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Null-Field Integral Equation
Approach for Plate Problems With
Circular Boundaries
In this paper, a semi-analytical approach for circular plate problems with multiple cir-
cular holes is presented. Null-field integral equation is employed to solve the plate prob-
lems while the kernel functions in the null-field integral equation are expanded to degen-
erate kernels based on the separation of field and source points in the fundamental
solution. The unknown boundary densities of the circular plates are expressed in terms of
Fourier series. It is noted that all the improper integrals are transformed to series sum
and are easily calculated when the degenerate kernels and Fourier series are used. By
matching the boundary conditions at the collocation points, a linear algebraic system is
obtained. After determining the unknown Fourier coefficients, the displacement, slope,
normal moment, and effective shear force of the plate can be obtained by using the
boundary integral equations. Finally, two numerical examples are proposed to demon-
strate the validity of the present method and the results are compared with the available
exact solution, the finite element solution using ABAQUS software and the data of Bird
and Steele. �DOI: 10.1115/1.2165239�
1 Introduction
The boundary element method �BEM� by discretizing the

boundary integral equation �BIE� has been extensively applied to
engineering problems recently more than domain type methods,
e.g., finite element method �FEM� or finite difference method. It is
noted that improper integrals on the boundary should be handled
particularly when BEM is used. In the past, many researchers
proposed several regularization techniques to deal with the singu-
larity and hypersingularity. To determine the Cauchy principal
value and the Hadamard principal value in the singular and hy-
persingular integrals is a critical issue in BEM/BIEM �1�. The
technique of the integration by parts to reduce the order of singu-
larity �2� is an alternative. One order of singularity is shifted to the
density function from the kernel. In this paper, instead of using the
previous concepts, the kernel function is described in an analytical
form on each side �interior and exterior� by employing the sepa-
rable kernel since the potential is discontinuous across the bound-
ary. Therefore, degenerate kernel, namely separable kernel, is a
vital tool to study the perforated plate which satisfies the bihar-
monic equation.

BIEs for the plate problems were acquired from the Rayleigh-
Green identity �3,4� and the null-field integral equations were de-
rived by collocating the field point outside the domain. Null-field
integral equation in conjunction with degenerate kernel is pro-
posed to solve the biharmonic problems with circular boundaries.
It is well known that Fourier series is always incorporated to
formulate the solution for problems with circular boundaries
�5–8�. Bird and Steele �5� presented a Fourier series procedure to
solve circular plate problems containing multiple circular holes in
a similar way to the Trefftz method by adopting the interior and
exterior T-complete sets. Either the interior or exterior bases in the
Trefftz method are embedded in degenerate kernels �9�. A bridge
to connect the Trefftz method and method of fundamental solution
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was constructed by using the degenerate kernels �9�. The Fourier
series procedure can solve the circular plate problems regardless
of the number, location, and size of circular holes. Also, Crouch
and Mogilevskaya �6� presented a method for solving problems
with circular boundaries. Their formulation is based on real-
variable approach. Mogilevskaya and Crouch �8� have used the
Galerkin method instead of collocation technique. Our approach
can be extended to the Galerkin formulation only for the circular
and annular cases. However, it may encounter difficulty for the
eccentric example. Two requirements are needed: degenerate ker-
nel expansion must be available and distinction of interior and
exterior expression must be separated. Therefore, the collocation
angle of f is not in the range 0 to 2p in our adaptive observer
system. This is the reason why we cannot formulate in terms of
Galerkin formulation using orthogonal properties twice. Free of
worrying how to choose the collocation points, uniform colloca-
tion along the circular boundary yields a well-posed matrix. On
the other hand, Bird and Steele �5� have also used separated so-
lution procedure for bending of circular plates with circular holes
in a similar way to the Trefftz method and addition theorem. They
used the so-called method of series and addition theorem. Addi-
tion theorems are re-expansion formulas for the special functions
�e.g., Bessel function, Legendre functions, surface spherical har-
monics, etc.� in a transferred coordinate system �see, e.g., Grad-
shteyn and Ryzhik Table of Integrals �7��. Bird and Steele sought
the solution of the original problem as the superposition of the
solutions for a single hole problem. After taking the limit to the
boundary of each hole, Bird and Steele got the equation that
linked the Fourier series with the known coefficients used to ap-
proximate the boundary condition with the Fourier series with the
unknown coefficients obtained from the solution process. The
Fourier series from both sides of the equation were written in the
same coordinate system, so the unknown coefficients were found
by using orthogonal properties of the terms involved in the Fou-
rier series �10�. To the authors’ best knowledge, null-field integral
equations and degenerate kernels were not employed to fully cap-
ture the circular boundaries although Fourier series expansion was
used in previous research �5,6,8,11�. Jeffery �12� and Ling �13�
adopted the bipolar coordinate system to derive the solution of
stress for the plate problems since it is recognized as the best
treatment for analyzing the biharmonic problem with two circular

boundaries. Nevertheless, an analytical approach may be hindered
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for the complicated problems with more than two holes. Develop-
ing a systematic method to solve problems with several holes is
not trivial.

