DErIvATIONS OF INTEGRAL EQUATIONS OF ELASTICITY

By Hong-Ki Heng' and Jeng-Tzong Chen?

Apsthact:  In this puper. we derive the integral equations of clasticity.
which may be considered 1o be a very general formulation for solutions
of (eracked and uncracked) elasticity problems. The formulation is
general enough to be a starting point for an analylical study or for a
numerical treatment. The theory can be developed cither by uwlilizing
Hetti's law or the weighted residual method, or directly reserting to
physical meaning, as in the potential theory. To show that the results of
the derivations arc consistent with one another, we also prove four
lemmas of the properties of the kernel functions. The derivations are
continued by applying two commutative operations, traction and trace,
leading naturally 1o the concept of Hadamard principal value, Conse-
gquently, singularity. often present in problems involving geometry
degeneracy, causes no particular difficultics. Finally, we employ two
examples Lo demonstrale the usefulness of the resulting dual boundary
integral equations in both analytical and numerical solution proccdures.

INTRODUCTION

Interest in the mathemalical theory of integral equations developed in
the years following 1900 after the Swedish geometer E. I Fredholm
developed his remarkable theory. The subject Mourished tfor some 40
vears. This was followed by decreasing activity, which lasted about 30
vears, until the advent of clectronic digital computers provided a stimulus
to a renewed interest in the subject (Elliott 1980} Today, under the
headings of functional analysis, numerical analysis, and finite element,
approximation theory lurther promotes the study of integral equations; in
particular, the so-called boundary-element method {BEM) has been draw-
ing much attention. As a prelude 1o a modern BEM treatment of elasticity
prablems, Rizzo (1967} prescnted his formulation of the so-called “direet
method’” of linear elasticity based on Somighana’s identity. The boundary-
integral equation obtained represents a compatible relation between the
traction and displacement on the boundary. To solve the integral equation.
Rizzo was able to obtain a systcm of algebraie equations for the boundary
unknowns upon employing a systematic discretization technique. The
traction and displacement fields can thus be calculated from the integral
cquation after the solutions for all the boundary unknowns have been
obtaincd. On the other hand, even earlier, in 1965, a scemingly different
approach, the so-called ‘“indircct method,™ in essence first presented by
Lauricella (1909) (Muskhelishvili 1953), was put Torth by Massonnet {1965)
and Kupradze {1965). In this approach, the region of interest is embedded
in the infinite domain. which has the same material property as the original
and the material of which must be hamogencous throughout, and in which
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Green's functions of a point load source or a dislocation source are
obviously much more casily determined.

The dircct and indirect methods will be reexamined in this paper: they
are shown 10 be cquivalent when investigated under our formufation of
dual integral cquations. This system also provides a genuinely correct
formulation for solving boundary value problems ol elastic media with
cracks. In this regard, it may be recalted that an insurmountable difficulty
inthe use of conventional BEM crack modeling stems [rom o muthematical
degeneracy in the BEM formulation when both upper and lower crack
surlaces lie in the same location. The cguations Lor the peints at the upper
surlace ol the crack are dependent on and even identical 1o those al the
lower, und, us o conseguence. the formulation is insufficient Lo sceurg 4
unique solution; indeed. it results tn infinitely many solutions. In a
numerical calculation, this is evident in a vanishing determinant or
algebraic singularity of the coefficient matrix of the discretized governing
cquations (Cruse 19733,

However, some special techniques have been devised to salve this
ditficulty, Among others, the special Green's function methods (Cruse
1973) and the zone method {Ligget and Liu 1983) may be worth mention-
ing. The special Green’s function method is applicd to problems with a
dominant crack of so regular a shape that the free-space Green's [unclion.
which sulislies the lruction-tree boundary candition on the crack surfuce.
is uvbtainable, The zone methad introduces artificial boundarics in the
intact area 1o connect cracks and the boundary and thus divides the
domain into zones such that no cracks appear in the interior of cach zone
Compatibility and cquilibrium are then enforced on the artificial bound-
arics to restore approximate intactness. The drawback of this latter
method is obvious in that the introduction of arlilicial boundaries is
arbilrary, nonunigue., and thus not qualified 45 an automate scheme. Also,
it results in a larger system ol equations than needed.

