Acoustic eigenfrequencies in a spheroidal cavity with a concentric penetrable sphere

Gerassimos C. Kokkorakis and John A. Roumeliotis ${ }^{\text {a) }}$
Department of Electrical and Computer Engineering, National Technical University of Athens, Athens 15773, Greece

(Received 8 June 1998; revised 25 October 1998; accepted 16 December 1998)

Abstract

The acoustic eigenfrequencies $f_{\text {nsm }}$ in a spheroidal cavity containing a concentric penetrable sphere are determined analytically, for both Dirichlet and Neumann conditions in the spheroidal boundary. Two different methods are used for the evaluation. In the first, the pressure field is expressed in terms of both spherical and spheroidal wave functions, connected with one another by well-known expansion formulas. In the second, a shape perturbation method, this field is expressed in terms of spherical wave functions only, while the equation of the spheroidal boundary is given in spherical coordinates. The analytical determination of the eigenfrequencies is possible when the solution is specialized to small values of $h=d /\left(2 R_{2}\right),(h \ll 1)$, with d the interfocal distance of the spheroidal boundary and $2 R_{2}$ the length of its rotation axis. In this case exact, closed-form expressions are obtained for the expansion coefficients $g_{\text {nsm }}^{(2)}$ and $g_{\text {nsm }}^{(4)}$ in the resulting relation $f_{\text {nsm }}(h)=f_{\text {ns }}(0)[1$ $\left.+h^{2} g_{\text {nsm }}^{(2)}+h^{4} g_{\text {nsm }}^{(4)}+O\left(h^{6}\right)\right]$. Analogous expressions are obtained with the use of the parameter v $=1-\left(R_{2} / R_{2}^{\prime}\right)^{2},(|v| \ll 1)$, with $2 R_{2}^{\prime}$ the length of the other axis of the spheroidal boundary. Numerical results are given for various values of the parameters. © 1999 Acoustical Society of America. [S0001-4966(99)05803-8]

PACS numbers: 43.20.Ks [ANN]

INTRODUCTION

Calculation of eigenfrequencies in acoustic cavities of various shapes is an important problem with many applications in room acoustics, ${ }^{1}$ acoustic levitation ${ }^{2,3}$ and high accuracy measurements of sound speed in gases. ${ }^{4}$ The shape of the boundaries severely limits the possibility for analytical solution of such problems. For complicated geometries numerical techniques are used. Analytical, perturbational methods were used elsewhere, in order to obtain the acoustic eigenfrequencies in a spherical cavity with an eccentric inner sphere, for both Dirichlet and Neumann boundary conditions, in the case of small eccentricity between the two spheres, ${ }^{5}$ or for a small inner sphere. ${ }^{6,7}$ In spheroidal cavities calculation is more complex, due to the complexity of spheroidal functions. In Refs. 8 and 9 the eigenfrequencies of a prolate spheroidal cavity were calculated, for Dirichlet and Neumann boundary conditions, too. The same is valid also in Refs. 10 and 11 for concentric spheroidal-spherical cavities, by analytical, perturbational methods. In this last case not only the prolate but also the oblate spheroidal boundaries are examined.

In the present paper the acoustic cavity, shown in Fig. 1, is examined also for both Dirichlet and Neumann conditions in its spheroidal boundary, which has major and minor semiaxes R_{2} and R_{2}^{\prime}, respectively, and interfocal distance d. It contains a concentric penetrable sphere with radius R_{1}. This cavity is a perturbation of the concentric spherical one with radii R_{1} and R_{2}. Only the prolate spheroidal boundary is shown, but corresponding formulas for the oblate one are obtained immediately. The length of the rotation axis in each

