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Abstract  In this paper, the two classical elasticity problems, Lamé problem and stress concentration factor, are revisited by using the null-field integral equation. The null-field integral formulation is utilized in conjunction with degenerate kernel and Fourier series. To fully utilize the circular geometry, the fundamental solutions and the boundary densities are expanded by using degenerate kernels and Fourier series, respectively. In the two classical problems of elasticity, the null-field BIE is employed to derive the exact solutions.The Kelvin solution is first separated to degenerate kernel in this paper. After employing the null-field BIE, not only the stress but also the displacement field are obtained. In a similar way, Lamé problem is solved without any difficulty.
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1. INTRODUCTION 
Engineering problems always are simulated by using the mathematical models of boundary value problem, e.g., the steady state heat conduction problem [1], electrostatic potential [2] and torsion bar problems [3] are simulated by the Laplace equation; membrane vibration [4], acoustics [5] and water wave problems [6] are governed by the Helmholtz equation; plate vibration [7] and Stokes’ flow [8] are formulated by the biharmonic equation. In order to solve the boundary value problems, researchers and engineers have paid more attention on the development of boundary integral equation method (BIEM), boundary element method (BEM) and meshless method than domain type methods, finite element method (FEM) and finite difference method (FDM). Among various numerical methods, BEM is one of the most popular numerical approaches for solving boundary value problems. Although BEM has been involved as an alternative numerical method for solving engineering problems, some critical issues exist, e.g. singular and hypersingular integrals, boundary-layer effect, ill-posed system and mesh generation.

Unlike the conventional BEM and BIEM, Waterman [9] introduced first the so-called T-matrix method for electromagnetic scattering problems. Various names, null-field approach or extended boundary condition method (EBCM), have been coined. The null-field approach or T-matrix method was used widely for obtaining numerical solutions of acoustics [10], elastodynamics [11] and hydrodynamics [12]. Boström [13] introduced a new method of treating the scattering of transient fields by a bounded obstacle in the three-dimensional space. He defined new sets of time-dependent basis functions, and use of these to expand the free space Green’s function and the incoming and scattered fields. The method is a generalization to the time domain of the null-field approach first given by Waterman [9]. A crucial advantage of the null-field approach or T-matrix method consists in the fact that the influence matrix can be computed easily. Although many works for acoustic, elastodynamic and hydrodynamic problems have been done, only a few articles on elastostatics can be found [14]. The idea of changing the singularity distribution from real boundary to fictitious boundary (fictitious BEM) or putting the observation point outside the domain (null-field approach) can remove the singular and hypersingular integrals. However, they may result in an ill-posed matrix.

In the Fredholm integral equations, the degenerate kernel (or so-called separate kernel) plays an important role. However, its applications in practical problems seem to have taken a back seat to other methods. This degenerate kernel can be seen as one kind of approximation for fundamental solution, i.e., the kernel function is expressed as finite sums of products by two linearly independent functions. The concept of generating “optimal” degenerate kernels has been proposed by Sloan et al. [15]. They also proved it to be equivalent to the iterated Petrov-Galerkin approximation. Later, Kress [16] proved that the integral equations of the second kind in conjunction with degenerate kernels have the convergence rate of exponential order instead of the linear algebraic order of conventional BEM. Recently, Chen et. al. have applied null-field integral equation in conjunction with degenerate kernel and Fourier series to solve Laplace [17], Helmholtz [18], biharmonic [19] and biHelmholtz [20] problems with circular holes. They claimed five advantages, (1) free of calculating principal values, (2) exponential convergence, (3) elimination of boundary-layer effect, (4) meshless, and (5) well-posed system, using the null-field approach. Following the successes, we extended this approach to deal with inclusion problems [21]. In the approach, the principal value is avoided and the collocating on the real boundary using the null-field formulation achieved. We also found the rate of convergence of their approach is in the exponential order. Although we used the concept of null-field integral equation, we can locate the observer point exactly on the boundary free of facing singularity due to the introduction of degenerate kernels.

In this paper, we develope a systematic approach to deal with elasticity problems with circular boundaries. The null-field integral formulation is utilized in conjunction with degenerate kernel and Fourier series. To fully utilize the circular geometry, the fundamental solutions and the boundary densities are expanded by using degenerate kernels and Fourier series, respectively. This approach is seen as a semi-analytical method, since the error stems from the truncation of Fourier series in the implementation. The advantages, free of calculating principal value, meshless and well-posed system are expected. For the circular and annular problems, the analytical solution can be obtained by using the present method. Finally, the two classical problems, one is an infinite plate with a circular hole subject to remote tension (stress concentration factor problem) and another is an annular cylinder subject to uniform pressures (Lamé problem), were given to see the validity of the present approach.