Although the alorementioned special techniques are available. it is clear
that there exists in the theory of elasticity a4 lundamental problem of a lack
of a general integral formulation Tor problems of an elastic body with
degenerate geometry that encloses no area or volume. For this, if we start
from the other end and examine carefully exact solutions of a handtul of
crack problems. we may be motivated o realize that a single integral
equation of elasticity such as the Somigliana identity 15 too slim to solve
reneral elastic crack preblems. The observation leads us to seek an
additional integral equation, finally reaching the so-called dual integral
equations. Owing 1o iis generality the doal integral equations may be
deemed as a pair of [undamental formulations of the theory of clasticity
and linear clastic Itucture mechanics.

In the following sections we first derive the Somigliuna identity and then
apply the traction operator to the identity (o vield a seeond equation. The
resulting two equations, being independent. are referred to as the domain
dual intepgral equations. which after the application of a trace operalion of
extension to the boundary becomes the dual boundary integrul equations.
We also prove Tour lemmas of the properties of the kernel Tunctions of the
integral cquations and (he commutativity of the two uperations of traction
and trace, with which we are thus able to show the consisteney of different
approaches of derivaiions. Finally. an analytical example and @ numerical
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BEM cxercise are given to demonsirate at an elementary level the
applicability of the dval integral equations.

DerivaTiONS oF DuaL Domain INTEGRAL EQuaTioNs

tn this scetion we derive through three different approaches dual integral
equations for domain points for general elasticity problems.

Betti’s Law
Let (b, . z,. ) and (b7, 1F, &¥) be two equilibrium states 1n a linearly
elastic body where b, . #7 — the body forces: 1., ¢f — the boundary

(ractions: and i, . n¥ = the displacements. Betti's law of reciprocality gives

J (e T — b dV — f (tf widdB o (1
1} i

where I? = a domain with boundary 8. [t can be recast into the theory of
sell-adjoint operator £ simply as

Chr vh = Ll e (2)
where

A _
N S

Il the lincarly elustic material is isotrapic. the operator X is expressed
explicitly as

1"_)&-’; —{h = GJr')‘;- fJ__I- + (;6“ iy, 7 (4}
while 3 — the traction operator defined by
B'f-."— = M ‘-j_.' -~ (i r"fd,:l':.‘_.' + 6_:-,-”& b e {3}

where A and G — Lame's constants: #, = direction cosines ot the unit
outward normal to the boundary: &, = Kronecker deltas and @, — the
partial differential operator. For an anisolropic material, the expressions
for £, and B, can be found readily, too. Note that the cquations of
equilibrium. D, + b, — 0 and Dyt 2 b7 - 0 1, and the Cauchy
formulas. By, = 7, and By — tfon B.and af = i, have been used in
arriving at Eq. 2.

To elaborate Eq. 2. we state explicitly that if D € Rz — 1. 2. 3)is a
regular or otherwise appropriately conditioned domain with adequaiely
conditioned boundary B. and it the functions #;x) and o {x1 are elements of
¢HDY O CHD)Y or an appropriate Sobolev space and have a boundel
support. then

f (o Dyety — 1 Dy dV = J By — B dB oo (6
3 i

If & is unhounded, the condition of bounded support can be replaced by a
radiation condition.
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Now choose specifically:

(7x) = Bylxlu(x) = BulxdUpdx, slefs) = Tylx, sdefs) . o ... (7)
bix) = ~ Dylxiox) = —Dydx)lUgfx. shefis) — dix, slefsh oo o oL (%)
ufx) — ) = Ugle, shedsd o (9}

where Uy, s) and T {x. s} = the free-space Green's funclions (or
fundamental solutions) of displacement and traction. respectively, duc Lo &
concenlraled load in the j-direction at the point s; and ef(s) = an arbitrary
unit-concentrated load at the point s. Then we have Somigliana's identity
{Banerjee and Butterticld 1981); if &, — 0. then

f [Lgx, shnly = Tilx, shudx)] dBixy = nix). Wy € D oL L. (10a)
B

f [Tylx, shix) — Tidx, shefxY] dB(x) =0, tse D...... ... (108)
B

which, for later comparison purposes, is changed to

j [Ug e, XInds) — Teds, Xuds)] dB(s) — wix), fx e D ... (1la)

