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Baecklund transformations have been employed in gas-dynamics to reduce the hodograph
equations to appropriate canonical forms in subsonic, transonic and supersonic flows;
thus, for example, the important Kdrman-Tsien approximation may be generated as a
consequence of a simple Baecklund transformation of the hodograph system. Here, it is
shown that Weinstein’s correspondence principle in generalized axially symmetric poten-
tial theory emerges as a particular member of a class of Baecklund transformations
of the Stokes-Beltrami equations. An iterated form of the correspondence principle
may be used to obtain solutions to certain boundary-value problems involving axially-
symmetric deformations of an incompressible isotropic linear elastic material. Such
solutions assume an added importance in the light of recent work by Selvadurai &
Spencer, where the first order theory serves as the basis for solutions in second order
incompressible finite elasticity.

1. Introduction

THE PRESENT work falls naturally into two parts. Firstly, in Section 2, we introduce
Baecklund transformations which transform the Stokes~Beltrami system

a_¢=_y_l’a_¢’ %:ypaib’
dy ox dy ox
to the associated system
L
ay’ ox' ay’' ox’'
Secondly, in Section 3, one of the Baecklund transformations is used to facilitate the
solution of a class of axially symmetric boundary value problems for an isotropic
elastic solid. .

Essentially, this is an extension of previous work on generalized axially symmetric
potential theory by various authors; notably Weinstein (1953), Weiss & Payne (1954),
Payne & Pell (1960), Pell & Payne (19604g, b) and Burns (1970). These authors em-
ployed a particular transformation of the Stokes—Beltrami system to simplify, and
hence solve, various boundary value problems in fluid dynamics and also problems
involving the torsion of axially symmetric shafts in elasticity. In this paper we show
that the transformation employed by these authors is but one of a class of Baecklund
transformations for the Stokes—Beltrami system. Also, we show that the elastic prob-
lems considered by these authors are a special case of a wider class of elastic problems
which can be solved by employing transformations of the Stokes—Beltrami system.

1 Present address: Department of Applied Mathematics, University of Adelaide, Adelaide,
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2. The Baecklund Transformation
Transformations
u—-u*;, £ j=1,2
defined by relations of the form
ﬂr(fp 52' u, u.‘.'l, u:;; C:’ C;; u‘! u{‘:’ “g;) = 0, i = 1’ 29 31 4 (2'1)

du .
<u¢lsa—;’, ]=1,2)

were first introduced by Baecklund (1882) in connection with the transformation of
surfaces in (¢,, &,, u) space to surfaces in (&1, £32, u*) space. Their role in the trans-
formation of pseudo-spherical surfaces leaving the total mean curvature X invariant
is discussed by Eisenhart (1960: 284). More generally, “(m, 2)—Baecklund trans-
formations” of the type

ﬂl(fl’ 62! Ugy oo oy Uy, “I.Cn’ e lmrplyg .. um.Cz;
Y& ul, ... ut, uf'q, - u:,q, uf.c;, e u:_q) =0, (22
i=1,..,2m+2

ou
(u,,’bsa—{'; k=1,...,m; j=1,2)

may be applied to general linear first order partial differential equations for m
functions #,, K = 1, ..., m (in the two independent variables £, £,) of the form

tzl auu,,'h-i-kzl Buuk’h"'lzl yﬂuk+6l = 0, (i = 1, . oy m) (2.3)

where ay, Bu, Yu, 6; are functions of the &. In particular, for m = 2 (Rogers,
in press) such transformations have importance when applied to hodograph
systems in gas-dynamics and magneto-gas-dynamics (Loewner, 1950, Power, Rogers
& Osborn, 1969, Rogers, 1970). Other applications occur in dislocation theory
(Seeger, 1955), the study of long Josephson junctions (Scott, 1970), and the propa-
gation of very short optical pulses through a resonant laser medium (Lamb,
1971). Moreover, the important recent discovery that the Korteweg de-Vries equation
possesses conservation laws in addition to those of field energy and field momentum
is derived by implicit use of Baecklund transformations. Finally, certain important
results derived by Cekirge & Varley (1973) on large amplitude disturbances in bounded
media may be derived in a remarkable manner as a consequence of Baecklund trans-
formations.