[^0]case is $2 R_{2}$, while that of the other axis is $2 R_{2}^{\prime}$.
The acoustic eigenfrequencies in the former cavity are determined by two different methods. In the first of them the pressure field is expressed in terms of both spherical and spheroidal wave functions, while use is made of the wellknown expansion formulas connecting these functions. ${ }^{12}$ In the second method we use shape perturbation. In this case the pressure field is expressed in terms of spherical wave functions only, while the equation of the spheroidal boundary is given in spherical coordinates r and θ. In both cases, after the satisfaction of the boundary conditions, we obtain an infinite determinantal equation for the evaluation of the eigenfrequencies. In the special case of small $h=d /\left(2 R_{2}\right)$, ($h \ll 1$) we are led to an exact evaluation, up to the order h^{4}, for the elements of the infinite determinant and, finally, for the determinant itself. It is then possible to obtain the eigenfrequencies in the form $f_{\mathrm{nsm}}(h)=f_{\mathrm{ns}}(0)\left[1+h^{2} g_{\mathrm{nsm}}^{(2)}\right.$ $\left.+h^{4} g_{\text {nsm }}^{(4)}+O\left(h^{6}\right)\right]$. The expansion coefficients $g_{\text {nsm }}^{(2)}$ and $g_{\text {nsm }}^{(4)}$ are independent of h and are given by exact, closed-form expressions, while $f_{\mathrm{ns}}(0)$ are the eigenfrequencies of the corresponding spherical cavity with $h=0$.

The main advantage of such an analytical solution lies in its general validity for each small value of h and for all modes, while numerical techniques require repetition of the evaluation for each different h, with accuracy deteriorating quickly for higher order modes.

Analogous expansions are obtained by using the parameter $v=1-\left(R_{2} / R_{2}^{\prime}\right)^{2},(|v| \ll 1)$.

Our method can be applied also in the corresponding exterior (scattering) problem.

The cases of the Dirichlet and Neumann conditions in the spheroidal boundary are examined in Secs. I and II, re-

FIG. 1. Geometry of the cavity.
spectively. Finally, Sec. III includes numerical results and discussion.

I. DIRICHLET BOUNDARY CONDITIONS

As shown in Fig. 1, the density, the sound speed and the wave number are ρ_{1}, c_{1}, k_{1} and ρ_{2}, c_{2}, k_{2} inside the penetrable sphere (region 1) and between it and the spheroidal boundary (region 2), respectively. The materials of both regions are considered as fluids or fluidlike, i.e., they do not support shear waves.

Let p_{1} and p_{2} be the acoustic pressure fields in regions 1 and 2 , respectively. These fields, which satisfy the scalar Helmholtz equation, have the following expressions:

$$
\begin{align*}
p_{1}= & \sum_{n=0}^{\infty} \sum_{m=0}^{n} j_{n}\left(k_{1} r\right) P_{n}^{m}(\cos \theta)\left[C_{n m} \cos m \varphi\right. \\
& \left.+D_{n m} \sin m \varphi\right] \tag{1}\\
p_{2}= & \sum_{n=0}^{\infty} \sum_{m=0}^{n}\left[j_{n}\left(k_{2} r\right)-E_{n} n_{n}\left(k_{2} r\right)\right] P_{n}^{m}(\cos \theta) \\
& \times\left[A_{n m} \cos m \varphi+B_{n m} \sin m \varphi\right] \tag{2}
\end{align*}
$$

In Eqs. (1), (2) r, θ, φ are the spherical coordinates with respect to O, j_{n} and n_{n} are the spherical Bessel functions of the first and second kind, respectively, and P_{n}^{m} is the associated Legendre function of the first kind.

By satisfying the boundary conditions at $r=R_{1}$

$$
\begin{equation*}
p_{1}=p_{2}, \quad \frac{1}{\rho_{1} c_{1}} \frac{\partial p_{1}}{\partial\left(k_{1} r\right)}=\frac{1}{\rho_{2} c_{2}} \frac{\partial p_{2}}{\partial\left(k_{2} r\right)} \tag{3}
\end{equation*}
$$

and using the orthogonal relations for the associated Legendre ${ }^{13}$ and the trigonometric functions we obtain the following expression for E_{n}

$$
\begin{equation*}
E_{n}=\frac{j_{n}\left(x_{1}\right) j_{n}^{\prime}\left(w_{1}\right)-q j_{n}\left(w_{1}\right) j_{n}^{\prime}\left(x_{1}\right)}{n_{n}\left(x_{1}\right) j_{n}^{\prime}\left(w_{1}\right)-q j_{n}\left(w_{1}\right) n_{n}^{\prime}\left(x_{1}\right)}, \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{1}=k_{1} R_{1}, \quad x_{1}=k_{2} R_{1}, \quad q=\frac{\rho_{1} c_{1}}{\rho_{2} c_{2}} \tag{5}
\end{equation*}
$$

and the primes denote derivatives with respect to the argument.