B

f [Ulv. x)e8) — Tils, xhids)] dBis) = O, fxs Do, .. (116}
B

In deriving Eq. 10 we have omitted the unit vector ¢¥from both sides of the
cquation because of its arbitrariness, Now, in order to have an additional,
independent equation, we apply the traction operator B, to Eq. 11 and
define

Bp,'(l')[(.z"“(.\', Y)J = Llfl-p{.ﬁ‘. ' (1)
Bulx{Tids, ¥ = Mls.x) oo (13)

It then follows thar

f [LM,(J.‘. s — Myl xhgds)| dBls) = 1,000, tx e D ... (lda}
R

f [Lepls, x)inls) — My ls, xhmtst] dRis) = 0. fx =D .. .... . {14h)
R

Egs. la und 14 are the dual equations (Buecker 1973) for any point v in
the domain.

Weighted Residual Method
Consider the problem, as in Fig. 1. with the governing equation:
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FIG. 1. Classical Elasticity Problem
Dy(xuxi =0, fxe D . oo {15)
and the boundary conditions:
st — flx), FxonB, (16a)
=8, iTxonBs .. (165)

where [ s delined in Eq. 4: (7 ) = a prescribed value at the boundary:
and B = B, + B,.

In solving the given boundary value problem, the vanishing right-hand
side terms arc practically not zero and have some errors or residuals R,
R5 . and R, . In the weighted residusl method, the residuals are minimized
with respect to preselected weighting functions W, , W, , and W, | respec-
tively, as in the following manner:

f WidxiDyuix) dVix = J Wt [w () — fdx)] dBix)
D E.

- f W“ﬁ”l_f;(\.) fg{‘JJ dBIXY e {17}
&

This statement of minimizing weighted residuals is a very peneral one
{Brebbia et al. 1984); we shall sce immediately thul Eqs. e and 140 are
mercly special cases of Eq. 17, Setling v, = W, and o, = W, in Eq. 6. the
right-hand side of Eq. 17 becomges

f W\ Dy, dV = f Dy Wy dV + f W By, dB — f B, W, dB
fal I I H
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= f H,'I)E_,; WI” dV — J H’:]r'f..' df + f u’r”f; dh
L H Ligs

- f fll'l.'BU W’”{,Y} dB{.\'] - f H.‘l'?,:.l-' H'f” dB .................... (18)
i Fig)

upon taking the boundary conditions (Egs. 16} into account. Substituting
Eq. 18 into Fg. 17 and considering Lygs. 5a, 7. 8. and 15 and that

Wlvr = Walxd = Uda, slegls) oo (19¢)
D”[\} W l__."(-\-} = D,:J:(.l' }(}':;;‘ (.l'.. Rl }{’&-{.\' ] - 6,‘,-" '..\'. 51 (”A{._\' ] .............. [ | QhJ
Bilx)W\{x) = Walx) = Boll/yle, sheids) = Tylx, seeds) oo (19c)

Since ¢,(5} s 4 unit-concentrated load at point 5. we cancel the same terms
and finally have

J Uigdx. shefx) — Tulo, shds) dBly = apds) oo (207
B

which is exactly the same Somigliana identity as given in Eq. 10q.
On the other hand, upon choosing another set of weighting functions

E’“ =L Shells) o {21e)
}X” =M v o w1eRs) oo (21h)
Eg,r- =Ll slefls) Lo 21¢)
wce have

Wil D dViv) = [ e (v HD W x) VX
D Jo -

+f W B, uix) (.*'B’l'_x_}—f HANIB W LX) dBix]

B E
= [axd fdx)]Wadvd dBIx} — f [F1xt — i W) dBY L. (22
i3 - B o

which duc o Egs. 12 and 13 becomes

Bf?_.-('.s'}[ f Widx) Dy, rﬂ"’{_r)] — Bm{s}l[ j HANID; Widx) Vi)
n I

‘?‘J’ W Bjilx) a’B{_.\‘]—f OB W ix) r."e‘?f.\::}
I b Leemreimieeed|
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TABLE 1. Meanings of Fundamental Solutions; (/) = in j-direction

Fundamental Source Field '
salution point Type point Type
() i€ {3) 4] i)
S| v Toaiwd 158 v [isplucement 4§t
[l 5 Dislocativn () v THspliacement {1
{0 B Loud 778 v Tracrion /]
T ¥ Laisluncitbion 171 . Traction 1)
— 8,5} f vt — wA ) Wadx) o Biv)
I
- f [fic) — I ]Widn) dBivy ¢ o (23)
B
In this way there emerges the equation;
f [ lvs shrld — Mylas shedx) T dBld — ) oo 0 o (24}
I

Thus we obtain Eq. 14« again.