2. METHODS OF SOLUTION
2.1 Problem statements
The two classical problems in the Timoshenko and Goodier’s book [25] are revisted. One is an infinite plate with a circular hole subject to remote tension (stress concentration factor problem) and another is an annular cylinder subject to uniform pressures (Lamé problem) as shown in Figs. 1 and 2, respectively. The medium is considered as an isotropic, elastic and homogenous body. The governing equation is
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	Fig. 1 An infinite plate with a circular hole subject to remote tesion
	Fig. 2 An annular cylinder subject to uniform pressures


2.2 Dual null-field integral formulation

The direct formulation of boundary integral equation method stems from the reciprocal work theorem. We have the Somigliana’s identity [22],
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where 
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 are the Kelvin free-space Green’s function of the ith direction respons for displacement and traction, respectively, due to a concentrated load in the jth direction at the point 
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The explicit form of 
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, or so-called Kelvin solution, is
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where 
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 is the Poisson ratio, 
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 for the plane elasticity. Now, in order to obtain an additional independent equation, we apply the traction operator [23] to Eqs.(4) and (5).Then, we have
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Equations (4) and (7) are coined the dual boundary integral equations for the domain point and Eqs.(5) and (8) are called the dual null-field integral equations. When  the field point 
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 is collocated on the real boundary, the dual boundary integral equations for the boundary point (
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where R.P.V. is the Riemann principal value, C.P.V. is the Cauchy principal value, and 
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where H.P.V. denotes the Hadamard principal value. A detailed discussion for the dual boundary integral equations can be found in the original article by Hong and Chen [23] and a review article of Chen and Hong [24]. It is noted that the conventional null-field integral equations are not singular since 
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 never coincide. If the kernel functions in Eqs. (4), (5), (7) and (8) are substituted by using the appropriate degenerate (separable) kernels, we have
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It is found that the integral equations for the domain point or for the null-field point can include the collocation point on the real boundary since the appropriate degenerate kernels are used as elaborated on later.
2.3 Expansions of the fundamental solution and boundary density

To fully utilize the property of circular geometry, the mathematical tools, separable kernel (or so-called degenerate kernel) and Fourier series, are utilized for an analytical study.
2.3.1 Degenerate (separable) kernel for the fundamental solution

In order to derive the degenerate kernel, the polar coordinate is utilized to substitute the Cartesian coordinate. Therefore, the source and collocation points are expressed as 
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In order to expand the term (
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For the exterior case(
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), Eq.(15) can be expanded as follows
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After comparing Eq.(15) with Eq.(16), we obtain
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Then, we have
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Similarly, we can obtain the separable form of terms of 
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According to Eqs. (18)-(20) and (21)-(23), the degenerate kernel for the fundamental solution 
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and the three kernels (
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2.3.2 Fourier series expansion for boundary densities
We apply the Fourier series expansion to approximate the boundary displacement 
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where 
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 is the polar angle. In the real computation, only M number of terms is used for the Fourier series.

3. Illustrative examples
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The first example for verifying our formulation is an infinite plate with a circular hole subject to remote tenser. Figure 1 shows an infinite plate with a circular hole subject to a uniform tension of magnitude 
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 in the 
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 direction. The radius of the hole is 
[image: image79.wmf]a

. The problem can be decomposed into two parts by using the superposition technique as shown in Figures 3(a) and 3(b). One is an infinite plate subject to a uniform tension and another is an infinite plate with a hole. In the boundary of the hole, it needs to satisfy the boundary conditions of free traction, 
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From the boundary conditions of free traction, the traction on the circular boundary in Figure 3(b) is
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By using Eq.(24), we have
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for the problem of an infinite plate with a hole in Figure 3(b). The kernels, 
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After determining the Fouries coefficients of boundary densities, the deformation fields are obtained by substituting the coefficients in Eq.(32) into Eq.(11). The representations of displacement fields are
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After substituting the degenerate kernels, the deformation fields are obtained as follows﹕
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For another part solution in Figure 3(a), it is simulated by using a circular plate with the radius 
[image: image96.wmf]b

