial conditions are supposed to be zero when the first
moving force enters the bridge:

u(x, 0) = u̇(x, 0) = 0.

An observation of Eqs. Eq. (6) and (9a)–(9c) indicates
that we face a beam-vibration problem with time-dependent
boundary conditions. To obtain the total response of the
suspended beam, a quasistatic decomposition method [2–4,
12] will be employed to solve this problem in the following
sections.

2.2. Quasistatic decomposition method

For the time-dependent boundary value problem in beam
vibration [12], the total deflection u(x, t) of the beam can
be decomposed into two parts: the quasistatic displacement
component U (x, t) and the dynamic displacement component
ud(x, t), [2–4]:

u(x, t) = U (x, t)+ ud(x, t). (10)

Here, the quasistatic part U (x, t) represents the beam displace-
ment induced by the static effect of support movements, and the
remaining dynamic part ud(x, t) by the dynamic effects of the
beam vibration. Substituting Eq. (10) into Eq. (6) and remov-
ing the terms with quasistatic components to the right hand side
yields

müd + cu̇d + E I u′′′′

d − Hu′′

d + A
∫ L

0
uddx

= p(x, t)+
AL

2
[u(L , t)+ u(0, t)] − (mÜ + cU̇ )− fquasi,

(11)
with the quasistatic force as

fquasi = E I
∂4U (x, t)

∂x4 − H
∂2U (x, t)

∂x2 + A
∫ L

0
U (x, t)dx .

(12)

Since the quasistatic displacement U (x, t) of the suspended
beam is only excited by the static action of support motions [5],
the summation for the quasistatic force of fquasi and the support
excitations of AL

2 [u(L , t)+ u(0, t)] in Eq. (11) will vanish, i.e.

AL

2
[u(L , t)+ u(0, t)] −

[
E I
∂4U (x, t)

∂x4

− H
∂2U (x, t)

∂x2 + A
∫ L

0
U (x, t)dx

]
= 0, (13)

and the corresponding boundary conditions of the quasistatic
displacement U (x, t) are, [12]:

U (0, t) = a(t), U (L , t) = b(t), (14a)

E IU ′′(0, t) = E IU ′′(L , t) = 0. (14b)

Therefore, Eq. (11) is reduced to

müd + cu̇d + E I u′′′′

d − Hu′′

d + A
∫ L

0
uddx

= p(x, t)− (mÜ + cU̇ ). (15)

Then, substituting Eqs. (10) and (14) into Eqs. (9a)–(9c)
yields the following homogeneous boundary conditions for the
dynamic displacement component ud(x, t) as:

ud(0, t) = ud(L , t) = 0, (16a)

E I u′′

d(0, t) = E I u′′

d(L , t) = 0. (16b)

Observing Eqs. (15) and (16) indicates that the differential
equation in terms of the dynamic deflection component ud(x, t)
with homogeneous boundary conditions can be transformed
into a set of coupled generalized equations by Galerkin’s
method, whenever the quasistatic displacement U (x, t) has
been obtained analytically.

3. Solutions

In this section, the analytical solution of quasistatic
deflection U (x, t) for a suspended beam statically excited by
vertical support movements will first be presented. Then, one
can deal with the remaining dynamic part ud(x, t) in Eqs. (15)
and (16) by Galerkin’s method.

3.1. Solution of quasistatic displacement

To solve the partial integro-differential equation (13), one
can transform this equation into the following nonhomogenous
partial differential equation:

∂4U (x, t)

∂x4 − λ2 ∂
2U (x, t)

∂x2 = −
A

E I

∫ L

0
U (x, t)dx

+
AL

2E I
[b(t)+ a(t)] , (17)
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with λ =
√

T/E I . Then, solving the differential equation in
term of U (x, t) with respect to x leads to the following general
solution:

U (x, t) = c0(t)+ c1(t)
x

L
+ d0(t) cosh λx + d1(t) sinh λx

+
Ax2

2H

[∫ L

0
Udx −

b(t)+ a(t)