Betore leaving this scetion, we note that Eq. 17 1s of value not only inits
generality. but also because it can serve as a bridge for o coupled use ot the
BEM and the finite-clement method (Brebhia 1984).

By Physical Meaning

The method to be presented is based on the superposition principle duc
to the linear operator theory and can bhe understood easily in physical
sense. It may be catuloged under the theory ol potential. In BEM
erminology. it is frequently called the indirget method. First, we deter-
mine four [ree-space Green's lunctions or fundamental solutions as shown
in Table 1. Then invoking the superposition principle. we have

tdx) = J Liglx. sidids) dBLyY - J’ idlx, sWigts) oBisy o000 L (25)
B I

tily) = j Tily, vichyis) dBis) + [ Pl shbgds) dBisY L oL {26)
B Je

Here the load difx) on the boundary B must be understood to be the
relative traction, i.e.. the dillerence berween the traction applicd on the
boundary to the domain £; under consideration and that applied to the
exterior £, which is 4 complement 1o the considered domain. If the
traction applicd to the exterior is assumed (0 vanish. us shown later in the
right-hand side of Eq. 276, the load &,(5) of Eq. 20 becomes the traction
r03) applicd 1o the domain considered. Simularty, 1 Egs. 25 and 26, the
dislocation U, (s) on the boundary is synonymous with the relalive displace-
ment and can be interpreted to be the displacement «,(5) of the point 5 of
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the bounding boundary of the domain that is bheing considered if the
displacement of the boundary hounding the exterior is taken (o be zero, as
will be shown in the right-hand side of Cq. 285, Thus

f Ciplx, s)s) dBs) + f U fdx, singdst dB(s) = ndx, itre D (27

P B

f Ulx, $itds) dBis) + f Ui, shuds) dBis) =0, ifacpH, .. 27h)
R R

f Tatx, s ds) dBis) ~ f TH{x, sluy(x) dBisy = 11x), ifxe Dy, (28a)
B B

J- Tyix, sitds) dB(s) ~ f ThHix, shuy (s} dBlsy =0, ifxeD, .. (28b)
B B

We note that the kernel functions of Eqs. 11, 14, 25 and 26 appear 1o be
different in the orders of subscripts and arguments; however, we shall soon
see in the [ollowing section, where we will prove four important theorems,
that they are gquivalenl in cssence.

Four LEmmas AND CoONSISTENCY OF DERIVATIONS

To show the consistencies of Eqgs. 11 and 25 and of Egs. 14 and 26,
which are derived from ditferent approaches. we must prove the following
four lemmas:

Lemma {ay: e, s)=0ds0x) oo e {29}
Lemma (b Uf(r, sh= —T, (s, 0) ... .. ... ... ... ... {29h)
Lemma (e} Tylx, s)=Lda.x) oo o o oo (29¢}
Lemma {d): Tilx, s)— —Mgds, x) o (29c)

Lemmas (a) and (b} can be proved using Betti's law. T.emma (a) is well
known in literature and its proof is skipped herein.

To prove lemma (b), we divide the infinite domain by an imaginary
boundary B into D' and D . Let s € D, ; then both Eq. 114 and Eq. 116
still hold, reading

f LUu(s. i (8) = Tyl xu, ()1 dBlsY = mlx) oo {3}
H

J- [0, xdty )+ Tods, qdu ()] dBlsy=0 ... . .o ... (304

B

where T, (s, x) 15 associated with #7(s). Addition ol Eqs, 30« and 306 gives

f Pty 2l e 051+ 8 153) = Fois, (o {51 — o s Bl =mlxr o000 {30
n
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I wg (s} — 0 dx) = B 0s xDand £7(s) — 1, (0) = 0, Le.. if 4 dislocation
source in the j-direction is applied at x', then w(x) = Lix, x') by definition,
and thus Eq. 31 becomes

Tax V= UB, X} o e (32)

which is identical to lemma (h),
Alter the proof of lemmas (a) and th), we are in a position to prove
lemmas () and (1}, By definition of Eq. 12 and using lemma (a), we have

Lipls, x) = B[ LAs. 0] o ooo o (33a)
Lipls. x)= HP,-{).'}[U,-;.{.\'._ S (33h)
Lipls, X) = Dol 8] o0 v {33¢)
Similarly, by detinition of Eq. 13 and lemma (b)

Mos, )= BTds, 0T oo {34en
Mils.x) = Bl Ulile, )] oo (345}
Mls. )= —Thix,s) o (34¢)

This completes the proof of the four lemmas.