. When the radius 
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 approaches infinity, it is seen as an infinite plate. Based on this concept, we obtain the Fourier coefficients as shown beloow﹕
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After determining the Fouries coefficients of boundary densities, the deformation fields are obtained by substituting the coefficients in Eq.(35) into Eq.(11).The coefficients, 
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 are the rigid-body terms, and to ezros for simplicity. The representations of deformation fields are
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Although there is a free coefficient (
[image: image105.wmf]1,1

b
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), it can be neglected for the near field since the outer radius 
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 is infinity. After determining the deformation fields for an infinite plate subject to a uniform tension and an infinite plate with a hole, the total deformation fields are
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Based on the displacement fields, the stresses are easily obtained as
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By using the tensor transformation [25], the stresses in the polar coordinate can be represented as
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When 
[image: image114.wmf]a

r

=

, Eqs. (41)-(43) are reduced to
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The hoop stress distribution in Eq.(45) is the same as that of  Timoshenko and Goodier’s book [25]. When 
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. However, it is not found for the displacement fields in the Timoshenko and Goodier’s book [25]. Only Airy stress function and stress were obtained in their book. If we would like to know the displacement fields, it is necessary to calculate the strain through the Hooke’s law. Then, the displacement fields can be determined from stress by integrating the strain. This procedure may be not straightforward and is time-consuming. In the proposed approach, not only the stress but also the displacement fields can be obtained directly at the same time. In Figure 4(a), it is obvious to observe that the plate is elongated uniformly in the x-axis direction since a uniform tension is given. The parameters of the material are given as 
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. The deformation in Figure 4(b) occurs due to the boundary traction. Figure 4(c) shows the sketch of total deformation. Here, the magnitude S of the tension is 1, and the radius of the hole is 1. It can be found that the circular hole is distorted. The same result can be obtained by using the LM hypersingular formulation of Eq.(14) as well as using the UT singular formation of Eq.(13). Two alternatives are provided in the proposed formulation.
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	Fig. 4(a) Deformation of an infinite plate subject to a uniform tension
	Fig. 4(b) Deformation of an infinite plate with a hole 
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	Fig. 4(c) Deformation of an infinite plate with a circular hole subject to remote tension 


The second expamle is an annular cylinder subject to uniform pressures (the Lamé problem). In this example, the problem subject to uniform pressures on the inner and outer surfaces are considered. Let 
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 and 
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 denote the inner and outer radii of the annular cylinder where 
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 are the uniform internal and external pressures as shown in Figure 2. Then the boundary conditions are shown below﹕
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This problem was first solved by Lamé [26]. Therefore, it is also called the Lamé problem. According to the definition of the traction, the boundary conditions of tractions are
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on the outer boundary 
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on the inner boundary 
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. The unknown boundary densities of displacement can be represented by using the Fourier series
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By similarly using the null-field integral equation and Fourier series in Eq.(13), we obtain the Fourier coefficients as shown below﹕
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After determining Fourier coefficients in Eq.(51), the deformation fields of Eq.(11) yield
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In Eqs. (52) and (53), the coefficients (
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) are found in Eq.(51) and 
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) can be seen as rigid body terms. The stresses are obtained as shown below
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For the special case of zero outer pressure 
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, Eqs (54) and (55) are reduced to
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These stress distributions are the same as Timoshenko and Goodier’s solution [25]. As mentioned similarly in the Eample 1, only Airy stress function is found in their book. For the proposed approach, the displacement fields and stress can be obtained at the same time. The inner and outer radii are given 1 and 5, respectively. The uniform pressures are set as 
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. The sketch of the deformation is shown in Fig. 5. Also, another alternative of the LM hypersingular formulation of Eq.(14) can be utilized to obtain the same result in the proposed approach.
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	Fig. 5 Deformation of an annular cylinder subject to uniform pressures


4. Concluding remarks

For the elasticity problems with circular boundaries, we have proposed an analytical method by using the null-field integral formulation in conjunction with degenerate kernels and Fourier series. The advantages, free of calculating principal value, meshless and well-posed system were addressed. Besides, displacement as well as stress responses were both obtained at the same time. For the circular and annular cases, the analytical solutions were obtained by using the present method. Two illustrative examples, the stress concentration factor problem and the Lamé problem were demonstrated to see the validity of the analytical formulation. Good agreements were made after comparing the results with those of Timoshenko and Goodier’s textbook.
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Fig. 3(a) An infinite plate subject to a uniform tension
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Fig. 3(b) An infinite plate with a hole
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