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Within the context of finite elasticity, considerable interest has been shown in the
problem of inflating spherical shells of special compressible materials. Three new
closed-form solutions to the above problem are presented. The qualitative
features of the inflation of thin shells of these special materials are then studied.
The related problems of spherical eversion and cylindrical inflation are also
briefly considered.

0. Introduction

The problem of spherical inflation and compaction of shells of special compres-
sible materials has been studied in a number of recent papers. For the harmonic
material introduced by John {1], a closed-form solution to the equations of
equilibrium describing spherical inflation and compaction was presented by
Abeyaratne & Horgan [2] and independently by Ogden {3]. A similar solution for
a special Blatz—-Ko material was obtained by Chung et al. [4]. In his major
contribution, Carroll [5] found solutions describing spherical inflation and
compaction for three quite general compressible elastic materials. One of these
materials is the harmonic material and another was introduced independently by
Haughton [6], who also considered spherical inflation and compaction.

Each of the four solutions mentioned above is controllable in the sense that the
form of the deformation field is independent of the specific form of the strain
energy function. We will show how the equations of equilibrium themselves
motivate six forms of the strain energy function for which controllable deforma-
tions describing spherical inflation and compaction exist. Of these six materials,
three are those studied by Carroll [5], while a fourth is a generalization of a strain
energy function introduced by Armanni [7]. The other two strain energy functions
appear to be new. With the aid of a substitution introduced by Chung et al. [4],
closed-form solutions to the equilibrium equations will be obtained for the three
materials introduced here.

In a recent review article, Beatty [8] examined in detail the inflation of thin
shells (or balloons) having special forms of the strain energy function introduced
by Blatz & Ko [9]. The inflation of thin shells of the materials introduced here
will be studied and the qualitative features compared with the features of shells of
the special Blatz—Ko material studied by Chung et al. [4].
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Armanni [7] also considered the problem of spherical eversion. Motivated by
this, we will study the eversion of spherical shells of the materials introduced
here. Cylindrical inflation and compaction will be also briefly discussed.

1. Preliminaries

The response of an elastic material is described completely by the form of its
strain energy function

W =W(F), (1.1)
where Fis the deformation gradient tensor satisfying
det F>0. 1.2)
We note that F has the polar decompositions
F=RU=VR, (1.3)

where the rotation R is a proper orthogonal tensor and the stretch tensors U and
V are positive-definite and symmetric.
Invariance under rigid-body motions leads to

W =W(U). (1.4)
The assumption of material isotropy further leads to
W =W(iy, iy, i3), (1.5)

where i;, i, and i5 are the principal invariants of U (and of V, since U and V
have identical invariants).
The stress response equations

oW

P=—

oF’

where P and T are the Piola and Cauchy stress tensors, then lead to a
representation for isotropic materials,

T=is'PF", (1.6)

ow 3 aw W
—_ '_1 . i . i -_1 - —_— _1
T=i; (12 St 321)1 R A (1.7)
on application of the Cayley—Hamilton theorem.
Substitution of (1.7) into the equations of equilibrium

divT =0, (1.8)
leads to the form
W . OW L PW
3, div(i;'V) + 3L, div(r V71—V ) + 3 i3 'VVi,
aZW —1y7: — 1y =1 . aZW e=1 . .
+ all 81'2 (t.r 14 Vll -V'Vi+ I3 le) + Tals (13 VVl3 + Vll)

FW
Biz 3iy
W,

i Vi, =0, (1.9)

w
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where V is the gradient operator with respect to the current configuration.
We also note that the conditions that the strain energy and the stress vanish in
the reference configuration are given by

W(3,3,1)=0,
W W W —0 (1.10)
3iy iy i3 lijmimyiigmt

2. Spherical inflation and compaction
We assume a semi-inverse type of solution,
r=F(R), 0=6, o=, 2.1)

where (R, 6, @) and (r, 6, ¢) are the spherical coordinates of a particle before
and after deformation. The deformation gradient tensor and the stretch tensor
have physical components

r r
F=V=di (',_,_), 2.2
iag (7, =, 22)
where 7 =dr/dR >0 and the principal invariants are
R ¢ .o N
11=r+2§, 12=R—2+ZE, 13=F. (2.3)

For spherical inflation (or compaction) as defined by (2.1), it is easy to show that
the equations
div (i5'V) =0, div(tr v"1-v ) =0 2.4)

are satisfied identically. Hence, for spherical inflation, the equations of equi-
librium reduce to

FW _ PW
i
a2 2 VM T 56,
FW FW
i~ 'WVi.+ Vi) +
5 ai, 0 VVis T Vi) + 705
FwW
3i, 8i;

(tr V7WVi, — V7IVi, +i5'VViy)

+ (tr V-'1— VY)Vi,

+

FW
(tr TIVig - V_IVi3 + Vl2) + Eg— Vl3 = 0, (2.5)

with V and i,, i,, and i, given by (2.2) and (2.3) respectively.