2

]
. (18)

Integrating Eq. (18) from 0 to L , one can express the integration∫ L
0 U (x, t)dx in terms of the undetermined coefficients: c0(t),

c1(t), d0(t), and d1(t). Then, substituting Eq. (18) into the
boundary conditions in Eq. (14) yields the following solution

U (x, t) =

[
a(t)+ (b(t)− a(t))

x

L

]
. (19)

The quasistatic displacement shown in Eq. (19) represents
the rigid body displacements due to the quasistatic effect of
multiple support movements [a(t), b(t)] in different phases.
Then, applying the quasistatic displacement in Eq. (19) to Eq.
(15) leads to the following differential equation of motion in
terms of ud(x, t):

müd + cu̇d + E I u′′′′

d − T u′′

d + A
∫ L

0
uddx

= p(x, t)− mÜ − cU̇ . (20)

While the quasistatic deflection U (x, t) in Eq. (19) has been
derived analytically, the solution of the dynamic deflection
component ud(x, t) in Eq. (20) can be carried out by Galerkin’s
method in the following section.

3.2. Solution of dynamic response component

The linear partial differential equations of motion in Eq.
(20) for the suspended beam can be transformed into a set
of generalized equations of motion using Galerkin’s method.
First, multiplying both sides of Eq. (20) with respect to the
variation of the dynamic deflection component δud , and then
integrating the equation over the beam length L , one can obtain
the following virtual work equation:∫ L

0

(
müd + cu̇d + E I u′′′′

d − T u′′

d

)
δuddx

+

(
A

∫ L

0
uddx

) ∫ L

0
δuddx

=

∫ L

0
p(x, t)δuddx −

∫ L

0
[mÜ + cU̇ ]δuddx . (21)

Taking the homogeneous boundary conditions (16a) and
(16b) into account, the remaining dynamic deflection ud(x, t)
of the total displacement of the suspended beam can be
represented as, [6]:

ud(x, t) =

∞∑
n=1

qn(t) sin
nπx

L
, (22)

where qn(t) means the generalized coordinate associated with
the n-th assumed mode of the suspended beam. Substituting
Eqs. (8), (19) and (22) into (21), one can obtain the n-th
generalized equation of motion in terms of the generalized
coordinate qn as follows:

mq̈n + cq̇n + knqn + ψn =

[
N∑

k=1

Fk($n, v, t)

]

+
m(ä − b̈ cos nπ)+ c(ȧ − ḃ cos nπ)

nπ/2
, (23)

with

kn =

(nπ

L

)4
E I +

(nπ

L

)2
H, (24)

ψn =
2AL

nπ2 (1 − cos nπ)

[∑
k=1

1
k
(1 − cos kπ)qk

]
, (25)

and the generalized force Fk($n, v, t) of the k-th moving load
is expressed as

Fk($n, v, t) =
2P

L
sin$n(t − tg − tk)

[
H(t − tg − tk)

− H(t − tg − tk − L/v)
]
, (26)

where $n = nπv/L represents the driving frequency of the
k-th moving load to the n-th assumed mode of the suspended
beam.

With the respective consideration of symmetrical/anti-
symmetrical modes, Eq. (23) can be rewritten as the following
differential equations:

(1a) Symmetrical modes: sin(nπx/L) for n = 1, 3, 5, 7 . . .

mq̈n + cq̇n + knqn + Ψn =

[
N∑

k=1

Fk($n, v, t)

]

−
m(ä + b̈)+ c(ȧ + ḃ)

nπ/2
. (27)

(1b) Antisymmetrical modes: sin(nπx/L) for n = 2, 4, 6, 8 . . .

mq̈n + cq̇n + knqn =

[
N∑

k=1

Fk($n, v, t)

]

−
m(ä − b̈)+ c(ȧ − ḃ)

nπ/2
, (28)

where

Ψn =
8AL

nπ2

[
∞∑

k=1,3,5...

qk

k

]
n=1,3,5...