It is worthy noting that, in real caleulations, only three kernels need to
be determined because of lemma (¢}, We also note that from the preceding
it can be shown that

B[ Upln, s =Talx, 8) oo (35a)
By )Unlrs 3] = —UB0E S} oot (35h)

This subtle result cautions us that the traction derivilive ol an influence
function with respect to the coordinate of the ficld point x does indeed
represent another influcnce function, which describes the state of a
different response due to the same sigularity source. On the contrary, the
traction derivative of an influence function with respect 10 a source point
coordinate is anather influence function of the sume response as the
original influence function but due (o a different sigularity source (Heise
1978).

DervaTions oF DuaL Bounpary INTEGRAL EQUATIONS

In this section we derive bounduary integral equations for problems of
elastic medin with or without eracks. For the inlegral equations derived in
the previous scetions to be useful. it is very important for us to be able to
move the point for which the equations arc wrilten to the boundary. Since
in doing so, the resulting cquations involve boundary unknowns, this
makes one less dimension to the problem and thus greatly lowers the
demand on computation time and storage space. This desirable fealure is
nol at all trivial for solving real problems and deserves intensive study, As
we shall see later, the concepts of principal vahies and the trace operalor
of extension help contribute ta the success achieved herein. For clarity, we
will retain a few duplications that have alrcady been presented in the
derivation of the domain equations.
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Brirect Method

By direct method, we are referring to methods based on a relationship of
reciprocality {lor the elasticity examined here. Betti's law) or a variational
approach such ay the weighted residual method already discussed. ‘There
the domain integral cquations. Eqs. 11 and 14, are good for 4 point on the
interior or cxterior of the domain. When we move the point to the
boundary, we are immediately contronted with the problem of singularities
and improper integrals.,

It is well known that Eq. 11a, where x & ;. thus becomes

f Uigis, virgad dBis) + Pyadar OPV f Toas o xlugab dBisy — Bpeind oo oL {36}
o T

where v € B. and Eq. 115 where v & D, becomes
I Eids. Xiia) dBisi + 1 =8, ~ Byt — CPY [ P, vinisl dBisi=0 L (37)
i LB

where ¥ & B. ;4v) depends on the solid angle and on the configuration of
the corner at x of the boundary and on Poisson’s ratio of the materal of the
budy . Al a smooth boundary. B, reduces to 1/2 §,. Hartmann (1981,
1982) contains a detailed discussion on the subject. We note that no matter
where v comes from. the resulting equations, Egs. 36 and 37. are identical.
setiing ¢ — &; — By . Egs. 36 and 37 become

ety = f Lias, x)tis) dBis) - CPV j Tols, Yimgts) dB{s1 ... L. (38}
i B

where the point v is located on the boundary. and CPV = the Cauchy
principal value. Now applying the traction aperator to Fq. 3%, and noting
that

,4x) f Upds, xhglsh dBish = B (1) I Lds. xindsy dBix)
B B B

=PV f Ligls, Xleds) dBOY - (39)
i

where the first eguality results {rom the integral over the small detour at
x € B, ., where B, = a small spherical or circular detour of radius ¢ and
cenler al v, vanishing, and the sccond equality stems from the boundary
terms due Lo the traction operation using Leibnitz” rule canceling them-
selves out, and defining that

B,ix]| CPV f Titse xhads) dB(s) | = HPV f Mein, xlg(s) Byl {40}
R "
we have

Caitdy) = CPV f Ly s, x)t(s) JBls) HPVJ’ M s, Ylindsy dB(s} (41)
f i
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where x is on the boundary: and HPY — the Hadamard principal value
{Hadamard 1932), Fgs. 38 and 41 are the dual boundary integral cqualions
for any boundury poinl,