The structure of these equations suggests six forms of the strain energy function
for which controllable deformations are possible. These strain energy functions
have the form

w w
‘.92 —-#0, az =
3i Ji, Oi,, Oi,

0 (m#k;n#1;k,1,mn=1,2,3). (2.6)

These six conditions are equivalent to the following forms of the strain energy
function where f, g, and h are arbitrary functions of the appropriate invariant and
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Cy,..., Cs are constants:

() W=F@i)+ criz+ i3, f7(i)#0, )
(II) W= g(il) + Clil + C2i3, g"(iz) # 0,
(111) W =h(is) + c\ir + caia, h"(i5) #0, g 2.7)

(IV) W=Cli1i2+C2i1+C3i2+C4i3+C5, C1¢0,
(V) W=Cli2i3+02i1+C3i2+C4i3+C5, Cl=#0,
(VI) W=C1i1i3+C2i1+C3i2+C4i3+C5, Cl¢0' )

Materials with strain energy functions of the forms (I)-(III) have recently been
extensively studied by Carroll [5]. We will restrict our attention to the remaining
‘mixed’ forms of the strain energy function given in (IV), (V), and (VI).
Following Carroll [5], these materials will be called materials of types IV, V,
and V1.

There are a number of restrictions to be imposed on the strain energy functions
as defined in (2.7). Before obtaining the radial deformation field for materials of
types IV, V, and VI, we will next consider these restrictions.

3. Restrictions on the strain energy function

Requiring that the strain energy and the stress vanish in the reference
configuration yields the following restrictions on application of (1.10).

Materials of type IV:

9¢c,+3c,+3c3+c4+¢cs=0, 9¢,+c;+2c3+c¢,=0. 3.1)
Materials of type V:

3¢i+3c,+3c3+ et c5=0, 5¢ci+c;+2c3+¢4=0. (3.2)
Materials of type VI:

3ci+3c,+3¢c3+ci+cs=0, 4c,+cy+2¢3+¢,=0. 3.3)

Now, on restriction to infinitesimal deformations, the strain energy functions of
interest should reduce to the classical strain energy function of the linear theory.
To ensure physically realistic behaviour within this range of deformation, we will
assume positive shear and bulk moduli for each material. This results in the
following restrictions on the material constants.

Materials of type IV:
¢ +¢3<0, 6¢c; +cy+c3>0. 3.9

Materials of type V:
4c,+cy+¢3>0, 13¢; — 2¢, — 2¢3> 0. 3.5

Materials of type VI:
¢, +c+¢3,>0, €1 —2c,—2¢3>0. (3.6)
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We now proceed to examine the equation for the radial deformation field
describing spherical inflation for materials of types IV and V.

4. Materials of types IV and V
For materials of type IV, the equations of equilibrium (2.5) reduce to
2R*r7 + R*? + 2Rri = 3r* = 0. 4.1)

We emphasize that this equation is independent of material constants and we
note that the homogeneous deformation field r = AR, where A is constant, is a
trivial solution to (4.1). We now seek nonhomogeneous deformation fields. To
this end, we use the substitution introduced by Chung et al. [4] to solve a related
problem. Let

t= R#/r. (4.2)
Equation (4.1) then becomes
2Rt +3(-1)=0, (4.3)
where t = dt/dR. Following Chung et al. [4], we assume that
0<t<l. 4.49)
Then an easy integration of (4.3) yields
R’=A ;—f: , 4.5)

where A is a constant of integration.
Equations (4.2) and (4.3) together yield

1dr 2t
raTiA-A “.6)
On integrating, we obtain
B
7'3 = 1_—_t2 , (47)

where B is a constant of integration.
Elimination of ¢ between (4.5) and (4.7) yields an explicit form of the radial
deformation field,

r= R% (R*+ DY, (4.8)

where C and D are constants of integration.
For materials of type V, the equilibrium equations reduce to the form:

2R*r¥ + 3R*? — 2Rri — r* =0. (4.9)
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Proceeding exactly as before, we obtain the following solution to (4.9):
C
,5=E(R3+D)2, (4.10)

where C and D are arbitrary constants.

5. Materials of type VI

Armanni [7] considered spherical inflation for an elastic material with a strain
energy function of the form

W = A(iyis — iy + 1), (5.1)

where A is a material constant. The corresponding deformation field describing
spherical inflation was found to have the representation

D
P=CR*+;, 6=6, ¢=9, (5.2)

where C and D are arbitrary constants.
The strain energy function (5.1) is easily seen to be a special case of the strain
energy function of materials of type VI,

W=C1i1i3+C2i1+C3i2+C4i3+C5, (5.3)

where cy,..., ¢cs satisfy (3.3). It can be verified immediately that (5.2) describes
spherical inflation for the generalized Armanni material (5.3).

