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Using only fairly simple and elementary considerations – essentially from first
year undergraduate mathematics – we show how the classical Stokes’ theorem for
any given surface and vector field in R

3 follows from an application of Gauss’
divergence theorem to a suitable modification of the vector field in a tubular shell
around the given surface. The two stated classical theorems are (like the
fundamental theorem of calculus) nothing but shadows of the general version of
Stokes’ theorem for differential forms on manifolds. However, the main point in
the present article is first, that this latter fact usually does not get within reach for
students in first year calculus courses and second, that calculus textbooks in
general only just hint at the correspondence alluded to above. Our proof that
Stokes’ theorem follows from Gauss’ divergence theorem goes via a well-known
and often used exercise, which simply relates the concepts of divergence and curl
on the local differential level. The rest of this article uses only integration in 1, 2
and 3 variables together with a ‘fattening’ technique for surfaces and the inverse
function theorem.

Keywords: Stokes’ theorem; Gauss’ divergence theorem; undergraduate
mathematics; curriculum

2000 AMS Subject Classifications: Primary 26

1. Introduction

One of the most elegant and useful results concerning vector fields in R
3, is the classical

version of Stokes’ theorem. It is one of those important results, which is so nicely moulded
from analysis, calculus, geometry, and linear algebra that it forms a solid basis for and
indeed an integral part of the final fireworks and climax of first year undergraduate
mathematics education. At the same time Stokes’ theorem points towards a wealth of deep
applications in electromagnetism, in fluid dynamics and in mathematics itself, to mention
but a few of the most significant fields of applications. Such results serve as indispensable
bootstraps for university students en masse – be they students of engineering, of physics, of
biology, of chemistry, of mathematics, etc.; see e.g. [1,2].

It is the purpose of this article to facilitate the presentation, i.e. the undergraduate
teaching, of Stokes’ theorem by suggesting and unfolding a proof, which shows that it is
a direct consequence of Gauss’ divergence theorem. In the process, there are also a few
other useful insights and geometric observations to be (re)visited. The first pertinent
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observation is the following quotation from [3] concerning the history of Stokes’ theorem
(see also [4] p. 790):

The history of Stokes’ Theorem is clear but very complicated. It was first given by Stokes
without proof – as was necessary – since it was given as an examination question for the
Smith’s Prize Examination of that year [at Cambridge in 1854]! Among the candidates for the
prize was Maxwell, who later traced to Stokes the origin of the theorem, which by 1870 was
frequently used. On this see George Gabriel Stokes, Mathematical and Physical Papers, vol. V
(Cambridge, England, 1905), 320–321. See also the important historical footnote which
indicates that Kelvin in a letter of 1850 was the first who actually stated the theorem, although
others as Ampère had employed ‘‘the same kind of analysis . . . in particular cases.’’

M. J. Crowe, [3] p. 147.

Outline of this article: After a presentation of Gauss’ theorem and Stokes’ theorem in
Section 2 we recall (in Section 3) the connection between curl and divergence which was
alluded to in the abstract. In the following sections, we then set up the notation and the
results needed in order to make this work reasonably self contained on the level of first
year undergraduate mathematics. The main goal is to relate integration over the shell
extension of a given surface with the integration along the boundary surfaces of this
extension. The proof of Stokes’ theorem is finally completed in Section 9.

2. Fundamental theorems of calculus

Gauss’ divergence theorem is of the same calibre as Stokes’ theorem. They are both
members of a family of results which are concerned with ‘pushing the integration to the
boundary’. The eldest member of this family is the following:

Theorem 2.1 (Fundamental theorem of calculus): Let f be a continuous function on R.
Then the function

AðxÞ ¼

Z x

0

f ðuÞdu

is differentiable with

A0ðxÞ ¼ f ðxÞ, ð2:1Þ

and moreover, if F(x) is any (other) function satisfying F 0(x)¼ f(x), then

Z b

a

f ðuÞdu ¼ FðbÞ � FðaÞ: ð2:2Þ

The message of this theorem is that two fundamental problems – that of finding
a function whose derivative is a given function and that of finding the average of a given
function – have a common solution. It is also the first result which displays – in
Equation (2.2) – the astounding success of ‘pushing the integration to the boundary’.
Compare with the main ‘actors’ of the present article, Theorems 2.3 and 2.4 below.