The purpose of this paper is to study biharmonic problems with
circular boundaries by using the null-field integral formulation in
conjunction with degenerate kernels and Fourier series. According
to the degenerate kernels, null-field integral formulation and Fou-
rier series in the adaptive coordinate system, a linear algebraic
system is constructed by matching the boundary conditions at the
collocation points. After determining the Fourier coefficients, the
displacement, slope, moment, and shear force of the plate with
circular boundaries can be obtained by using the boundary inte-
gral equations for the domain point. In the polar coordinate sys-
tem, the calculation of potential gradients in the normal and tan-
gential directions for the non-concentric domain must be
determined with care. Therefore, the technique of vector decom-
position is adopted to deal with the problem for the non-
concentric plate. Finally, several examples are presented to show
the validity of the present method and some conclusions are made.

2 Problems Statement for a Plate
Consider a Kirchhoff plate for the two-dimensional domain un-

der the distributed load w�x�, the governing equation is written as
follows

�4u*�x� =
w�x�

D
, x � � �1�

where u*�x� is the lateral displacement, � is the domain of the
thin plate, D is the flexural rigidity of the plate which is expressed
as

D =
Eh3

12�1 − �2�
�2�

in which E is Young’s modulus, � denotes the Poisson ratio, and h
is the plate thickness. For simplicity, the clamped case is consid-
ered

u*�x� = 0, �*�x� = 0, x � B �3�

where B is the boundary of the domain and �*�x� is the slope.
Since the governing equation contains the body force, Eq. �1� can
be reformulated to the homogeneous equation by using the split-
ting method as follows

�4u�x� = 0, x � � �4�
and the essential boundary conditions are changed to

u�x� = ū�x�, ��x� = �̄�x�, x � B �5�

as shown in Fig. 1, where u�x� is the displacement and ��x� is the
slope of the plate.

3 Formulation

3.1 Integral Equation for the Collocation Point in the
Domain. The boundary integral equations for the domain point

Fig. 1 The perforated Kirchhoff plate subject to the essential
boundary conditions
can be derived from the Rayleigh-Green identity �3,4� as follows
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8�u�x� = −�
B

U�s,x�v�s�dB�s� +�
B

��s,x�m�s�dB�s�

−�
B

M�s,x���s�dB�s� +�
B

V�s,x�u�s�dB�s�, x � �

�6�

8���x� = −�
B

U��s,x�v�s�dB�s� +�
B

���s,x�m�s�dB�s�

−�
B

M��s,x���s�dB�s� +�
B

V��s,x�u�s�dB�s�, x � �

�7�

8�m�x� = −�
B

Um�s,x�v�s�dB�s� +�
B

�m�s,x�m�s�dB�s�

−�
B

Mm�s,x���s�dB�s� +�
B

Vm�s,x�u�s�dB�s�, x � �

�8�

8�v�x� = −�
B

Uv�s,x�v�s�dB�s� +�
B

�v�s,x�m�s�dB�s�

−�
B

Mv�s,x���s�dB�s� +�
B

Vv�s,x�u�s�dB�s�, x � �

�9�

where B is the boundary of the domain �, u�x�, ��x�, m�x�, and
v�x� are the displacement, slope, moment, and shear force, s and x
mean the source and field points, respectively. The kernel func-
tions U, �, M, V, U�, ��, M�, V�, Um, �m, Mm, Vm, Uv, �v, Mv,
Vv in Eqs. �6�–�9�, which are expanded to degenerate kernels by
using the separation of source and field points, will be elaborated
on later. The kernel function U�s ,x� in Eq. �6� is the fundamental
solution which satisfies

�4U�s,x� = 8���s − x� �10�

where ��s−x� is the Dirac-delta function. Therefore, the funda-
mental solution can be obtained

U�s,x� = r2 ln r �11�

where r is the distance between the source point s and field point
x. The relationship among u�x�, ��x�, m�x�, and v�x� is shown as
follows

��x� = K�,x�u�x�� =
�u�x�
�nx

�12�

m�x� = Km,x�u�x�� = ��x
2u�x� + �1 − ��

�2u�x�
�2nx

�13�

v�x� = Kv,x�u�x�� =
��x

2u�x�
�nx

+ �1 − ��
�

�tx
�ni�x�tj�x�u,ij�x��

�14�

where K�,x�·�, Km,x�·�, Kv,x�·� are the slope, moment, and shear
force operators with respect to the point x, � /�nx is the normal
derivative with respect to the field point x, � /�tx is the tangential
derivative with respect to the field point x, �x

2 means the Laplac-

ian operator, and � is the Poisson ratio.
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3.2 Null-Field Integral Equations. The null-field integral
equations are obtained by collocating the field point x outside the
domain as follows

0 = −�
B

U�s,x�v�s�dB�s� +�
B

��s,x�m�s�dB�s�

−�
B

M�s,x���s�dB�s� +�
B

V�s,x�u�s�dB�s�, x � �C

�15�

0 = −�
B

U��s,x�v�s�dB�s� +�
B

���s,x�m�s�dB�s�

−�
B

M��s,x���s�dB�s� +�
B

V��s,x�u�s�dB�s�, x � �C

�16�

0 = −�
B

Um�s,x�v�s�dB�s� +�
B

�m�s,x�m�s�dB�s�

−�
B

Mm�s,x���s�dB�s� +�
B

Vm�s,x�u�s�dB�s�, x � �C

�17�

0 = −�
B

Uv�s,x�v�s�dB�s� +�
B

�v�s,x�m�s�dB�s�

−�
B

Mv�s,x���s�dB�s� +�
B

Vv�s,x�u�s�dB�s�, x � �C

�18�

where �C is the complementary domain of �. Since the four
the kernels with the superscript “E” are chosen.