. (29)

An observation of Eqs. (27) and (28) indicates that the
stiffening effect of the cable tensions is only effective on the
symmetrical modes of the suspended beam, as the stiffness
term Ψn|n=1,3,5... shown in Eqs. (27) and (29). Therefore, the
first symmetrical vibration frequency of suspension bridges is
generally higher than the first antisymmetrical frequency.

For the special case of uniform support motion, i.e. a(t) =

b(t), Eqs. (27) and (28) can further be reduced to
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Table 1
Properties of the suspended beam

L (m) EI (kN m2) Ec Ac (kN) m (t/m) c (kN s/m) H (kN) y0 (m) Ω1 (Hz) Ω2 (Hz)

150 3.3 × 108 6 × 107 16 1.92 29 400 15 1.31 (anti-symm.) 1.47 (symm.)
Table 2
Properties of moving loads and resonant speeds

N d (m) P (kN) vres,1 (km/h) vres,2 (km/h)

16 27.5 350 130 146

(2a) Symmetrical modes (n = odd)

mq̈n + cq̇n + knqn + Ψn =

[
N∑

k=1

Fk($n, v, t)

]

−
4 (mä + cȧ)

nπ
, n = 1, 3, 5, 7 . . . . (30)

(2b) Antisymmetrical modes (n = even)

mq̈n + cq̇n + knqn =

[
N∑

k=1

Fk($n, v, t)

]
,

n = 2, 4, 6, 8 . . . . (31)

An observation of Eqs. (30) and (31) indicates that the
uniform support motion only excites the symmetrical modes
of dynamic components. Similarly, considering the antiphased
support motions, i.e. b(t) = −a(t), Eqs. (27) and (28) can be
reduced to:

(3a) Symmetrical modes (n = odd)

mq̈n + cq̇n + knqn + Ψn =

[
N∑

k=1

Fk($n, v, t)

]
,

n = 1, 3, 5, 7 . . . . (32)

(3b) Antisymmetrical modes (n = even)

mq̈n + cq̇n + knqn =

[
N∑

k=1

Fk($n, v, t)

]

−
4 (mä + cȧ)

nπ
, n = 2, 4, 6, 8 . . . . (33)

An observation of Eqs. (32) and (33) indicates that the
antiphased support motions only excites the antisymmetrical
modes of dynamic components. The amplification effect due
to the input vertical support excitations on the train-induced
vibration of the suspended beam will be studied in the following
numerical investigations.

4. Resonance

Due to the regular arrangement of intervals d of wheel loads,
as the train passes along a bridge at speed v, the bridge may
experience a quasi-periodic action of successive moving forces
with an exciting passage frequency v/d . Once the exciting
passage frequency matches any of natural frequencies Ω of
the bridge, the resonant response will be developed on the
bridge [7,8,18,21,22]. Then, the dynamic response of the bridge
may continuously build up as there are more vehicular loads
passing through the bridge at the resonant speed of vres =

Ωd, [7,8,18].
On the other hand, the resonant response of a railway

bridge causes not only excessive vibrations of the bridge
but also increases the risk of derailment for the train [7,
8,13,21,22]. Moreover, the resonant response may result in
the ballast destabilization and diminishing of running safety
of trains on the track structure, [7,8]. Because of this, the
maximum acceleration will be employed to evaluate the
dynamic behaviour of suspension bridges under the action of
moving loads and vertical support motions.

5. Numerical investigations

As shown in Fig. 1, a single-span suspended beam is under
the simultaneous action of moving forces and vertical support
motions. The properties of the suspended beam and moving
forces are listed in Tables 1 and 2, respectively. The symbols
of Ωi in Table 1 represent the i-th modal frequency of the
suspended beam. On the other hand, due to the stiffening effect
of cable tensions on the first symmetric mode of the suspended
beam, the frequency Ω2 of the first symmetric vibration mode is
generally higher than Ω1 of the first antisymmetrical mode. For
this reason, the first antisymmetrical vibration mode will first
be excited by the moving loads travelling at the corresponding
resonant speed vres,1, as indicated in Table 2.