In order to satisfy the remaining boundary condition $p_{2}=0$ at the spheroidal boundary, denoted by $\mu=\mu_{0}$, we follow two different methods. In the first of them we expand the spherical wave functions, appearing in Eq. (2), into concentric spheroidal ones by the formula ${ }^{12}$

$$
\begin{align*}
z_{n}^{(\sigma)} & \left(k_{2} r\right) P_{n}^{m}(\cos \theta) \\
= & \frac{2}{2 n+1} \frac{(n+m)!}{(n-m)!} \sum_{\ell=m, m+1}^{\infty}, \frac{i^{\ell-n}}{N_{m \ell}} \\
& \times d_{n-m}^{m \ell} S_{m \ell}(c, \eta) R_{m \ell}^{(\sigma)}(c, \xi), \quad c=k_{2} d / 2 \tag{6}
\end{align*}
$$

In Eq. (6) $\xi=\cosh \mu, \eta$ are the spheroidal coordinates $(\varphi$ is common in both systems), $z_{n}^{(\sigma)}(\sigma=1-4)$ is the spherical Bessel function of any kind, $R_{m \ell}^{(\sigma)}$ is the corresponding radial spheroidal function of the same kind, $S_{m \ell}$ and $d_{n-m}^{m \ell}$ are the angular spheroidal function of the first kind and its expansion coefficients, while

$$
\begin{equation*}
N_{m n}=2 \sum_{r=0,1}^{\infty}, \frac{\left(d_{r}^{m n}\right)^{2}(r+2 m)!}{(2 r+2 m+1) r!} . \tag{7}
\end{equation*}
$$

The prime over the summation symbols in Eqs. (6) and (7) indicates that when $n-m$ is even/odd these summations start with the first/second value of their summation index and continue only with values of the same parity with it.

We substitute from Eq. (6) into Eq. (2) satisfying the boundary condition $p_{2}=0$ at $\mu=\mu_{0}\left(\xi=\xi_{0}\right)$ and we next use the orthogonal properties of the angular spheroidal ${ }^{12}$ and the trigonometric functions, to obtain finally the following infinite set of linear homogeneous equations for the expansion coefficients $A_{n m}$ (or $B_{n m}$)

$$
\begin{equation*}
\sum_{n=m, m+1}^{\infty} \alpha_{\ell n m} A_{n m}=0, \quad \ell \geqslant m, m+1, \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
\alpha_{\ell n m}= & \frac{2 i^{-n}(n+m)!}{(2 n+1)(n-m)!} \\
& \times d_{n-m}^{m \ell}\left[R_{m \ell}^{(1)}\left(c, \cosh \mu_{0}\right)-E_{n} R_{m \ell}^{(2)}\left(c, \cosh \mu_{0}\right)\right] . \tag{9}
\end{align*}
$$

In Eqs. (8) and (9) ℓ and n are both even or odd, starting with that value of m or $m+1$, which has the same parity with them. So, Eq. (8) separates into two distinct subsets, one with ℓ, n even and the other with ℓ, n odd.