Journal of Applied Mechanics
equations of Eqs. �15�–�18� in the plate formulation are provided,
there are six �C2

4� options for choosing any two equations to solve
the problems. For simplicity, Eqs. �15� and �16� are used to ana-
lyze the plate problems. In the real implementation, the point in
the null-field integral equation is moved to the boundary from �C

such that the kernel functions can be expressed in terms of appro-
priate forms of degenerate kernels. Novelly, all the improper in-
tegrals disappear and transform to series sum in the BIEs since the
potential across the boundary can be determined in both sides by
using degenerate kernels.

3.3 Expansion of Fourier Series for Boundary Densities.
The displacement u�s�, slope ��s�, moment m�s�, and shear force
v�s� along the circular boundaries in the null-field integral equa-
tions are expanded in terms of Fourier series, which are expressed
as follows

u�s� = c0 + �
n=1

M

�cn cos n� + dn sin n��, s � B �19�

��s� = g0 + �
n=1

M

�gn cos n� + hn sin n��, s � B �20�

m�s� = a0 + �
n=1

M

�an cos n� + bn sin n��, s � B �21�

v�s� = p0 + �
n=1

M

�pn cos n� + qn sin n��, s � B �22�

where a0, an, bn, c0, cn, dn, g0, gn, hn, p0, pn, and qn are the
Fourier coefficients and M is the number of Fourier series terms.

3.4 Expansion of Kernels. By employing the separation
technique for the source and field points, the kernel function
U�s ,x� can be expanded in terms of degenerate kernel in a series
form �14� as shown in the following
U�s,x� = r2 ln r =�
UI�s,x� = �2�1 + ln R� + R2 ln R − �R��1 + 2 ln R� +

1

2

�3

R
	cos�� − ��

− �
m=2

	 � 1

m�m + 1�
�m+2

Rm −
1

m�m − 1�
�m

Rm−2	cos�m�� − ���, R 
 � �23a�

UE�s,x� = R2�1 + ln �� + �2 ln � − ��R�1 + 2 ln �� +
1

2

R3

�
	cos�� − ��

− �
m=2

	 � 1

m�m + 1�
Rm+2

�m −
1

m�m − 1�
Rm

�m−2	cos�m�� − ���, � � R �23b�
where the superscripts “I” and “E” denote the interior and exterior
cases of U�s ,x� kernel depending on the geometry as shown in
Fig. 2. The other kernels in the boundary integral equations can be
obtained by utilizing the operators of Eqs. �12�–�14� with respect
to the U�s ,x� kernel. The degenerate kernels U, �, M, V, U�, ��,
M�, and V� in Eqs. �15� and �16� are listed in Appendix A. It is
noted that the interior and exterior cases of U, �, M, U�, and ��

are the same when they both approach to the boundary ��=R�,
since the degenerate kernels are continuous functions across the
boundary. Then, the kernel function with the superscript “I”is cho-
sen while the field point is inside the circular region; otherwise,
4 Adaptive Observer System and Vector Decomposi-
tion for the Slope

4.1 Adaptive Observer System. Consider a plate problem
with circular boundaries as shown in Fig. 3. Since the boundary
integral equations are frame indifferent, i.e., rule of objectivity is
obeyed. Adaptive observer system is chosen to fully employ the
circular property by expanding the kernels into degenerate forms.
The origin of the observer system can be adaptively located on the
center of the corresponding boundary contour under integration.
The dummy variable in the circular contour integration is the

angle ��� instead of radial coordinate �R�. By using the adaptive
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system, all the boundary integrals can be determined analytically
free of principal value senses.

4.2 Vector Decomposition. Since the higher-order singular
equation is also one alternative to deal with the plate problem,
potential gradient or higher-order gradients is required to calculate
carefully. For the non-concentric case, special treatment for the
potential gradient should be given as the source and field points
locate on different circular boundaries. As shown in Fig. 4, the
true normal direction with respect to the collocation point x on the
Bi boundary can be superimposed by using the radial direction e>�

and angular direction e>� on the Bj boundary. The degenerate ker-
nels in Eq. �16� for the higher-order singular equation are changed
to

Un�s,x� =
�U�s,x�

�nx
cos�� − ��� +

�U�s,x�
�tx

cos
�

2
− � + ���

�24�

�n�s,x� =
���s,x�

�nx
cos�� − ��� +

���s,x�
�tx

cos
�

2
− � + ���

�25�

Fig. 2 Degenerate kernel for U„s ,x…

Fig. 3 Adaptive observer system when integrating the corre-

sponding circular boundaries
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Mn�s,x� =
�M�s,x�

