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If f is continuous on [a. b] and if u(x) and v(x) are ¢ifferen-
tiable functions of x whose values lie in [a, b], then
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Figure 5.33 gives a geometric interpretation of Leibniz’s Rule. It
shows a carpet of variable width f(r) that is being rolled up at the left
at the same time x as it is being unrolled at the right. (In this interpre-
tation, time is x, not £.) At time x, the floor is covered from u(x) to v(x).
The rate du/dx at which the carpet is being rolled up need not be the
same as the rate dv/dx at which the carpet is being laid down. At any
given time x, the area covered by carpet is
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Rolling and unrolling a carpet gives a
geometric interpretation of Leibniz’s Rule:
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At what rate is the covered area changing? At the instant x, 4(x) is in-
creasing by the width f(v(x)) of the unrolling carpet times the rate
dv/dx at which the carpet is being unrolled. That is, A(x) is being in-
creased at the rate
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At the same time, 4 is being decreased at the rate
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the width at the end that is being rolled up times the rate dfir/dx. The
net rate of change in A is
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which is precisely Leibniz’s Rule.
To prove the rule, let £ be an antiderivative of f on [a, b]. Then
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Differentiating both sides of this equation with respect to x gives the
equation we want:
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