彈性力學 1999 第一次作業

$$
\begin{aligned}
& F=R U=V R \\
& F=\left[\begin{array}{ccc}
1 & 2 / \sqrt{3} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& U=\sqrt{F^{T} F}=\left[\begin{array}{ccc}
\sqrt{3} / 2 & 1 / 2 & 0 \\
1 / 2 & \frac{5}{2 \sqrt{3}} & 0 \\
0 & 0 & 1
\end{array}\right], \quad R=F U^{-1}=\left[\begin{array}{ccc}
\sqrt{3} / 2 & 1 / 2 & 0 \\
-1 / 2 & \sqrt{3} / 2 & 0 \\
0 & 0 & 1
\end{array}\right] \quad V=\left[\begin{array}{ccc}
5 \sqrt{3} / 6 & 1 / 2 & 0 \\
1 / 2 & \sqrt{3} / 2 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

SVD decomposition

$$
\begin{aligned}
{[F] } & =\Phi \Sigma \Psi^{T} \\
{[F] } & =\left[\begin{array}{ccc}
0.866026 & 0 & -0.5 \\
0.50 & 0 & 0.866 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
1.7321 & 0 & 0 \\
0 & 1.00 & 0 \\
0 & 0 & 0.5774
\end{array}\right]\left[\begin{array}{ccc}
0.50 & 0 & -0.866 \\
0.8660 & 0 & 0.5 \\
0 & 1 & 0
\end{array}\right]=\Phi \Sigma \Psi^{T}
\end{aligned}
$$

Prove that

$$
\begin{aligned}
& {[R]=\Phi \Psi^{T}, U=\Psi \Sigma \Psi^{T}, \quad V=\Phi \Sigma \Phi^{T}} \\
& F \psi_{i}=\sigma_{i} \phi_{i} \\
& F^{T} \phi_{i}=\sigma_{i} \psi_{i}
\end{aligned}
$$

and discuss its geometric meaning．
Physical explanation：
$F\left[\begin{array}{lll}\psi_{1} & \psi_{2} & \psi_{3}\end{array}\right]\left[\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right]=R U\left[\begin{array}{lll}\psi_{1} & \psi_{2} & \psi_{3}\end{array}\right]\left[\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right]$
$F \Psi\left[\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right]=R \Psi \Sigma\left[\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right]$
$F=R \Psi \Sigma \Psi^{T}=\Phi \Sigma \Psi^{T}, \quad F=R U=R \Psi \Sigma \Psi^{T}$