It is now shown how a correspondence principle derived by Weinstein and applied
by him to torsion problems in elasticity may be generated as a Baecklund transforma-
tion on a Stokes—Beltrami system. Thus, Rogers & Kingston (1973) recently investi-
gated Baecklund transformations of the type (2.2) with m = 2 defined by

Q.= A0 +BQ+CQ, A #0,
Q, = AQ,+BQ+CQ,  [A] #0, (2.4)

)
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which transform a Stokes—Beltrami system
0 —y*°
= AQ A= , 2.5
a-ae, a-[), 2] @9
to an associated system

0 -y
Q. = AQL, A = [y,q (}; ] (2.6)

In the above, A, B, €, A, B, C are 2 x 2 matrix functions of x and y. Both invariance
and reducibility properties were exhibited and, in particular, linking Baecklund
transformations were established whengq = p+2, p # —1 and

A =X [2ex+d) y_"'l[a(xz—yz)+2(bx+d)]] ;
| —y" a(x?—y*)+2(bx +d)] 2y*(ax+b)
g = [2P+D P (ax+b) ]
— 10 ay* + (p+ Dax? +2(bx +d)]
g=[0 —ay"—(p+1)y""[ax’+2(bx+d)1] ,
~ La(p+2)y**? 2y(ax+Db)

-l el 577

where a, b, ¢ and d are arbitrary constants, except that they are assumed not to all
vanish simultaneously. If we now set

a= b == 0, d # 0,
the system (2.4) gives, for ¢,

br =2dy™"" N, ¢, =2dy "7y, 2d(p+1)y" "7,

whence
¢ =2y ""lY, p# -l 2.7
or, in the notation of Weinstein,
y{p} = C¥**'o{p+2}, p# -1 (C=1/2d)). (2.8)

Hence, Weinstein’s correspondence principle may be regarded as a Baecklund trans-
formation of the Stokes—Beltrami equations. Associated with a specific y(p) there is a
function ¢(p+2) in two more dimensions, determined up to the multiplicative constant
C. Moreover, the above approach provides a four-parameter class of correspondence
principles embodying that due to Weinstein as a simple particular case. However, it
is not our intention to exploit this interesting fact here, but rather to give a new
application of an iterated form of Weinstein’s Correspondence Principle. Thus, if
solutions of the iterated equation of axially symmetric potential theory

L) =0, (L) = futfythky™ f, L=(L)) (29)

are denoted by £, then Weinstein’s principle may be written in the form

[ oyt R, (2.10)
and induction readily establishes the result due to Burns (1967) that
[Py R, (2.11)

Burns (1970) applied this result in the case n = 2 to systematize the study of problems
involving Stokes flow of a viscous fluid past such bodies as a spindle, lens or torus



26 D. L. CLEMENTS AND C. ROGERS

The work was compared with that of Pell & Payne (1960g, b). In the next section, it is
shown that the same result may be used to solve certain small deformation problems
of an incompressible elastic material with a rigid adhering inclusion.

3. The Basic Equations

Cylindrical polar coordinates (r, 8, z) are adopted and small deformations inde-
pendent of & are investigated for an isotropic elastic solid. Consequently, the dis-
placements u,, ug, u, are related to the strains e,,, &g, 8,,, by

ou, u du,
err_E’ Eag = ;'! ez:"‘E (31)
and the dilatation A is given by
du, u, Ou
A = 4= ’ .2
or + r + 0z (3.2)

and for an incompressible elastic material, it is required that A = 0. In the absence
of body forces, the equilibrium equations reduce to

do,, Oo,,

1
=0,
or oz
60,9 669, -1 _
ar a +2 rOr - 0! (3.3)
do,, Jo,, -1 _
ar + 3 +a,r " =0.

In order to satisfy identically the incompressibility condition A = 0 the displacement

function ¥, (r, z) is introduced according to the relations
v v
u,=r“—671, u, = —r-l-E,-—l' 3.4

Now, the components of stress are given by

a(10¥,
6, = —p+2ue, = —p+2u ( )

ar\r oz
P
Oop = —p+2Uegy = —p+2ur~2 —,
dz
2
¥
O = “P+2ll3n = P+2# azzl ’

3.5)

Uro—zﬂﬁpa—)‘l}_—" ! a],
- e = 162‘1’1 16‘1’
Tre = o = H 77527 " 5r ’

Jug
Op; = 21189 = #52.
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where p is the isotropic pressure. On substitution of the stress components into the
equilibrium equations (3.3), it is seen that

u{ (E2 1)} o =0, (3.6)

u{r'l —(Ezlpl)}+—p =0, G

0%u, 10uy Up uy

E’T+r or r2 922 =0, (.8)

E*= ——-—+—5 =L, (3.9)

Elimination of p and ‘¥, in turn from (3.6) and (3.7) yields

E*Y, = L2 \¥Y, =0, (3.10)
together with
o*p 1dp d*p
2 1
Vp_ar +r6r+62_Lp 0. (3.11)
Moreover, setting
Uy = \Pz/r, (3.12)

equation (3.8) shows that
L', ¥, =0. (3.13)

It is observed that the deformation under consideration is composed of two
independent parts. Firstly, the rotational displacement (3.12) is governed by (3.13)
and gives rise to the components of stress o,4 and a,,; moreover, it does not contribute
to the dilatation and consequently is unrelated to the compressibility of the material.
Setting p = 0, ¥, = constant, the torsion equations investigated by Weinstein (1953)
and Weiss & Payne (1954) are obtained. The only distinction between the compressible
and incompressible deformations in their analysis is the presence of the harmonic
scalar function in the case of an incompressible material. Secondly, that part of the
displacement with components u, and . is governed by (3.10) and gives rise to the
components of stress o,,, 0o, 0,, and o,,. It only applies to the deformations of
incompressible materials and consequently the components of stress &,,, 64 and o,
include a contribution due to the scalar pressure function p.