�nx
cos�� − ��� +

�M�s,x�
�tx

cos
�

2
− � + ���

�26�

Vn�s,x� =
�V�s,x�

�nx
cos�� − ��� +

�V�s,x�
�tx

cos
�

2
− � + ���

�27�

The tangential derivative � /�tx with respect to the field point x for
the four kernels needs to be additionally derived and is listed in
Appendix A, where the normal derivative � /�nx is � /��, and has
been derived in the U�, ��, M�, and V� kernels. We call this
treatment “vector decomposition technique.” By approaching the
collocation point from �C to Bi and integrating circle Bj using the
adaptive observer system of origin Oj, the normal and tangent
derivatives can be superimposed as follows

�

��i
=

�

�� j
cos��i − � j�� +

1

� j

�

�� j
cos
�

2
− �i + � j�� �28�

1

�i

�

��i
=

�

�� j
cos
�

2
− �i + � j�� +

1

� j

�

�� j
cos��i − � j�� �29�

5 Linear Algebraic System
Consider the plate problem with circular domain containing Nh

randomly distributed circular holes centered at the position vector
c> j �j=1,2 , . . . ,N�, �N=Nh+1 and c>1 is the position vector of the
outer circular boundary for the plate�, as shown in Fig. 5 in which
Rj denotes the radius of the jth circular region and Bj is the
boundary of the jth circular hole. By uniformly collocating the
2M +1 points x on each circular boundary in Eqs. �15� and �16�,
we have

0 = �
j=1

N �
Bj

�− U�s,x�v�s� + ��s,x�m�s� − M�s,x���s�

+ V�s,x�u�s�
dBj�s�, x � �C �30�

0 = �
j=1

N �
Bj

�− U��s,x�v�s� + ���s,x�m�s� − M��s,x���s�

+ V��s,x�u�s�
dBj�s�, x � �C �31�
It is noted that we select the null-field point on the boundary in the
real computation. The selection of interior or exterior degenerate

Fig. 4 Vector decomposition „collocation on x and integration
on Bj…
kernels depends on r�R or r�R, respectively, according to the
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observer system. Besides, the path is counterclockwise for the
outer circle; otherwise, it is clockwise. For the integral of the
circular boundary, the degenerate kernels of U�s ,x�, ��s ,x�,
M�s ,x�, V�s ,x�, U��s ,x�, ���s ,x�, M��s ,x�, and V��s ,x� are uti-
lized while the boundary densities of u�s�, ��s�, m�s�, and v�s�
along the circular boundary are substituted by using the Fourier
series of Eqs. �19�–�22�, respectively. In the Bj integration, the
origin of the observer system is adaptively set to collocate at the
center cj to novelly utilize the degenerate kernels and Fourier
series. A linear algebraic system

Fig. 5 Collocation point and boundary contour integration in
the null-field integral equation
Mij ��2M+1� Mij ��2M+1� Mij ��

Journal of Applied Mechanics
�
U11 �11 U12 �12 ¯ U1N �1N

U11� �11� U12� �12� ¯ U1N� �1N�

U21 �21 U22 �22 ¯ U2N �2N

U21� �21� U22� �22� ¯ U2N� �2N�

� � � � � � �
UN1 �N1 UN2 �N2 ¯ UNN �NN

UN1� �N1� UN2� �N2� ¯ UNN� �NN�

��
v1

m1

v2

m2

�
vN

mN

�
= �

M11 V11 M12 V12 ¯ M1N V1N

M11� V11� M12� V12� ¯ M1N� V1N�

M21 V21 M22 V22 ¯ M2N V2N

M21� V21� M22� V22� ¯ M2N� V2N�

� � � � � � �
MN1 VN1 MN2 VN2 ¯ MNN VNN

MN1� VN1� MN2� VN2� ¯ MNN� VNN�

�

�

�1

u1

�2

u2

�
�N

uN

� �32�

is obtained, where N denotes the number of circular boundaries
�including inner and outer circular boundaries�. For brevity, a uni-
fied form �Uij� �i=1,2 ,3 , . . . ,N and j=1,2 ,3 , . . . ,N� denote the
response of U�s ,x� kernel at the ith circle point due to the source
at the jth circle. Otherwise, the same definition for ��ij�, �Mij�,
�Vij�, �Uij��, ��ij��, �Mij��, and �Vij�� cases. The submatrices of
�Uij�, ��ij�, �Mij�, �Vij�, �Uij��, ��ij��, �Mij��, and �Vij�� are
defined as follows
�Uij� = �
Uij0c��1� Uij1c��1� Uij1s��1� ¯ UijMc��1� UijMs��1�
Uij0c��2� Uij1c��2� Uij1s��2� ¯ UijMc��2� UijMs��2�
Uij0c��3� Uij1c��3� Uij1s��3� ¯ UijMc��3� UijMs��3�

� � � � � �
Uij0c��2M� Uij1c��2M� Uij1s��2M� ¯ UijMc��2M� UijMs��2M�

Uij0c��2M+1� Uij1c��2M+1� Uij1s��2M+1� ¯ UijMc��2M+1� UijMs��2M+1�
� �33�

��ij� = �
�ij0c��1� �ij1c��1� �ij1s��1� ¯ �ijMc��1� �ijMs��1�
�ij0c��2� �ij1c��2� �ij1s��2� ¯ �ijMc��2� �ijMs��2�
�ij0c��3� �ij1c��3� �ij1s��3� ¯ �ijMc��3� �ijMs��3�

� � � � � �
�ij0c��2M� �ij1c��2M� �ij1s��2M� ¯ �ijMc��2M� �ijMs��2M�

�ij0c��2M+1� �ij1c��2M+1� �ij1s��2M+1� ¯ �ijMc��2M+1� �ijMs��2M+1�
� �34�

�Mij� = �
Mij0c��1� Mij1c��1� Mij1s��1� ¯ MijMc��1� MijMs��1�
Mij0c��2� Mij1c��2� Mij1s��2� ¯ MijMc��2� MijMs��2�
Mij0c��3� Mij1c��3� Mij1s��3� ¯ MijMc��3� MijMs��3�

� � � � � �
Mij0c��2M� Mij1c��2M� Mij1s��2M� ¯ MijMc��2M� MijMs��2M�

0c 1c 1s Mc Ms

� �35�
2M+1� ¯ Mij ��2M+1� Mij ��2M+1�
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�Vij� = �
Vij0c��1� Vij1c��1� Vij1s��1� ¯ VijMc��1� VijMs��1�
Vij0c��2� Vij1c��2� Vij1s��2� ¯ VijMc��2� VijMs��2�
Vij0c��3� Vij1c��3� Vij1s��3� ¯ VijMc��3� VijMs��3�

� � � � � �
Vij0c��2M� Vij1c��2M� Vij1s��2M� ¯ VijMc��2M� VijMs��2M�

Vij0c��2M+1� Vij1c��2M+1� Vij1s��2M+1� ¯ VijMc��2M+1� VijMs��2M+1�
� �36�

�Uij�� = �
Uij�

0c��1� Uij�
1c��1� Uij�

1s��1� ¯ Uij�
Mc��1� Uij�

Ms��1�
Uij�

0c��2� Uij�
1c��2� Uij�

1s��2� ¯ Uij�
Mc��2� Uij�

Ms��2�
Uij�

0c��3� Uij�
1c��3� Uij�

1s��3� ¯ Uij�
Mc��3� Uij�

Ms��3�
� � � � � �

Uij�
0c��2M� Uij�

1c��2M� Uij�
1s��2M� ¯ Uij�

Mc��2M� Uij�
Ms��2M�

Uij�
0c��2M+1� Uij�

1c��2M+1� Uij�
1s��2M+1� ¯ Uij�

Mc��2M+1� Uij�
Ms��2M+1�

� �37�

��ij�� = �
�ij�

0c��1� �ij�
1c��1� �ij�

1s��1� ¯ �ij�
Mc��1� �ij�

Ms��1�
�ij�

0c��2� �ij�
1c��2� �ij�

1s��2� ¯ �ij�
Mc��2� �ij�

Ms��2�
�ij�

0c��3� �ij�
1c��3� �ij�

1s��3� ¯ �ij�
Mc��3� �ij�

Ms��3�
� � � � � �

�ij�
0c��2M� �ij�

1c��2M� �ij�
1s��2M� ¯ �ij�

Mc��2M� �ij�
Ms��2M�

�ij�
0c��2M+1� �ij�

1c��2M+1� �ij�
1s��2M+1� ¯ �ij�

Mc��2M+1� �ij�
Ms��2M+1�

� �38�

�Mij�� = �
Mij�

0c��1� Mij�
1c��1� Mij�

1s��1� ¯ Mij�
Mc��1� Mij�

Ms��1�
Mij�

0c��2� Mij�
1c��2� Mij�

1s��2� ¯ Mij�
Mc��2� Mij�

Ms��2�
Mij�

0c��3� Mij�
1c��3� Mij�

1s��3� ¯ Mij�
Mc��3� Mij�

Ms��3�
� � � � � �

Mij�
0c��2M� Mij�

1c��2M� Mij�
1s��2M� ¯ Mij�

Mc��2M� Mij�
Ms��2M�

Mij�
0c��2M+1� Mij�

1c��2M+1� Mij�
1s��2M+1� ¯ Mij�

Mc��2M+1� Mij�
Ms��2M+1�

� �39�

�Vij�� = �
Vij�

0c��1� Vij�
1c��1� Vij�

1s��1� ¯ Vij�
Mc��1� Vij�

Ms��1�
Vij�

0c��2� Vij�
1c��2� Vij�

1s��2� ¯ Vij�
Mc��2� Vij�

Ms��2�
Vij�

0c��3� Vij�
1c��3� Vij�

1s��3� ¯ Vij�
Mc��3� Vij�

Ms��3�
� � � � � �

Vij�
0c��2M� Vij�

1c��2M� Vij�
1s��2M� ¯ Vij�

Mc��2M� Vij�
Ms��2M�

Vij�
0c��2M+1� Vij�

1c��2M+1� Vij�
1s��2M+1� ¯ Vij�

Mc��2M+1� Vij�
Ms��2M+1�

� �40�
where �k �k=1,2 ,3 , . . . ,2M +1� is the kth collocation angle of
the collocation points on each boundary and the element of the
submatrices are defined as follows