To compute the train-induced acceleration response for the
suspended beam shaken by support motions, the first 20 shape
functions expressed in Eq. (25) will be taken into account in the
following examples, and the generalized equations of motion
in Eq. (26) are discretized by Newmark’s β method [14] in
the time domain and then solved by the step-by-step direct
integration method.

5.1. Resonance of acceleration response

To illustrate the train-induced resonance of a suspended
beam, the train loads moving over the suspended beam at the
first or second resonant speed, i.e. vres,1 = Ω1d = 36 m/s
(=130 km/h) or vres,2 = Ω2d = 40.4 m/s (=146 km/h), will
be employed to excite the first antisymmetrical or symmetrical
vibration mode, respectively. The response curves in Fig. 3
depicts the time history responses of acceleration computed
at the mid-point and third quarter-point sections of the beam.
As can be seen, both the acceleration responses continuously
build up while the moving loads pass the beam. But the
resonant amplitude at the third quarter-point section induced
by the moving loads travelling at the first resonant speed
vres,1 = 130 km/h is significantly larger than that at the
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Fig. 3. Time history responses of acceleration of the suspended beam.

Fig. 4. amax − v − x/L three-phase-plot of the beam due to moving loads.

mid-point section due to the moving loads travelling at the
second resonant speed vres,2 = 146 km/h, even though the
second resonant speed vres,2 is higher than the first resonant
speed vres,1. The reason: when the moving loads travel over the
suspension bridge, in which the bridge span (L = 150 m) is far
larger than the interval (d = 27.5 m) of the moving loads, the
presence of multiple loads passing over the bridge can apply
a suppressing action to the first symmetrical mode (i.e. the
second bending mode). Such an effect results in the acceleration
amplitude at mid-span section of the bridge less severe
compared with that at the third quarter-point section, [13,23].

On the other hand, a three-dimensional (3D) plot for the
maximum acceleration amax along the beam length (x/L)
against various moving speeds (v) has been drawn in Fig. 4.
Such a 3D plot is called amax − v − x/L three-phase-
plot in the following examples. As expected, the number
of acceleration amplitudes appearing along the beam length
depends on the vibration shape that has been excited. The
maximum acceleration computed of the suspended beam is
amax = 0.12g, which corresponds to the first antisymmetrical
mode with the first resonant speed vres,1 = 130 km/h. Under
such a resonant condition for the first antisymmetrical mode
that has been excited, two peak accelerations on the beam can
be observed. Especially, as the train speed exceeds 150 km/h,
higher vibration modes of the suspended beam will be excited
as well.

5.2. Effect of uniform support motion

To conduct the effect of vertical ground motions on the
maximum acceleration of a suspension bridge to the train
Fig. 5. Records of vertical ground surface acceleration (Kobe earthquake).

Fig. 6. Effect of time lags on amax − x/L plot of the beam shaken by uniform
support motion.

loads travelling at the first resonant speed vres,1 = 130 km/h,
let us consider that the different cases of the input support
motions have shaken the bridge before the train loads enter
the bridge. Fig. 5 plots the input vertical support motion
records of acceleration from Kobe earthquake in 1995. With
the consideration of uniform support motion, i.e., a(t) = b(t)
and the reduction to receive the maximum value of ground
acceleration 0.05g (g = 0.98 m s−2), the amax − x/L plot
has been given in Fig. 6. As expected, the inclusion of
vertical earthquake support motions can totally amplify the
acceleration amplitudes of the suspended beam, especially for
the symmetrical modes. Noteworthy is the fact that the uniform
support motion has resulted in a significant amplification on the
mid-span acceleration of the beam due to the fundamental and
higher symmetrical modes that have been excited even though
the effect of different time lags for the train loads arriving at the
bridge on the mid-span acceleration amplitudes is quite limited
in this example.