We next substitute $R_{m \ell}^{(1)}$ and $R_{m \ell}^{(2)}$ from Eq. (7) of Ref. 10 into Eq. (9) and set each one of the two determinants
$\Delta\left(\alpha_{\ell n m}\right)$ (one with ℓ, n even and the other with ℓ, n odd) of the coefficients $\alpha_{/ n m}$ in Eq. (8) equal to 0 . So, we obtain two determinantal equations of the same form for the evaluation of the eigenfrequencies, which are treated simultaneously under the symbol $\Delta\left(\alpha_{\ell n m}\right)$. By dividing $\alpha_{\ell n m}$ by the product $2 i^{-n} \tanh ^{m} \mu_{0}\left(d_{\ell-m}^{m}\right)^{2}(n+m) /[(2 n+1)(n$ $-m)!]$, as in Ref. 10, we do not change the roots of the determinantal equation. We next use the symbol $\alpha_{\ell n}$ for the resulting coefficient, deleting the subscript m for simplicity, and replace $c=k_{2} d / 2$ by its equal one $c=x_{2} h$, where x_{2} $=c \cosh \mu_{0}=k_{2} R_{2}$ and $h=d /\left(2 R_{2}\right)$. For large values of h the determinantal equation can be solved only numerically, but for small $h(h \ll 1)$ an analytical solution is possible. In this last case we can set up to the order h^{4},

$$
\begin{align*}
& \alpha_{n n}=D_{n n}^{(0)}+h^{2} D_{n n}^{(2)}+h^{4} D_{n n}^{(4)}+O\left(h^{6}\right), \\
& \alpha_{n \pm 2, n}=h^{2} D_{n \pm 2, n}^{(2)}+h^{4} D_{n \pm 2, n}^{(4)}+O\left(h^{6}\right), \tag{10}\\
& \alpha_{n \pm 4, n}=h^{4} D_{n \pm 4, n}^{(4)}+O\left(h^{6}\right) .
\end{align*}
$$

Exact expressions for the various D 's used in our calculations are given in Eqs. (A1)-(A5) of the Appendix.

Relations (10) allow a closed-form evaluation of the determinant $\Delta\left(\alpha_{\ell n}\right)=\Delta\left(\alpha_{\ell n m}\right)$, up to the order h^{4}, in steps exactly the same with those in Ref. 10, which will not be repeated here.

The resonant wave numbers $k_{2}=k_{2}(h)$, as well as x_{2} $=x_{2}(h)=k_{2}(h) R_{2}$ have also expansions of the form

$$
\begin{align*}
& k_{2}(h)=k_{2}^{(0)}+h^{2} k_{2}^{(2)}+h^{4} k_{2}^{(4)}+O\left(h^{6}\right), \tag{11}\\
& x_{2}(h)=x_{2}^{(0)}+h^{2} x_{2}^{(2)}+h^{4} x_{2}^{(4)}+O\left(h^{6}\right), \\
& x_{2}^{(\rho)}=k_{2}^{(\rho)} R_{2}, \quad \rho=0,2,4, \tag{12}
\end{align*}
$$

where $k_{2}^{(0)} \equiv k_{2}^{0}$ and $x_{2}^{(0)} \equiv x_{2}^{0}$ correspond to the concentric spherical cavity with radii R_{1} and $R_{2}(h=0)$.

The expressions of $x_{2}^{(2)}$ and $x_{2}^{(4)}$ in terms of D 's are exactly the same as in Ref. 10 and are given by the formulas

$$
\begin{align*}
x_{2}^{(2)}= & -\left[\frac{d D_{n n}^{0}\left(x_{2}^{0}\right)}{d x_{2}}\right]^{-1} D_{n n}^{(2)}\left(x_{2}^{0}\right), \tag{13}\\
x_{2}^{(4)}= & -\left[\frac{d D_{n n}^{0}\left(x_{2}^{0}\right)}{d x_{2}}\right]^{-1}\left[\frac{\left(x_{2}^{(2)}\right)^{2}}{2} \frac{d^{2} D_{n n}^{0}\left(x_{2}^{0}\right)}{d x_{2}^{2}}+x_{2}^{(2)} \frac{d D_{n n}^{(2)}\left(x_{2}^{0}\right)}{d x_{2}}\right. \\
& +D_{n n}^{(4)}\left(x_{2}^{0}\right)-\frac{D_{n+2, n}^{(2)}\left(x_{2}^{0}\right) D_{n, n+2}^{(2)}\left(x_{2}^{0}\right)}{D_{n+2, n+2}^{0}\left(x_{2}^{0}\right)} \\
& \left.-\frac{D_{n, n-2}^{(2)}\left(x_{2}^{0}\right) D_{n-2, n}^{(2)}\left(x_{2}^{0}\right)}{D_{n-2, n-2}^{0}\left(x_{2}^{0}\right)}\right], \tag{14}
\end{align*}
$$

where $D_{n n}^{(0)} \equiv D_{n n}^{0}$. As it is evident from Eq. (8), the various subscripts in Eq. (10) and so also in Eqs. (13), (14) should be equal or greater than $m \geqslant 0$. In the opposite case the corresponding α 's and D 's are equal to zero and so disappear.

