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Cylindrical and spherical inflation in compressible finite elasticity
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Murphy (1992) examined cylindrical and spherical inflation of compressible
perfectly elastic materials having three special forms of the strain-energy function.
In this paper a general procedure for handling such problems for any strain-
energy function is proposed. This procedure is used to confirm some of the results
by Murphy as well as to deduce new solutions. One solution obtained by that
author for cylindrical inflation is found to be incorrect.

1. Introduction

In a recent article appearing in this journal, Murphy (1992) examined cylindrical
and spherical inflation in compressible finite elasticity for three special strain-
energy functions, which are termed materials of types IV, V, and VI. Using a
substitution first exploited by Chung et al. (1986) a number of closed-form
solutions are deduced for spherical inflation and eversion while the basic ordinary
differential equations are presented, but not integrated, for cylindrical inflation.
The purpose of this paper is to show that a more elegant procedure exists for
handling such ordinary differential equations which can be used to confirm the
results obtained by Murphy (1992), as well as to deduce new integrals of
equations formulated by that author. One solution obtained by Murphy for
cylindrical inflation is found to be incorrect (see equation (4.19) below).
Moreover, this procedure can, at least in principle, be utilized for cylindrical and
spherical inflation problems for any strain-energy function.

The compressible finite elastic materials studied by Murphy (1992) have
strain-energy functions given by

(IV) W = c1iii2 + c2ix + c3i2 + c4/3 + c 5 , 1

(V) W = cxi2h + c2i, + c3i2 + c*i3 + c5,\ (1.1)

(VI) W = cxixh + c2/i + c3i2 + c4/3 + c5, J

where cx,..., cs denote material constants which are required to satisfy a number of
restrictions which are detailed in Murphy (1992). Further, in equation (1.1), /1;

i2, and i3 denote the principal invariants of the right or left stretch tensors U or V
in the usual polar decomposition of the deformation gradient tensor F, that is

F=RU=VR, (1.2)

where flis a proper orthogonal tensor representing the rotation.
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In terms of the usual cylindrical and spherical polar coordinates (R, 0, Z) and
{R, 0, <P) respectively, the axially symmetric cylindrical and spherical deforma-
tions are given respectively by

r = r(R), 6=0, z = yZ, (1.3)

r=r(R), 6=0, $=&, (1.4)

with the usual convention for material and spatial coordinates. Here y is a
constant and in each case r(R) is a function of R only. For a proper theory, which
must be invariant under changes of the length scale, the second-order ordinary
differential equation for /•(/?) is formally invariant under the stretching one-
parameter group of transformations

rx=kr, RX=XR, (1.5)

for arbitrary constants A. This means that the second-order ordinary differential
equation for r(R), no matter how nonlinear, can always be reduced to an
ordinary differential equation of first order. Specifically the sequence of transfor-
mations (and starting with the usual Euler transformation)

will always generate a first-order differential equation for p as a function of u.
This is in contrast to the device used by Murphy (1992), and first exploited by
Chung et al. (1986), which does not always produce a first-order ordinary
differential equation.

In the following section we briefly illustrate (1.6) for spherical inflation of
materials of types IV and V which gives rise to the expression obtained by
Murphy (1992) for the materials of type IV and V. In the subsequent section we
apply the procedure to the equations given by Murphy for spherical eversion of
materials of types IV, V, and VI and deduce some new special solutions. In the
final section of the paper we examine the problem of cylindrical inflation and fully
integrate Murphy's equations.

2. Illustration of method for spherical inflation

In this section we briefly show that the procedure proposed here generates the
solutions presented in Murphy (1992) for spherical inflation for materials of types
IV and V. For spherical inflation (1.4) of a material of type IV the basic
governing differential equation arising from the equilibrium equations becomes

and, on making the Euler transformation R = e', we have
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Further, on making the transformation r = e'u, we obtain

d2w du /du\2 , ,

for which either we can use

du d2u dp
( 2 4 )

and integrate the resulting first-order ordinary differential equation or we can
integrate (2.3) directly by simply rewriting the equation as

where we are using the suffix notation for derivatives. A straightforward
integration of (2.5) yields

M
1 / 2 ^ e 3 ' = - 2 A (2.6)

at

where A is a constant and a further integration gives

u3/2 = Ae'3' + B, (2.7)

where B is the second integration constant. From (2.7) we may deduce

r3 = (A + BR3)2/R3, (2.8)
which agrees with the result obtained by Murphy (1992).