5.3. Effect of antiphased support motion

Consider the same problem as the example in the Section 5.2
but the ground inputs of support motions are in an antiphased
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Fig. 7. Effect of time lags on amax−x/L plot of the beam shaken by antiphased
support motions.

action, i.e. b(t) = −a(t), the amax − x/L plot has been given in
Fig. 7 as well. As indicated in Eq. (33), the antisymmetrical
modes will dominate the maximum acceleration of the
suspended beam under the action of the antiphased support
excitations and the train loads travelling with various time
lags. This interesting result is attributed to the fact that, as the
antiphased support motions have shaken the suspended beam
subjected to the train loads crossing the beam at the resonant
speed vres,1, the ground excitations may further result in the
increase of peak acceleration responses around the first quarter-
point and third quarter-point sections on the beam. On the
other hand, some secondary peaks on the acceleration response
curves in Fig. 7 can be observed since the resonance associated
with higher modes has been excited as well.

5.4. Effect of multiple support motions

Due to the propagation effect of seismic waves along the
longitudinal direction of the beam axis, the input earthquake
records acting at one supported end of the bridge may have a
time delay compared to those at the other supported end. For
this reason, the input support excitation records at the right
support of the suspended beam in Fig. 1 will be assumed to
lag behind those at the left support with a time delay td , i.e.

b(t) =

{
0 t ≤ td ,
a(t − td) t > td .

Here, the time delay td can be defined as L/vw, vw = travelling
speed of seismic waves in subsoil along the longitudinal
direction of the bridge. Moreover, the train loads entering the
suspended beam with the resonant speed vres,1 = 130 km/h
are set to have a critical time lag of 0.5L/vres,1 after the input
ground excitation records have shaken the right support of the
beam. Fig. 8 depicts the amax − x/L plot for the maximum
acceleration along the beam length against various td .

The results indicate that with the consideration of seismic
wave propagation effect, the mid-span of the suspended beam
is no longer at the critical position of the maximum acceleration
response. The contribution of higher modes to the maximum
acceleration amplitudes due to the effect of seismic wave
Fig. 8. amax − x/L plot of the beam under multiple support motions with
various time delays at supports.

passage needs to be taken into account for a suspended bridge
with long span length.

6. Conclusions

In this study, the acceleration response of a suspended beam
under the simultaneous action of moving loads and vertical
support motions has been investigated. With the consideration
of time-dependent boundary value problem, the quasistatic
component of the total response of the suspended beam
under the static action of support motions has been obtained
analytically. Then, the remaining dynamic part of the total
response can be solved using Galerkin’s method and step-by-
step direct integration based on Newmark’s β method.

The numerical results in train-induced vibration of the
suspended beam indicate that once the exciting passage
frequency (v/d) of a row of moving forces matches any
of the natural vibration frequencies of the bridge, resonance
will be developed in the bridge. By counting the number
of acceleration amplitudes appearing on the beam, one can
identify the vibration mode that has been excited.

In the numerical simulation, a parametric study of uniform
support motion, antiphased support motions, and seismic
wave propagation effect on the acceleration response of
the suspended beam subjected to the moving loads at the
first resonant speed has been investigated. The following
conclusions may be drawn:

(1) The uniform support motion has resulted in a significant
amplification on the mid-span acceleration of the beam due
to the fundamental and higher symmetrical modes that have
been excited.

(2) As the anti-phased support motion has shaken the
suspended beam subjected to the train loads crossing the
beam at the resonant speed vres,1, the antisymmetrical
modes will be excited and the increase of peak acceleration
responses will occur around the first quarter-point and third
quarter-point sections on the beam.
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(3) Considering the propagation effect of seismic waves along
the longitudinal direction of the span length, the mid-span
of the suspended beam is no longer at the critical position
of the maximum acceleration response. Such a contribution
of higher modes to the maximum acceleration amplitudes
needs to be taken into account for a suspended bridge with
long span length.
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