The divergence theorem is not – conceptually speaking – ‘far’ from the fundamental
theorem of calculus. Most textbook proofs of the divergence theorem covers only the
special setting of a domain whose boundary consists of the graphs of two functions, each
of two variables. This enables in fact a direct proof in this special case via Theorem 2.1,
see [5] pp. 1058–1059. Stokes’ theorem is a little hard to grasp, even locally, but follows
also in the corresponding setting (for graph surfaces) from Gauss’ theorem for planar
domains, see [5] pp. 1065–1066.

2 S. Markvorsen



D
ow

nl
oa

de
d 

B
y:

 [M
ar

kv
or

se
n,

 S
te

en
] A

t: 
11

:1
0 

6 
Ju

ne
 2

00
8 

This approach suggests indirectly that the full classical Stokes’ theorem

(for general surfaces) should follow directly from Gauss’ divergence theorem (for general

domains). The main part of the present article will be devoted to a proof following

this idea.
The most compact as well as the most general form of Stokes’ theorem reads as follows

(see e.g. [6] p. 353, [7], [8] pp. 60 ff., [9] p. 124):

Theorem 2.2 (Stokes’ theorem, general version): Let ! denote a differential (k� 1)-form

on a compact orientable manifold �k. Suppose that � has a smooth and compact boundary

@� with the induced orientation, and let d! denote the differential of !. Then

Z
�

d! ¼

Z
@�

!: ð2:3Þ

As corollaries of this statement we have both Gauss’ divergence theorem for domains

in R
3, and Stokes’ theorem for surfaces in R

3 (see, e.g. [6] pp. 319–320). As mentioned

above it is these latter theorems – not the general version of Stokes’ theorem – that will be

the main concern of this article. Here are the statements:

Theorem 2.3 (Gauss’ divergence theorem): Let � denote a compact domain in R
3 with

piecewise smooth boundary @� and outward pointing unit normal vector field n@� on @�.

Let V be a vector field in R
3. Then

Z
�

divðVÞd� ¼

Z
@�

V � n@� d�: ð2:4Þ

Theorem 2.4 (Stokes’ theorem, classical version): Let F denote a compact, orientable,

regular and smooth surface with piecewise smooth boundary @F and unit normal vector field

nF. Let V be a vector field in R
3. Then

Z
F

curlðVÞ � nF d� ¼

Z
@F

V � e@F d�: ð2:5Þ

When calculating the right-hand side, i.e. the tangential curve integral (the circulation of V)

along the boundary @F, the orientation e@F of the boundary must be chosen so that the cross

product e@F� nF at the boundary points away from the surface.

3. A bridge between divergence and curl

We begin by stating a connection between divergence and curl.

Observation 3.1 (Exercise): Let V(x, y, z) and W(x, y, z) denote two smooth vector fields

in R
3. Then, the following identity holds true:

divðV�WÞ ¼ curlðVÞ �W� V � curlðWÞ: ð3:1Þ

In particular, if W is a gradient field for some smooth function  (x, y, z) in R
3,

i.e. W¼ grad( ), we get from curl(grad( ))¼ 0:

divðV� gradð ÞÞ ¼ curlðVÞ � gradð Þ: ð3:2Þ

International Journal of Mathematical Education in Science and Technology 3
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Using Gauss’ divergence theorem we ‘lift’ this connection to the integral level as

follows:

Theorem 3.2: Let  (x, y, z) denote a smooth function in R
3 and let V(x, y, z) be a vector

field. Let � denote a compact domain in R
3 with piecewise smooth boundary @� and outward

pointing unit normal vector field n@� on @�. Then we have the following

Z
�

divðV� gradð ÞÞd� ¼

Z
@�

V� gradð Þð Þ � n@� d�: ð3:3Þ

Using Equation (3.2), we also have

Z
�

curlðVÞ � gradð Þd� ¼

Z
@�

n@� � Vð Þ � gradð Þd�: ð3:4Þ

In particular, we get the total rotation vector (the so-called total ‘vorticity vector’ of

fluid dynamics) of the vector field V in �:

Corollary 3.3:

Z
�

curlðVÞd� ¼

Z
@�

n@� � Vd�:

Proof: This follows directly from Equation (3.4) by choosing, in turn,

 (x, y, z)¼x, (x, y, z)¼ y, and  (x, y, z)¼ z, so that grad( ) is successively one of the

respective constant vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1). œ

4. The surface, the boundary and the normal field

We parametrize a given surface F by a smooth regular map r from a compact domain D

(with boundary @D) in the (u, v)-plane into R
3:

F : rðu, vÞ ¼ ðxðu, vÞ, yðu, vÞ, zðu, vÞÞ 2 R
3, ðu, vÞ 2 D � R

2,

where x(u, v), y(u, v), and z(u, v) are smooth functions of the parameters u and v.

Example 4.1: The Costa surface in Figure 1 is obtained by a highly non-trivial

parametric deformation of a disk D from which 4 smaller disks have been removed in the

(u, v)-plane R2. Two of the 5 boundary components are identified by the map, so that the

surface has the topology of a thrice punctured torus. Details on the construction of Costa’s

minimal surface can be found in e.g. [10].

The connected components of the boundary @D are either pairwise identified by r

or mapped onto the components of @F, respectively. We assume, that r is everywhere

bijective except at those components of @D which are identified by the map. In cases

like Costa’s surface – as shown in Figure 1 – we have several boundary components.

They contribute additively and individually to the circulation integral on the right-

hand side of Stokes’ theorem. Those boundary components of @D which are identified

by r do not contribute to @F. They do not contribute to the Stokes circulation

integral either because the relevant integrals cancel each other away. For ease of

presentation and without lack of generality, we therefore assume that D is simply

4 S. Markvorsen
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connected with only one connected boundary component @D which is mapped onto

@F via the map r.
A given single boundary component @D is parametrized as follows in the

(u, v)-plane:

@D : dð�Þ ¼ ðuð�Þ, vð�ÞÞ 2 @D � R
2, � 2 I � R,

where u(�) and v(�) are piecewise smooth functions of �. The boundary of F is then

@F : bð�Þ ¼ rðdð�ÞÞ ¼ rðuð�Þ, vð�ÞÞ 2 R
3:

The Jacobians of the maps r and b are, respectively:

Jacobirðu, vÞ ¼ kr0u � r0vk, and ð4:1Þ

Jacobibð�Þ ¼ kb0�k: ð4:2Þ

The regularity of r is expressed by

Jacobirðu, vÞ4 0 for all ðu, vÞ 2 D:

This implies, in particular, that there is a well-defined unit normal vector nF¼ n(u, v) at

each point of F:

nðu, vÞ ¼
r0u � r0v
kr0u � r0vk

for all ðu, vÞ 2 D: ð4:3Þ

Figure 1. Costa’s minimal surface.

International Journal of Mathematical Education in Science and Technology 5



D
ow

nl
oa

de
d 

B
y:

 [M
ar

kv
or

se
n,

 S
te

en
] A

t: 
11

:1
0 

6 
Ju

ne
 2

00
8 

5. The shell fattening and a nice gradient

We define the tubular shell fattening of F (of thickness t) as the following parametrized

domain in R
3:

�t : Rðu, v,wÞ ¼ rðu, vÞ þ wnðu, vÞ, ðu, vÞ 2 D, w 2 ½0, t�: ð5:1Þ

In particular, the surface F is then the base surface of the shell and is obtained by

restricting R to D (where w¼ 0):

F0 ¼ F : rðu, vÞ ¼ Rðu, v, 0Þ, ðu, vÞ 2 D:

Similarly, for w¼ t we get the top surface Ft of the shell. It is parametrized by R(u, v, t), for

(u, v)2D.
The Jacobian of the map R is

JacobiRðu, v,wÞ ¼ j R0
u � R0

v

� �
� R0

wj

¼ j ðr0u þ w n0uÞ � ðr0v þ w n0vÞ
� �

� nFj,
ð5:2Þ

so that, since nF is a unit vector field parallel to r0u � r0v along F, we get in particular