We now introduce the Carroll material having a strain energy function given by
(2.7)2:

W=g(i2)+clil +C2i3. (54)

Carroll [5] has found that (5.2) also describes spherical inflation for these
materials. We also note that John [10], using a result from linear algebra, has
shown that the function

d(iy, iz, is) = (2705 + 283 — 9i,iy)* — 4353 — 3i)° (5.5)

vanishes for spherical inflation.
We conclude that (5.2) describes spherical inflation for the quite general strain
energy function given by
W= Clil + C2i3 + C3i1i3 +g(i2) + a(il, iz, i3)d(i1, iz, i3),

where a(i,, iy, i3) is an arbitrary sufficiently regular function. This strain energy
function includes, of course, materials of type VI as a special case.

6. Qualitative features of inflation

In the recent review article by Beatty [8], the membrane inflation problem for the
general Blatz—Ko material was considered. We will study the same problem for
the three materials introduced in this paper and compare the results with those
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for the special Blatz—Ko material considered by Beatty [8] and more extensively
by Chung et al. [4].

To avoid cumbersome algebra, we consider reduced forms of the strain energy
functions of materials of types IV, V, and VI. Following Armanni [7], we
consider the strain energy functions given below.

Materials of type IV: W =cy(iyi,— %i, +3),
Matenials of type V: W = ¢,(izis — S5is + 2), 6.1)
Materials of type VI: W =c(ijis—4is +1).
Here, ¢, is a material constant. We will assume that ¢, >0, and thus we can
satisfy all the restrictions of Section 3.
For thin-walled spherical shells (or balloons) of compressible elastic material,

the pressure—radius relation was obtained in a parametric form by Willson &
Myers [11], as follows:

oW oW
—_= =2¢(A/a)*— )
ET 0, p=2¢(Ala) ET (6.2)
where A, and A, are the principal stretches which in this case have the form
A =aalA, Ay =A=alA. (6.3)

Here, p is the internal pressure, € is the ratio of initial thickness to initial inner
radius, A and a are the undeformed and deformed inner radii respectively, and o
serves as a parameter.

Using (6.2) and (6.3), we can easily show that the pressure-radius relations for
materials of types IV, V, and VI are as given below.

Materials of type IV:

p
=——=%(1+ 1-a), =—, .

P =l r2-a),  a==p (6.4)
where u is the infinitesimal shear modulus. Requiring o >0, from (6.3),, restricts
the range of A to 1< A <$. Therefore, at A =$, we find that the determinant of
the deformation gradient tensor vanishes. Thus, as we approach this critical finite
value of stretch, the deformed shell-thickness approaches zero. Consequently the
ballon bursts at A =%.

Materials of type V:
_Sa(l-a) _5=A
T21+4a)’ YT e 6.5)

Here, o > 0 implies that 1 < A < /5. In this case, the pressure—radius relation also
has a turning point, and we see that the balloon bursts on returning to zero pressure.

p

Materials of type VI:

_4a(l—a) 2—-4

o, =T (6.6)

P A
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Here, a> 0 implies that 1< A <2, and again the balloon bursts when the internal
pressure recovers the value zero.

As a comparison with other compressible materials, we will set down the
pressure—radius relation for the Blatz—Ko material studied extensively by Chung
et al. [4]. This strain energy function has the form

W = u[(iafis)® — 2, /i3 + 25— 5], (6.7)

where p is again the infinitesimal shear modulus. It is easily shown that the
pressure—radius relation is given by

p=a(l-add), @ =1/A% (6.8)

Thus, a >0 for 1 <4 <. It is easily shown that 5(4) has a single turning point
and that p— 0 as A— o,

In Fig. 1 we plot the above nondimensionalized pressure—radius relations for
each of the three materials introduced in this paper and for the Blatz—Ko
material. All these materials have a common qualitative feature: each plot has
only one turning point. The differences are more striking however: the Blatz—Ko
material does not admit a pressure at which the balloon bursts; materials of type

0.8
VRN
/ N
//"\ \ ———- Type IV
7' N T Type V
0.6 / \“ ——- Type VI

° /“/ \‘ —  BlatzKo
g |/ \
a

/

0.4] \
/
|

0.2 \

\

125 150 1.75 200 225 250 275 3.00
Stretch

FiG. 1. Pressure—radius relations.
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IV burst at a nonzero pressure and finite stretch, whereas materials of types V
and VI will burst at a finite stretch when the value of zero pressure is reached on
the strain-softening portion of the curve.