Similarly, for spherical inflation of a material of type V, the basic governing
differential equation is

and an application of the above procedure gives

Integration of this equation gives

r5 = (A + BR3)2/R, (2.11)

which agrees with Murphy's solution.
We note that an important feature of equations (2.1) and (2.9) is that they both

admit the homogeneous deformation r = AR, which is the essential reason why
the r2 term disappears from the subsequent equations (2.3) and (2.10) respec-
tively. The equations of the following section do not enjoy this particular
property, but can still be reduced to an ordinary differential equation of first
order.
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3. Spherical eversion

Following Murphy (1992), we consider spherical eversion for materials of types
IV, V, and VI. Thus we consider the deformation

r = r(R), 6 = n-0, <p = <P, (3.1)

where, for materials of type IV, the function r(R) satisfies the ordinary
differential equation

where a and /J denote new material constants defined by

a = 2c2/cu j8 = 2c3/c,. (3.3)

The procedure described in the previous section using the sequence of transfor-
mations (1.6) gives

+ p + 6u) a + Pu. (3.4)

For a and /3 nonzero, this equation is not readily solved except in two special
cases. Firstly, if the material constants are such that a = \fi2, that is

(3.5)

then (3.4) admits the special solution

p = -(i /8 + 2«), (3.6)

and it is a simple matter to show that this special solution corresponds to

r=j-W, (3-7)

where A denotes an arbitrary constant. Secondly, if the material constants are
such that a = ^/32 , that is,

cl = 18c,c2, (3.8)

then (3.4) admits the special solution p = ain, so that in this case the
corresponding solution of (3.2) becomes

r = alf2R\og(R/R0), (3.9)

where Ro denotes a constant.
For materials of type V, the basic ordinary differential equation given by

Murphy is

and it is important to note that in this case the left-hand side is different from
equation (2.9) and accordingly the terms not involving derivatives in the equation
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for u do not cancel and we obtain

This equation can still be reduced to an ordinary differential equation of first
order but is not solvable in general for a and /3 nonzero. For a and /3 zero, the
solution given by Murphy can be deduced from (3.11) by means of the
transformation v = u5/2.

For materials of type VI, the differential equation for r(R) is

r2R2 i%+rRi^)+r3=aR3

and the corresponding equation for u is

which can be fully integrated for a zero as follows. From (3.13), and v = u2 we
have

d2t> du

d? + 3dF + 4 u = 2/3' ( 3 1 4 )

which integrates to give

u = i)8 + Ce-3'/2sin(lV7f + e), (3.15)
where C and £ denote arbitrary constants, and from (3.15) we may deduce

r2 = ifiR2 + CRm sin Qy/l log R + e), (3.16)

and this is marginally more general than the result obtained by Murphy, which is
originally due to Armanni (1915).

In the final section of the paper, we are able to fully integrate the equations
proposed by Murphy.

4. Cylindrical inflation

For cylindrical inflation given by equation (1.3), the basic equation for a material
of type IV is

where we have corrected a term in the corresponding equation given by Murphy.
(This is apparent since from Ericksen (1955) all compressible finite elastic
materials must admit the homogeneous deformation r = AR, which is not the case
for Murphy's equation (8.4).) On transforming equation (4.1), we find

A2U du\ 1 f d2« du /du\2 l
df2 At) yL d(2 dt \dt/ } v '
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which can be rearranged to give

On rewriting this equation as

we may deduce the first ingeral

jtC
2l(y + uy/2 = -U, (4.5)

where A is a constant. A further integration yields

(y + u)3a = (A + BR2)/R2, (4.6)

so that altogether we have

IA X 2 7 3

r = Ru3(-+BR) -yR, (4.7)
which is the required general solution of (4.1).

For materials of type V, the basic differential equation given by Murphy is

which simplifies eventually to give

d2u du /d-N2

On making the substitution u=« 2 we have

which on integrating gives

log u'+ 2f = l y / ^ T ^ 2 ) = ̂  J ^ j ' (4-n)

and therefore we have

A further integration yields

u(y + u)]"2d« = / ie-2 ' + B. (4.13)
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The integral can be evaluated to eventually give

i{(« + hy)[u{y + u)}m -\y2 cosh"1 (l + 2« /y)}=-^+ B, (4.14)

noting also that u = r/R.
For materials of type VI, Murphy's equation

transforms to give

which integrates to yield

— e2tum = -iA, (4.17)
At

so that
u3/2=/Je-2, + B ( 4 1 g )

In terms of the original variables we have
,3/2/ r \ ilz A

(s) 4
which differs considerably from Murphy's result. We observe that for a solid
cylinder the constant A is zero for each of the three deformations (4.7), (4.14),
and (4.19) and the homogeneous deformation r = XR is recovered in each case,
where A denotes a constant.
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