Uijnc��k� =�
Bj

U�s,xk�cos�n� j�dBj�s�, n = 0,1,2,3, . . . ,M

�41�

Uijns��k� =�
Bj

U�s,xk�sin�n� j�dBj�s�, n = 1,2,3, . . . ,M

�42�

�ijnc��k� =�
Bj

��s,xk�cos�n� j�dBj�s�, n = 0,1,2,3, . . . ,M
�43�
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�ijns��k� =�
Bj

��s,xk�sin�n� j�dBj�s�, n = 1,2,3, . . . ,M

�44�

Mijnc��k� =�
Bj

M�s,xk�cos�n� j�dBj�s�, n = 0,1,2,3, . . . ,M

�45�

Mijns��k� =�
Bj

M�s,xk�sin�n� j�dBj�s�, n = 1,2,3, . . . ,M
�46�

Transactions of the ASME



Fig. 7 Flowchart of the present method
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Vijnc��k� =�
Bj

V�s,xk�cos�n� j�dBj�s�, n = 0,1,2,3, . . . ,M

�47�

Vijns��k� =�
Bj

V�s,xk�sin�n� j�dBj�s�, n = 1,2,3, . . . ,M

�48�

Uij�
nc��k� =�

Bj

U��s,xk�cos�n� j�dBj�s�, n = 0,1,2,3, . . . ,M

�49�

Uij�
ns��k� =�

Bj

U��s,xk�sin�n� j�dBj�s�, n = 1,2,3, . . . ,M

�50�

�ij�
nc��k� =�

Bj

���s,xk�cos�n� j�dBj�s�, n = 0,1,2,3, . . . ,M

�51�

Fig. 8 An annular plate subject to the essential boundary
conditions

Fig. 9 The contour plot of displacement for the annular plate
subject to the essential boundary conditions by using a differ-
Fig. 6 Boundary integral equation for the domain point
ent method
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�ij�
ns��k� =�

Bj

���s,xk�sin�n� j�dBj�s�, n = 1,2,3, . . . ,M

�52�

Mij�
nc��k� =�

Bj

M��s,xk�cos�n� j�dBj�s�, n = 0,1,2,3, . . . ,M

�53�

Mij�
ns��k� =�

Bj

M��s,xk�sin�n� j�dBj�s�, n = 1,2,3, . . . ,M

Fig. 10 Error estimation of the moment and shear for
�54�
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Vij�
nc��k� =�

Bj

V��s,xk�cos�n� j�dBj�s�, n = 0,1,2,3, . . . ,M

�55�

Vij�
ns��k� =�

Bj

V��s,xk�sin�n� j�dBj�s�, n = 1,2,3, . . . ,M

�56�

where the interior degenerate kernels are used for j=1, i
=2,3 , . . . ,N and i= j=2,3 ,4 , . . . ,N; otherwise, exterior degener-
ate kernels are used. The explicit forms of the boundary integral
for U kernel are listed in Appendix B. Finite value of singularity is
obtained after introducing the degenerate kernel. Besides, the lim-

− +

on the boundaries for the concentric circular domain
ce
iting case across the boundary �R =r=R � is also addressed. In-
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stead of boundary data in BEM, the Fourier coefficients become
the new unknown degree of freedom in the formulation. By rear-
ranging the known and unknown sets, the Fourier coefficients can
be obtained. Since the boundary data are determined, the displace-
ment, slope, normal moment, and effective shear force of the plate
can be solved by using the boundary integral equations for the
domain point as shown in Fig. 6. The procedure of solution is
described in a flowchart as shown in Fig. 7.

6 Numerical Results and Discussions
Case 1: An annular plate. An annular circular plate subject to

the essential boundary conditions is considered as shown in Fig. 8.
The unknown boundary densities of the plate are expressed in
terms of Fourier series and the numerical result using fewer bases
of Fourier series terms �M =10� is shown in Fig. 9�a�. The annular
case was also solved by using the FEM software �ABAQUS� �15�
with 3,600 triangle elements as shown in Fig. 9�c�. Good agree-
ment is made after comparison with the exact solution,

u��,�� = � sin � −
4

�
sin �, 1 � � � 2, 0 � � � 2� �57�

as shown in Fig. 9�b� and the FEM result is shown in Fig. 9�d�.
Since the exact solution is known, error estimation can be es-

tablished. The boundary densities of the annular circular plate,
normal moment, and effective shear force can be obtained by
using the operators of Eqs. �13� and �14� with respect to the field
point x. By substituting �1=2 and �2=1 into the two equations,
the moment and the shear force on the boundaries of the annular
plate are

m1�x� = �� − 1�sin �, x � B1, 0 � � � 2� �58�

v1�x� =
� − 1

2
sin � ,x � B1, 0 � � � 2� �59�

m2�x� = 8�� − 1�sin �, x � B2, 0 � � � 2� �60�

v2�x� = 8�1 − ��sin �, x � B2, 0 � � � 2� �61�
The numerical results of the moment and the shear force expanded
in fewer bases of Fourier series �M =10� agree well with Eqs.
�58�–�61� and are shown in Fig. 10.