7. Spherical eversion

In Armanni’s significant paper [7], both spherical inflation and eversion were
considered for the Armanni material defined by (5.1). Motivated by this, we now
consider spherical eversion for materials of types IV, V, and VI.

A deformation with spherical coordinate representation

r=F(R), 6=n—-6, o=, (7.1)
with dr/dR <0, describes eversion of a sphere. The deformation gradient tensor

has physical components

dr r r

F =di (_ y T 0 _); .
diag R "R'R (7.2)
and a polar decomposition of F yields the stretch and rotation tensors in physical
components, as follows:

R=diag(1, -1,1), (7.3)
. dr r r
V= dlag(—dR,R,R). (7.4)
We first note that, for deformations of the form (7.1), we have
4R 4
div(i;'V)=—, div (tr V7'1— V“)=;, (7.5)

and consequently the equation for the determination of the radial deformation
field will not be independent of material constants for each of the materials of
types IV, V, and VI. In fact, the equations of equilibrium reduce to the following
forms.

Materials of type IV:

c22R?* + ¢32rR + ¢,(3r* — 2Rrf — PP R* - 2R?*r7) = 0, (7.6)
Materials of type V:
C22R* + c32rR® + ¢1(2r°FR — 2r°R% = 3r*R*? — r*) =0, @7
Materials of type VI:
2R + ¢2rR? — ¢, (PR% + rR*? + r*) = 0. (7.8)

Closed-form solutions to (7.6), (7.7), and (7.8) are not immediately obvious. We
will use the substitution introduced by Armanni [7]:

t=—R#/r. (1.9)
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The above equations can then be written as follows.
Materials of type IV:

C22R?+ ¢c;2R + ¢,r*(3 — 32+ 2R1) =0, (7.10)
Materials of type V:
c2R*+ c;2rR* + ¢, r* (2Rt — 4t - 5 - 1) =0, (7.11)
Materials of type VI:
C2R*+ ¢;2rR* + ¢,rP(Rt —t — 22 — 1) = 0. (7.12)

An examination of (7.10), (7.11), and (7.12) reveals that (7.9) reduces the
equations of equilibrium to an ODE of the first order in ¢ for all the materials of
interest when

C2=C3=0, Cl>0. (7.13)

However, we see that these conditions are not admissible for materials of type IV
from (3.4),. We proceed now assuming (7.13) to hold for materials of types V
and VI and obtain the following closed-form solutions describing the radial
displacement field for spherical eversion for these materials.

Materials of type V:

_ Cle
1 +tan*(3 InRc,)’

(7.14)

Materials of type VI:

= aR
1+tan* (3/7 In Rc,)’
where ¢, and c, are constants of integration. Equation (7.15) is essentially the

same equation as that obtained by Armanni [7] except that a mistake was made in
the integration in [7]. The solution (7.14) appears to be new.

(7.15)

8. Cylindrical inflation
Deformations having cylindrical coordinate representation

r=#(R), 6=6, z2=vZ, 8.1
with dr/dR >0 and y >0, describe radial expansion or compaction of hollow

cylinders with axial stretch y. The deformation gradient tensor and the stretch
tensor have physical components

F=V=diag (% é, y), (8.2)
and the principal invariants are
T T () L A e 8.3)
dR" R R"7T/JAR™ 'R RdR
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Deformations having a coordinate representation (8.1) identically satisfy (2.4),
and the equations of equilibrium therefore have the form given by (2.5) where
now Vis given by (8.2), and i, i,, and i; are given by (8.3). We then find that the
radial deformation field describing cylindrical inflation (and compression) is given
by the equations below for materials of types IV, V, and VL

Materials of type IV :
R 1\ ¥ n o1 r
(B )4l (1+5) - L (24 1) =0 .
r y/ r y/ R YR &4
Materials of type V:
T 27 2 yPr yr
2r(R+ y) + R R + . —RZ—O, 8.9)

Materials of type VI:
2 +——25=0. (8.6)

In a recent comprehensive treatment of the substitution (4.2), i.e. t=R¥F/r,
Horgan [12] has shown that, for the materials considered by him, this substitution
reduces the equation for the radial displacement field for both spherical and
cylindrical inflation to an ODE of the first order. For the materials considered in
this paper, we have already shown how (4.2) similarly reduces the equation
describing spherical inflation and allows a closed-form solution to be obtained.
Surprisingly (4.2) does not reduce the equations describing cylindrical inflation to
an ODE of the first order for materials of types IV and V, and equations (8.4)
and (8.5) do not have obvious closed-form solutions. Use of (4.2), however, does
reduce (8.6) to a first order ODE, and the form of the radial deformation field
describing cylindrical inflation for materials of type VI is easily shown to be

C 2
=2 (R'+D), (8.7)

where C and D are constants of integration.
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