(for w¼ 0):

JacobiRðu, v, 0Þ ¼ j r0u � r0v
� �

� nFj

¼ kr0u � r0vk

¼ Jacobirðu, vÞ4 0:

ð5:3Þ

The map R is regular and bijective on D� [0, t] – provided t is sufficiently small. Indeed,

since JacobiR(u, v, 0)4 0, this claim follows from the continuity of JacobiR(u, v,w) and the

compactness of D.
The value of w considered as a function in �t�R

3 is a smooth function of the

coordinates (x, y, z). However intuitively reasonable this claim may seem, the precise

argument goes via the inverse function theorem, which we state here for completeness – in

its global form, without proof:

Theorem 5.1: Let Q denote an open set in R
n and let f :Q!R

n denote a smooth bijective

map with Jacobif(x)4 0 for all x2Q. Then, the inverse map f�1 : f(Q)!Q is also smooth

with Jacobif�1ðyÞ4 0 for all y2 f(Q).

Hence, when t is sufficiently small, w is a smooth function of (x, y, z); let us call it

h(x, y, z), (x, y, z)2�t. This function then has a non-vanishing gradient, grad(h)(x, y, z),

which is orthogonal to the level surfaces of h. In particular, grad(h) is orthogonal to the

top surface Ft of the shell �t, where h¼ t and it is orthogonal to the base surface F0¼F,

where h¼ 0.
In fact, at the base surface, the field grad(h) is precisely equal to the unit normal vector

field nF. To see this we only need to show that it has unit length: Let (u0, v0) denote a given

point in D and consider the restriction of h to the straight line r(u0, v0)þwn(u0, v0), where

w2 [0, t]. Let us denote r0¼ r(u0, v0) and n0¼ n(u0, v0). The chain rule then gives

1 ¼
d

dw
hðr0 þ w n0Þ

����
����

¼ j n0 � gradðhÞðr0 þ w n0Þ j

¼ kgradðhÞðr0 þ w n0Þk,

ð5:4Þ

6 S. Markvorsen
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so that, at the surface F, for w¼ 0, we have kgrad(h)(r0)k¼ 1 and therefore in total, as

claimed above:

gradðhÞjF ¼ nF, ð5:5Þ

Remark 5.2: The function h(x, y, z) is in fact the Euclidean distance from the point (x, y, z)

in �t to the surface F.

6. Integration in the shell

For any given smooth function f(x, y, z) defined in �t, the integral of f over that domain is:

Z
�t

fd� ¼

Z t

0

Z
D

f ðRðu, v,wÞÞJacobiRðu, v,wÞdu dv

� �
dw: ð6:1Þ

The derivative of this integral with respect to the thickness t of the shell �t is, at t¼ 0, the

surface integral over F:

Lemma 6.1:

d

dt

� �
jt¼0

Z
�t

f d� ¼

Z
F

f d�: ð6:2Þ

Proof: This follows directly from the fundamental theorem of calculus, Theorem 2.1,

Equation (2.1):

d

dt

� �
jt¼0

Z
�t

f d� ¼
d

dt

� �
jt¼0

Z t

0

Z
D

f ðRðu, v,wÞÞJacobiRðu, v,wÞdu dv

� �
dw

¼

Z
D

f ðRðu, v, 0ÞÞJacobiRðu, v, 0Þdu dv

¼

Z
D

f ðrðu, vÞÞJacobirðu, vÞdu dv

¼

Z
F

f d�: ð6:3Þ

œ

7. The wall

The shell �t has a boundary @�t which consists of the top level surface Ft, the base level

surface F¼F0 and a ‘cylindrical wall’ surface Wt of height t (Figure 2). This latter

component of the boundary is simply obtained by restricting the map R to @D� [0, t] as

follows:

Wt : Bð�,wÞ ¼ Rðuð�Þ, vð�Þ,wÞ

¼ rðuð�Þ, vð�ÞÞ þ w nðuð�Þ, vð�ÞÞ

¼ bð�Þ þ w nðdð�ÞÞ, � 2 I, w 2 ½0, t�:

International Journal of Mathematical Education in Science and Technology 7
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The Jacobian of this map is thus