Indirect Method (Potential Theory)
For convenience we define

T Tl (17 T (5 (42a)
U (x) =-Ilim GOF) e (425)
U, (x) = Iim. B e e (42¢)
U= Iiﬂ.l ) e e (42¢e)

inwhichx € B,y € ), .and ; € I,. Now applying the trace operator to
Fg. 25 by taking the points of the intcrior and cxterior of ihe boundary, we
have

o= J’ L, syyls) dBis) + Bl ia) + CPV ] v, syl shdfits) oo L. (43
g

S
o= f Ll widgis) eBis) v [ 8 - PBalidxy — CPY J- Lrdie, siges) ofBist {44}
I Fid

Application of the traction operator to Eqs. 43 and 44 gives

U = B | CPY f i X, $ideisi ¢RIsE - HDPY I Tidx, shigis) dBls) ... (45)
B

SH

LT - PV J Talv, subylsd BT+ [ =8, 4 Belditad | HIY ’ Tais, wngisi gBin ... (40)
N H Ju
The reasons for the presence of B, . the Cauchy principal valucs, and the
Hadamard principal valucs are similar to those elaborated previously,
Note that Eqs. 4346 of the indirect method are very general, involving the
single-layer and double-layer potentials and their traction derivatives,

Equivalence of Direct and Indirect Mcthods

The equivalence of the direct and indirect methods can be observed by
noting the four lemmas and arranging a few equalitics. To show the
equivalence of Eqs. 11 and Egs. 43 and 44, we invoke lemmas (a) and (b)
and require that &; = t; 1 b, — . ¥ = w; ;und W' = 0. Thus we abtain Eq.
38, Similarly. to show the equivalence of Eqs. 14 and Eqs. 45 and 46, we
recall lemmas (¢) and (d) and require that &, = 7,1, = #,; U, = ;5 and U/
= (. Thus we obtain Eqg. 41.

Fraom the equivalence of Eqs. 11 and Eqs, 43 and 44, and Fgs. 14 and
Fys. 45 and 46, it is obvious that the direet and indirect methods are of
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Eq. 38 Eq. 41

Tractiun
Operation

FIG. 2. Commutative Dlagram

little fundamental difference in the sense of the dual equations (Heise
1978},

Commutativity
It is interesting to discover that Eq. 41 can also be derived by directly
applying the trace operator ol extension to Eqg. 14, Thus

epidvl = [WuY f Lods.xiis) dBisy — lim J' Mol vhngds) B 0000 oL 47}
2 iy B
Comparison between Egs. 41 and 47 reveals

HEY ( Myts, xils) dBlsy = B (x| CPV f Tiils, xlay(s) dBLs)
iy #

= lim [ M (s, viugds) dBlx) = HPV f lim M (s, ¥l {5y dB(s)  (48)
Ry B

v Rl Y

using Eq. 40 and due to the unigueness of the selution.

Remember that in deriving Eq. 41, the trace operation of extension is
taken first and then the traction operation, while in arriving at Eq. 47, the
order of the two operations is reversed. But Eq. 48 confirms that the two
cqualions are egual: thus the commutativity of the trace and lraclion
operalors is eslablished. To illustrate the idea further. a commutalive
diagram is shown in Fig. 2, in which we huve two paths to Eq. 41, When
we apply the tracticn operator to Eqg. 38 with respect to x trom path 1. it
must be noted that the upper and lower bounds of the Cauchy integral is a
function of x: the Leibnitz rulc must be uvsed, and finiteness is proved
logicaily. [n the other path (path 2). the existence of the traction derivative
of the double-layer potential is wecll known in the literature of applied
mathematics (Kupradze [979).
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ANALYTICAL AND NuMERICAL EXAMPLES

In this section we present onc ¢loscd-form solution and one anlavtical
solution to show the validity of the theory.