In Eqs. (13) and (14) we have used the relations x_{1} $=\tau x_{2}, w_{1}=\tau x_{2} c_{2} / c_{1}$, where $\tau=R_{1} / R_{2}=$ constant, so x_{2} is the only variable.

Formulas (13) and (14) are also valid for the oblate cavity, with the only difference that $D^{(2)}$'s change their signs
and R_{2} is the minor semiaxis of the oblate boundary. So, $x_{2}^{(2)}$ changes its sign, while $x_{2}^{(4)}$ remains the same.

The eigenfrequencies for the problem of two concentric spheres with radii R_{1} and R_{2}, used in Eqs. (13), (14), are given by the equation [Eq. (A1) in the Appendix] $D_{n n}^{0}=0$, or

$$
\begin{equation*}
\frac{j_{n}\left(x_{2}^{0}\right)}{n_{n}\left(x_{2}^{0}\right)}=E_{n}\left(x_{2}^{0}\right), \quad x_{1}^{0}=\tau x_{2}^{0}, \quad w_{1}^{0}=\tau x_{2}^{0} \frac{c_{2}}{c_{1}}, \quad \tau=\frac{R_{1}}{R_{2}} . \tag{15}
\end{equation*}
$$

By using Eqs. (15), (A1), (A22) from the Appendix and the Wronskian ${ }^{13} j_{n}\left(x_{2}^{0}\right) n_{n}^{\prime}\left(x_{2}^{0}\right)-j_{n}^{\prime}\left(x_{2}^{0}\right) n_{n}\left(x_{2}^{0}\right)=1 /\left(x_{2}^{0}\right)^{2}$, we obtain

$$
\begin{equation*}
\frac{d D_{n n}^{0}\left(x_{2}^{0}\right)}{d x_{2}}=-\frac{1}{\left(x_{2}^{0}\right)^{2} n_{n}\left(x_{2}^{0}\right)}-n_{n}\left(x_{2}^{0}\right) \frac{d E_{n}\left(w_{1}^{0}, x_{1}^{0}\right)}{d x_{2}} \tag{16}
\end{equation*}
$$

Equations (16) and (A2) substituted in (13) give $x_{2}^{(2)}$. The expression for $x_{2}^{(4)}$ is much more lengthy, but is obtained immediately from Eqs. (13), (14), (16), (A1)-(A5) and (A22)-(A24).

By setting Eq. (12) in the form $x_{2}(h)=x_{2}^{0}\left[1+h^{2} g^{(2)}\right.$ $\left.+h^{4} g^{(4)}+O\left(h^{6}\right)\right]$ we obtain the eigenfrequencies in the cavity of Fig. 1 by the expression

$$
\begin{align*}
f_{\mathrm{nsm}}(h)= & f_{n s}(0)\left[1+h^{2} g_{\mathrm{nsm}}^{(2)}+h^{4} g_{\mathrm{nsm}}^{(4)}+O\left(h^{6}\right)\right] \\
& n=0,1,2, \ldots, \quad s=1,2,3, \ldots, \quad m=0,1,2, \ldots, n, \tag{17}
\end{align*}
$$

where $f_{n s}(0)=c_{2}\left(x_{2}^{0}\right)_{n s} /\left(2 \pi R_{2}\right)$ are the eigenfrequencies of the concentric spherical cavity, $x_{2}^{0}=\left(x_{2}^{0}\right)_{n s}$ are the successive positive roots of Eqs. (15) and $g^{(2),(4)}=x_{2}^{(2),(4)} / x_{2}^{0}\left[g_{\text {nsm }}^{(2),(4)}\right.$ $\left.=\left(x_{2}^{(2),(4)}\right)_{\mathrm{nsm}} /\left(x_{2}^{0}\right)_{n s}\right]$.