Case 2: A circular plate with three holes �5�. A circular plate
with the three circular holes which had been solved by Bird and
Steele �5� is revisited by using the present method. The geometric
data and the essential boundary conditions are shown in Fig. 11.
The contour plots of displacement by using different numbers of
terms in the Fourier series �M =10,20,30,40,50� are shown in
Figs. 12�a�–12�e�. It also shows that convergence is good with
increasing of the terms of Fourier series. The case was also solved
by using the ABAQUS software with 6,606 triangle elements as
shown in Fig. 12�g�. Good agreement among the data of Bird and
Steele �5� as shown in Fig. 12�f�, ABAQUS software results as
shown in Fig. 12�h�, and present solutions is obtained. To discuss

Fig. 11 A circular plate containing three circular holes subject
to the essential boundary conditions
the convergence of Fourier series, Parseval sum

Journal of Applied Mechanics
�
0

2�

f2���d� = 2�a0
2 + ��

n=1

	

�an
2 + bn

2� �62�

versus terms of Fourier series with respect to m1, v1, m2, v2, m3,
v3, m4, v4 �determined moment and shear force on the boundaries�
are shown in Fig. 13, where f��� is the expansion of Fourier series
and a0, an, and bn are the Fourier coefficients.

7 Conclusions
For plate problems with circular boundaries, a semi-analytical

solution by using degenerate kernels, null-field integral equation,
and Fourier series in an adaptive observer system was obtained.
The main advantage of the present method over BEM is that all

Fig. 12 The contour plots of displacement for the plate con-
taining three circular holes subject to the essential boundary
conditions by using different methods
the improper integrals are transformed to series sum and can be
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Fig. 13 Parseval sum versus terms of Fourier series
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easily calculated when degenerate kernels are used. The potential
across the boundary can be described explicitly from both sides
�interior and exterior�. Also, discretization of boundaries is not
required. Once the Fourier coefficients of the unknown boundary
densities were determined, the displacement, slope, moment, and
shear force of the circular plate can be easily determined by sub-
stituting the boundary densities into the boundary integral equa-
Journal of Applied Mechanics
tions for the domain point. Not only the annular plate but also the
plate problems with multiple holes have been solved easily and
effectively by using the present method in comparison with avail-
able exact solution and FEM results. The present method can be
applied to plate containing arbitrary number of circular holes as
well as various sizes and positions of circular holes. Finally, con-
vergence study on the Fourier series was also done.
Appendix A: Degenerate Kernels

Degenerate kernels for U, �, M, V in the first boundary integral equation

U�s,x� =�
UI�s,x� = �2�1 + ln R� + R2 ln R − �R��1 + 2 ln R� +

1

2

�3

R
	cos�� − ��

− �
m=2

	 � 1

m�m + 1�
�m+2

Rm −
1

m�m − 1�
�m

Rm−2	cos�m�� − ���, R 
 �

UE�s,x� = R2�1 + ln �� + �2 ln � − ��R�1 + 2 ln �� +
1

2

R3

�
	cos�� − ��

− �
m=2

	 � 1

m�m + 1�
Rm+2

�m −
1

m�m − 1�
Rm

�m−2	cos�m�� − ���, � � R

��s,x� =�
�I�s,x� =

�2

R
+ R�1 + 2 ln R� − ���3 + 2 ln R� −

1

2

�3

R2	cos�� − ��

+ �
m=2

	 � 1

m + 1

�m+2

Rm+1 −
m − 2

m�m − 1�
�m

Rm−1	cos�m�� − ���, R 
 �

�E�s,x� = 2R�1 + ln �� − ���1 + 2 ln �� +
3

2

R2

�
	cos�� − ��

− �
m=2

	 � m + 2

m�m + 1�
Rm+1

�m −
1

m − 1

Rm−1

�m−2	cos�m�� − ���, � � R

M�s,x� =�
MI�s,x� = �� − 1�

�2

R2 + �� + 3� + 2�� + 1�ln R − ��� + 1� −
2�

R
− �� − 1�

�3

R3	cos�� − ��

+ �
m=2

	 ��� − 1�
�m+2

Rm+2 +
m�1 − �� − 2�1 + ��

m

�m

Rm	cos�m�� − ���, R 
 �

ME�s,x� = 2�1 + ���1 + ln �� − �� + 3�
R

�
cos�� − ��

+ �
m=2

	 �m�� − 1� − 2�� + 1�
m

Rm

�m + �1 − ��
Rm−2

�m−2	cos�m�� − ��� � � R

V�s,x� =�
VI�s,x� =

4

R
+ �2�

R2 − �3 − ��
�3

R4 �1 − ��	cos�� − ��

− �
m=2

	 �m�1 − ��
�m+2

Rm+3 − �4 + m�1 − ���
�m

Rm+1	cos�m�� − ���, R � �

VE�s,x� = �− 3 − ��
1

�
cos�� − ��

+ �
m=2

	 ��m�1 − �� − 4�
Rm−1

�m − m�1 − ��
Rm−3

�m−2	cos�m�� − ���, � � R
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Degenerate kernels for U�, ��, M�, V� in the second boundary integral equation