Consider a straight-line crack in the two-dimensional infinite domain
suhjected to an opening-up pressure £ uniformly exerted on the surfaces of
ihe crack extending from x = —1 tox = [. The formulation of the problem
is reduced [rom our dual integral equations to a Fredholm cquation

{1 —ehw{x— s

! . . I G nats)
5 Anix) = —aply]) = P=HPV f = dS . (49)

by using the symmetry conditions, Aw, = 0; and Aus = 2w, .
First, we derive the exact solution by series expansion. assuming

W

al$) — E a, Lds) L = 5% e (500

i~

where UJs) = the Chebyshev polynomials of the second kind: and a; =
constants to be determined. Substiluting Tig. 50 into Eqg. 49

( * 1 s‘
-P=——— Y HPV a: Ui, \/ A8 o (51)
[_l—v)"..'r__U o \—s)'

According to Hashmi and Delves (1982)

| J — e
CPV f Mm— N D (52)

y—x
TR

“

where T, ,(x} = the Chebyshev polynomials of the first kind. Using
Hudamard’s definition and the property of the Chebyshey polynonials

Vo Ldsin/T— s
HPV e ——— — d\
\ (s — x¥-
LoLasin/1 — 57
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Thus
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FIG. 3. Crack Profile of Numerical and Analytical Solutions

The cxact solution is
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In numerical analysis. choosing constant elements of length 27 for
interpolating «- of Fq. 49. we carry out the integration of the integrand
containing A~y v) ax detailed in the following.

L'sing a constant ¢lement scheme. we find that the integration for a
singular element v <2 [ s
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For a regular element 1x = {, the integration is

i 1 | I )
J ,(-\'_—Fd‘\ =5l _,_.\"1 T (58)

which is identical to the results for a singular element. Crouch (1983} found
ne difference in the results when basing them on the Papkovitch-Neuber
potential funclion. The numerical result is shown in Fug. 3.

CONCLUSION

In this paper, we have prescated dual integral cquations lor solving
general lincar clasticity problems of finite or infinite domain with degener-
ate boundarics such as cracks. cusps, corners, and holes of any irregular
shape. The cqualions can be viewed as 4 pair of fundamental formulations
of the theory of elasticily and lincar-clastic fracture mcchanics. The
discovery of the equalions is also important [rom the point of view of
applied mathematics.,

The main mativation for developing the dual boundary integral
equations comes from their usc in solving crack problems. Crack problems
cannot be solved without the introduction of the kernel Tj; tor M) or
equivalent forms. The absence of T is why Somigliana’s identity cannot
solve the ¢cruck problems. '

The derivation is logical: it leads naturally to the concepts of Cauchy and
Hadamard principal values. Thus, the singularily often present in problems
of this kind presents no particular difficulties: instead, it makes the
problem much more well-posed and therelore accelerates the speed of
solution.

‘The derivalion is rigorous in that it is completed from six routes, and the
results of cach of the six have been proved equivalent. The six routes
consist of three approaches, Betti's law, the weighted residual method.
and the theory of potential, and of two operations., traction und lrace. in
different orders of application.

The possible applications of the concept of dual integral equations are
obviously not confined (o the fields of clasticity and fracture mechanies.
Other areas, e.g.. potential fow around cutofl walls, acoustic waves
impinging on screen. airfoil dynamics. and magnetic wave across antenna.
have thc problem of geometry degeneracy and can be solved using
appropriale dual integral equations.
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AprrPeEnDIX Il. NOTATION

tThe following symbols are nsed in this paper:

AMEB = interscction of A and B
B = boundary;
B(B,) = traction operator in classical elasticily:
B,{x) = traction operator al x;
B, B, = boundaries with prescnbed displacement and trac-
tion, respectively:
b, b¥ —  body forces:
CPV - Cuauchy principal valuc:
cy - BU - BU:
D — domain;
D = closure of D
(N,) = linear operator in classical ¢lasticily:
F = Young's modulus:
G —  shear modulus;
HPV  —  Hadamard principal value:
#£  —  sclf-adjoint operator in classical elasticity:
s, x) = kernel function of sccond dua!l integral equation:
M,4s. ¥vJ — kerncl function of second dual integral equation;
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normal veetaor;

pressure at crack surface;

considered #-dimensional domain:

residuals;

boundary ncar boundary S

infinite boundary:

s is clement of D

& 18 nol clement of I

i-component traction at x duc o concentrated j-
direction load at s:

i~component traction at x due to j-direetion dislo-
cation at x;

tragtions;

i-component displacement at x due to concentrated
Jdirection load at s:

i-component displacement at x due to j-direction
dislocation at s:

weighting functions:

jump term;

Kronecker delta;

concentrated source at v in j~direction:

Lame’s conslani;

Potsson’s ratio;

single-layer density:

double-layer density: and

partial diflerentiation with respect to ith coordinatce.
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