JacobiBð�,wÞ ¼ kB0
� � B0

wk

¼ kðb0� þ w ðn � dÞ0�Þ � nFk,
ð7:1Þ

so that, since nF is a unit normal to the surface F and hence also to the boundary @F
(parametrized by b), we get in particular:

JacobiBð�, 0Þ ¼ kb0� � nFk ¼ kb0�k ¼ Jacobibð�Þ: ð7:2Þ

8. Integration along the wall

For any given smooth function g(x, y, z) defined onWt the integral of g over that surface isZ
Wt

g d� ¼

Z t

0

Z
I

gðBð�,wÞÞ JacobiBð�,wÞd�

� �
dw: ð8:1Þ

The derivative of this integral with respect to the height t of the wall Wt is, at t¼ 0, the line

integral over @F:

Lemma 8.1:

d

dt

� �
jt¼0

Z
Wt

g d� ¼

Z
@F

g d�: ð8:2Þ

Proof: This follows again from the fundamental theorem of calculus, Theorem 2.1,

Equation (2.1):

d

dt

� �
jt¼0

Z
Wt

g d� ¼
d

dt

� �
jt¼0

Z t

0

Z
I

gðBð�,wÞÞJacobiBð�,wÞd�

� �
dw

¼

Z
I

gðBð�, 0ÞÞJacobiBð�, 0Þd�

¼

Z
I

gðbð�ÞÞJacobibð�Þd�

¼

Z
@F

g d�: ð8:3Þ

œ

x y

z

x
y

z

Figure 2. Two shells obtained as small fattenings of a piece of a sphere and a square, respectively.

8 S. Markvorsen
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9. Proof of Stokes’ theorem for surfaces

We are now ready to prove Theorem 2.4.

Proof: Using the function h(x, y, z) from Section 5 in place of the function  (x, y, z) in
Theorem 3.2, Equation (3.4) for the domain �¼�t we get:

Z
�t

curlðVÞ � gradðhÞd� ¼

Z
@�t

n@�t
� V

� �
� gradðhÞ d�

¼

Z
Ft

nFt
� V

� �
� gradðhÞ d��

Z
F0

nF0
� V

� �
� gradðhÞ d�

þ

Z
Wt

nWt
� V

� �
� gradðhÞd�: ð9:1Þ

But in Equation (9.1) we have

Z
Ft

nFt
� V

� �
� gradðhÞ d� ¼ 0

x

yz

x

y
z

Figure 3. A piece of a sphere and the curl vector field curl(V ) of the field V(x, y, z)¼ (z2 x, x2 y, y2 z).
The field V itself is not shown.

y

x

z

y

x

z

Figure 4. According to Stokes’ theorem, the flux through the surface shown in Figure 3 is equal to
the circulation of the vector field V along the boundary curve of the surface. The field V is shown
here along that boundary.

International Journal of Mathematical Education in Science and Technology 9
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and Z
F0

nF0
� V

� �
� gradðhÞ d� ¼ 0, ð9:2Þ

because grad(h) is orthogonal to both of the surfaces Ft and F0 so that grad(h) is
proportional to nFt

and nF0
at the respective surfaces.

We observe that at @F�Wt we have nWt
¼ e@F � nF and hence e@F ¼ nF � nWt

according to the rule in Theorem 2.4, which defines the orientation of @F. Taking
derivatives in Equation (9.1) with respect to t at t¼ 0 then gives:

d

dt

� �
jt¼0

Z
�t

curlðVÞ � gradðhÞd� ¼
d

dt

� �
jt¼0

Z
Wt

nWt
� V

� �
� gradðhÞ d�, ð9:3Þ

so that – by the virtues of Equations (6.2) and (8.2) – we finally getZ
F

curlðVÞ � nF d� ¼

Z
@F

nWt
� V

� �
� nF d�

¼

Z
@F

V � nF � nWt

� �
d�

¼

Z
@F

V � e@F d�, ð9:4Þ

which finishes the proof of the theorem. œ

We refer to Figures 3 and 4 which display the setting for a concrete application of
Stokes’ theorem to a given vector field and a given portion of a sphere.
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