U��s,x� =�
U�

I �s,x� = 2��1 + ln R� − �R�1 + 2 ln R� +
3

2

�2

R
	cos�� − ��

− �
m=2

	 � m + 2

m�m + 1�
�m+1

Rm −
1

m − 1

�m−1

Rm−2	cos�m�� − ���, R 
 �

U�
E�s,x� =

R2

�
+ ��1 + 2 ln �� − �R�3 + 2 ln �� −

1

2

R3

�2	cos�� − ��

+ �
m=2

	 � 1

m + 1

Rm+2

�m+1 −
m − 2

m�m − 1�
Rm

�m−1	cos�m�� − ���, � � R

���s,x� =�
��

I �s,x� =
2�

R
− ��3 + 2 ln R� −

3

2

�2

R2	cos�� − ��

+ �
m=2

	 �m + 2

m + 1

�m+1

Rm+1 −
m − 2

m − 1

�m−1

Rm−1	cos�m�� − ���, R 
 �

��
E�s,x� =

2R

�
− ��3 + 2 ln �� −

3

2

R2

�2	cos�� − ��

+ �
m=2

	 �m + 2

m + 1

Rm+1

�m+1 −
m − 2

m − 1

Rm−1

�m−1	cos�m�� − ���, � � R

M��s,x� =�
M�

I �s,x� =
2�

R2 �� − 1� − � 2

R
�� + 1� − 3�� − 1�

�2

R3	cos�� − ��

+ �
m=2

	 ��m + 2��� − 1�
�m+1

Rm+2 + �m�1 − �� − 2�1 + ���
�m−1

Rm 	cos�m�� − ���, R � �

M�
E�s,x� =

2�1 + ��
�

+ �� + 3�
R

�2cos�� − ��

− �
m=2

	 ��m�� − 1� − 2�� + 1��
Rm

�m+1 + �m − 2��1 − ��
Rm−2

�m−1	cos�m�� − ���, � � R

V��s,x� =�
V�

I �s,x� = � 2

R2 �3 − �� − 3�1 − ��
�2

R4	cos�� − ��

− �
m=2

	 �m�m + 2��1 − ��
�m+1

Rm+3 − m�4 + m�1 − ���
�m−1

Rm+1	cos�m�� − ���, R � �

V�
E�s,x� = �3 + ��

1

�2cos�� − ��

− �
m=2

	 �m�m�1 − �� − 4�
Rm−1

�m+1 − m�m − 2��1 − ��
Rm−3

�m−1	cos�m�� − ���, � � R

where U�, ��, M�, V� are equal to �U�s ,x� /�nx, ���s ,x� /�nx, �M�s ,x� /�nx, and �V�s ,x� /�nx, respectively.
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Tangential derivative with respect to the field point

U,t�s,x� =�U,t
I �s,x� = − �R�1 + 2 ln R� +

1

2

�2

R
	sin�� − �� − �

m=2

	 � 1

m + 1

�m+1

Rm −
1

m − 1

�m−1

Rm−2	sin�m�� − ���, R � �

U,t
E�s,x� = − �R�1 + 2 ln �� +

1

2

R3

�2	sin�� − �� − �
m=2

	 � 1

m + 1

Rm+2

�m+1 −
1

m − 1

Rm

�m−1	sin�m�� − ���, � � R

�,t�s,x� =��,t
I �s,x� = − 
3 + 2 ln R −

1

2

�2

R2�sin�� − �� + �
m=2

	 � m

m + 1

�m+1

Rm+1 −
m − 2

m − 1

�m−1

Rm−1	sin�m�� − ���, R � �

�,t
E�s,x� = − 
1 + 2 ln � +

3

2

R2

�2 �sin�� − �� − �
m=2

	 �m + 2

m + 1

Rm+1

�m+1 −
m

m − 1

Rm−1

�m−1	sin�m�� − ���, � � R

M ,t�s,x� =�
M ,t

I �s,x� = − �2�� + 1�
R

− �� − 1�
�2

R3	sin�� − ��

+ �
m=2

	 �m�� − 1�
�m+1

Rm+2 + �m�1 − �� − 2�1 + ���
�m−1

Rm 	sin�m�� − ���, R � �

M ,t
E�s,x� = − �� + 3�

R

�2sin�� − ��

+ �
m=2

	 ��m�� − 1� − 2�� + 1��
Rm

�m+1 + m�1 − ��
Rm−2

�m−1	sin�m�� − ���, � � R

V,t�s,x� =�V,t
I �s,x� = �2�3 − ��

R2 −
�2

R4 �1 − ��	sin�� − �� − �
m=2

	 �m2�1 − ��
�m+1

Rm+3 − m�4 + m�1 − ���
�m−1

Rm+1	sin�m�� − ���, R � �

V,t
E�s,x� = �− 3 − ��

1

�2sin�� − �� + �
m=2

	 �m�m�1 − �� − 4�
Rm−1

�m+1 − m2�1 − ��
Rm−3

�m−1	sin�m�� − ���, � � R

Appendix B: Analytical Evaluation of the Integral and its Limit for U„s ,x… Kernel
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