1．Given a circular bending deformation

$$
\begin{align*}
& x_{1}=\left(\rho-X_{2}\right) \sin \left(X_{1} / \rho\right) \tag{1}\\
& x_{2}=\rho-\left(\rho-X_{2}\right) \cos \left(X_{1} / \rho\right) \tag{2}\\
& x_{3}=X_{3} \tag{3}
\end{align*}
$$

where ρ is a radius of curvature．Please answer the following questions．
（a）．Is this plane deformation only？（5 \％）
（b）．Find the deformation gradient F ．（5 \％）
（c）．Find the right Cauchy－Green strain tensor C ．（10 \％）
（d）．Find the displacement gradient tensor H ．（10 \％）
（e）．Find the Lagrangian strain tensor L．（10 \％）
（f）．Find the infinitesimal strain tensor ϵ ．（10 \％）
（g）．Find the infinitesimal rotation tensor Ω ．（10 \％）
（h）．Find the rotational vector ω ．（10 \％）

2．Conventionally，the deformation gradient F was decomposed by

$$
\begin{equation*}
F=R U \text { or } F=V R \tag{4}
\end{equation*}
$$

where $\mathbf{d x}=F \mathbf{d} \mathbf{X}$ ．In the course，we present new concept of singular value decomposition （SVD），

$$
\begin{equation*}
F=\Phi \Sigma \Psi^{T} \tag{5}
\end{equation*}
$$

Please determine the relation of R and Φ and Ψ ．（10 \％）Also，if we introduce two new vectors，

$$
\begin{equation*}
\mathbf{d y}=\Phi^{T} \mathbf{d x} \text { and } \mathbf{d Y}=\Psi^{T} \mathbf{d} \mathbf{X} \tag{6}
\end{equation*}
$$

please determine the formula between dy and dY．（10 \％）Please explain the physical， geometrical and numerical meanings for this transformation．（10 \％）

3．Given the deformation gradient，F ，please write down the procedures to derive Φ, Ψ and Σ ，such that（10 \％）

$$
\begin{equation*}
F=\Phi \Sigma \Psi^{T} \tag{7}
\end{equation*}
$$