In the work of Weinstein on the torsion of axially-symmetric shafts with cavities,
any surface W, = constant is stress-free and can be taken as the profile of a free
surface bounding the shaft. In the subsequent section, deformations with ¥, non-
constant are investigated.

4. Deformation of an Incompressible Elastic Material with a Rigid Inclusion

Small deformations of an incompressible elastic material containing a rigid inclusion
are considered ; the inclusion is assumed to adhere to the surrounding elastic material.
Only deformations with zero torsional component are discussed, so that ¥, vanishes;
it is apparent that the displacement field is given by the pair of relations (3.4) where
Y, satisfies (3.10).
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It is required to determine a function W, (r, z) which satisfies (3.10) in the region
r > 0 exterior to a boundary which can be of two types (see Burns, 1970) namely

(a) an arc / joining two points on the z-axis, but otherwise lying above it, or

(b) a closed curve I’ lying above the z-axis.

In fact, the analysis may be extended to cover the more general case when there are
several curves / or /' (Payne & Pell, 1960).
In the present context, since the rigid inclusion is assumed to adhere to the material,

= —— = onlor/,

where / or I’ define the boundary of the inclusion. Provided / and /' have their tangents
parallel to the z-axis only at isolated points, it is apparent that the above boundary
conditions may be replaced by
Y, = ¥, %—II;=O onlorl,

where ¥, is a constant, which is zero in case (a) and non-zero in case (b).

Finally, it is assumed that the displacement component u, satisfies the uniformity
condition

lim u, = -U,
IR|~ 0
where U is a constant and R? = r?+22; this condition converts to the requirement
lim ¥,(r, z) = $Ur?,
R}~

on ¥,. The problem for the determination of ¥,(r, z) is now reduced to the form
investigated by Burns (1970) in connection with Stokes’ flow of a viscous fluid; as a
consequence, each of the solutions presented in that paper generates the solution to an
associated inclusion problem in elasticity.

As a simple illustration, consider the case of a rigid spherical inclusion occupying
the region |R| < a. The function ¥, is conveniently represented in the form

¥, (r, 2) = 4Ur* =¥i(r, 2), 4.1
where
L2, ¥*=0, |R|>a, 4.2)
and W% = o(R?) as |R| = o, together with,
b d
¥ = 3Ur?, z—f’ =0 on |R|=a. 4.3)
The correspondence principle (2.11) may now be applied to replace W% by ® where
vt = r2U0 4.9
and @ satisfies the equation
L:® =0, @.5)
together with the boundary conditions
| ;llm o=0, (4.6)

D=1, 0 on |R|=a. 4.7

a—z=
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Once @ has been determined, the original function ¥, is given by

¥y(r, 2) = UF*[1 - (r, 2)). (CR))
The function @ satisfying (4.5), (4.6) and (4.7) may be readily found by using a method
quoted in Burns (1970). It has the form

3a a?
Or, 2) = 2(r* + 22)‘}_2(r2 +z)°

Thus, employing (4.8)

.. 2) = 3ur| 1 a’ 3a
A A T e S T et
and the stress and displacement distributions are given by substitution in (3.4) and
(3.5).

A physical interpretation for the above problem is readily given. Consider a block
of incompressible elastic material with a rigid spherical adhering inclusion occupying
the region r?+ 2% < a* where a is small compared with the dimensions of the block.
The block is resting on a rigid foundation on a plane z = constant and is subjected
to a body force (such as gravity) acting in the z-direction and having negligible effect
on the elastic material but a significant effect on the rigid inclusion. The body force
causes the inclusion to be displaced by an amount U so that the displacement v, is
given by

= Uar[a®(? +2) 74— (2 +2) ] +3Va[a* (P +2) 2= (P +2) 74, (49)
where a rigid body displacement u, = U has been superposed in order to satisfy the
boundary conditions that u, — 0 at large distances from the origin and also that
u, = U at the boundary of the spherical inclusion.

A similar analysis may be used for a rigid inclusion in the form of a spindle or torus.

5. Conclusion

It has been shown that an iterated form of a Baecklund transformation applied to
the Stokes-Beltrami equations provides a means of solving certain inclusion problems
in incompressible elasticity. Rigid inclusions in the shape of a sphere, spindle or torus
may be treated in this manner. These solutions are of interest as a basis for the
generation of second order solutions in second order incompressible finite elasticity
(see Selvadurai & Spencer, 1972).
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