We next apply the second method for the determination of the eigenfrequencies. This is a shape perturbation method with no use of spheroidal wave functions. Equations (1)-(5) are also valid in this case. In order to satisfy the remaining boundary condition $p_{2}=0$, at the spheroidal surface, we express the equation of this surface in terms of r and θ, as in Ref. 14

$$
\begin{equation*}
r=\frac{R_{2}}{\sqrt{1-v \sin ^{2} \theta}} \tag{18}
\end{equation*}
$$

where ${ }^{11}$

$$
\begin{equation*}
v=1-\left(\frac{R_{2}}{R_{2}^{\prime}}\right)^{2}=\mp h^{2}-h^{4}+O\left(h^{6}\right) \tag{19}
\end{equation*}
$$

The upper/lower sign in Eq. (19) corresponds to the prolate $(v<0)$ /oblate $(v>0)$ spheroidal boundary.

We expand Eq. (18) into power series in h, thus obtaining up to the order h^{4}

$$
\begin{equation*}
r=R_{2}\left[1 \mp \frac{h^{2}}{2} \sin ^{2} \theta-\frac{h^{4}}{2} \sin ^{2} \theta\left(1-\frac{3}{4} \sin ^{2} \theta\right)+O\left(h^{6}\right)\right] . \tag{20}
\end{equation*}
$$

By using Eq. (20) we get the following expansion ${ }^{11}$ $\left(x_{2}=k_{2} R_{2}\right)$:

$$
\begin{align*}
j_{n}\left(k_{2} r\right)= & j_{n}\left(x_{2}\right) \mp \frac{h^{2}}{2} x_{2} j_{n}^{\prime}\left(x_{2}\right) \sin ^{2} \theta-\frac{h^{4}}{2} x_{2} \sin ^{2} \theta \\
& \cdot\left\{j_{n}^{\prime}\left(x_{2}\right)-\frac{1}{4}\left[3 j_{n}^{\prime}\left(x_{2}\right)+x_{2} j_{n}^{\prime \prime}\left(x_{2}\right)\right] \sin ^{2} \theta\right\} \\
& +O\left(h^{6}\right) \tag{21}
\end{align*}
$$

and a similar one for $n_{n}\left(k_{2} r\right)$.
We next substitute the former expansions into Eq. (2) satisfying the boundary condition at the spheroidal surface and we use the orthogonal properties of the associated Legendre ${ }^{13}$ and the trigonometric functions, concluding finally to the following infinite set of linear homogeneous equations for the expansion coefficients $A_{n m}$ (or $B_{n m}$), up to the order h^{4} :

$$
\begin{align*}
& \alpha_{n-4, n} A_{n-4, m}+\alpha_{n-2, n} A_{n-2, m}+\alpha_{n n} A_{n m}+\alpha_{n+2, n} A_{n+2, m} \\
& \quad+\alpha_{n+4, n} A_{n+4, m}=0, \quad n \geqslant m . \tag{22}
\end{align*}
$$

The third subscript m is omitted from the various α 's in Eq. (22), for simplicity. Their expressions are also given by the general expansions (10), but with different D 's, which are given in Eqs. (A6)-(A9) of the Appendix. As it is evident from Eq. (2), the first subscripts of A 's (and B 's) should be always equal or greater than $m \geqslant 0$. In the opposite case A 's (and B 's) are equal to zero and disappear. The same is valid also for the corresponding α 's and D 's.

If m has the same/opposite parity with n, i.e., $n-m$ is even/odd, the first subscript of the α 's in Eq. (22) starts from the minimum value $m / m+1$ and continues with the values $m+2 / m+3, m+4 / m+5$, etc. So, Eq. (22) separates into two distinct subsets, one with n even and the other with n odd. Setting each one of the determinants of the coefficients α, in these subsets, equal to zero, we obtain two determinantal equations of the same form for the evaluation of the eigenfrequencies, which are treated simultaneously. The rest steps are exactly the same as with the first method. So, Eqs. (11)(17) are also valid here with identical final results as in that method $\left[x_{2}^{(2)}\right.$ is obtained from Eqs. (13), (16) and (A7), while $x_{2}^{(4)}$ from Eqs. (13), (14), (16), (A6)-(A9) and (A22)(A24)], as it is expected for the same problem. This consists a very good check for their correctness.

The problem can be also solved, from the beginning, by using the eccentricity parameter v instead of h. In this case the expansion of the general quantity y with respect to v is

$$
\begin{equation*}
y=y(v)=y^{0}+v y_{v}^{(1)}+v^{2} y_{v}^{(2)}+O\left(v^{3}\right), \tag{23}
\end{equation*}
$$

while its expansion with respect to h is

$$
\begin{equation*}
y=y(h)=y^{0}+h^{2} y_{h}^{(2)}+h^{4} y_{h}^{(4)}+O\left(h^{6}\right) \tag{24}
\end{equation*}
$$

By using Eq. (19) into (23), as well as the relation

$$
\begin{equation*}
v^{2}=h^{4}+O\left(h^{6}\right) \tag{25}
\end{equation*}
$$

we finally obtain ${ }^{11}$

$$
\begin{equation*}
y_{v}^{(1)}=\mp y_{h}^{(2)}, y_{v}^{(2)}=\mp y_{h}^{(2)}+y_{h}^{(4)} . \tag{26}
\end{equation*}
$$

These last expressions are unique for both the prolate and the oblate cavity (v includes the sign), because $y_{h}^{(2)}$ simply changes its sign in these two cases.

By using the limiting value $\rho_{1} \rightarrow 0(q \rightarrow 0)$, with c_{1} finite, in Eq. (4), we obtain $E_{n}=j_{n}\left(x_{1}\right) / n_{n}\left(x_{1}\right)$, corresponding to a soft inner sphere. In the special case with $\rho_{1}=\rho_{2}$ and $c_{1}=c_{2}, q=1, w_{1}=x_{1}$ and $E_{n}=0$. Use of the small argument formulas for the various Bessel functions ${ }^{13}$ in Eq. (4) as R_{1} $\rightarrow 0$, gives also $E_{n}=0$. The last two cases correspond to a simple spheroidal cavity, i.e., in the absence of the inner sphere. In all three cases the various results become identical with the corresponding ones in Refs. 10 and 11. For $E_{n}=0$, Eq. (16) is replaced by $d D_{n n}^{0}\left(x_{2}^{0}\right) / d x_{2}=j_{n}^{\prime}\left(x_{2}^{0}\right)$.

II. NEUMANN BOUNDARY CONDITIONS

Equations (1)-(5) are also valid in this case. In order to satisfy the boundary condition $\partial p_{2} / \partial \mu=0\left(\partial p_{2} / \partial \xi=0\right)$ at $\mu=\mu_{0}\left(\xi=\xi_{0}\right)$, according to the first method, we follow steps identical to those for the Dirichlet case. So, we use again formulas (6) and (7) and conclude finally to the infinite set (8), with the difference that $\alpha_{\ell n m}$ is now given by the expression

$$
\begin{align*}
\alpha_{\ell n m}= & \frac{2 i^{-n}(n+m)!}{(2 n+1)(n-m)!} \\
& \times d_{n-m}^{m \ell}\left[\frac{\partial R_{m \ell}^{(1)}\left(c, \cosh \mu_{0}\right)}{\partial \mu}-E_{n} \frac{\partial R_{m \ell}^{(2)}\left(c, \cosh \mu_{0}\right)}{\partial \mu}\right] . \tag{27}
\end{align*}
$$

The remarks after Eq. (9) are again valid in this case. We next substitute $\partial R_{m}^{(1)} / \partial \mu$ and $\partial R_{m}^{(2)} / \partial \mu$ from Eq. (33) of Ref. 10 into Eq. (27) and follow the same procedure as in the Dirichlet case. So, we obtain again Eqs. (10)-(14) and (17) but with different expressions for the various expansion coefficients, which are given in Eqs. (A12)-(A15) of the Appendix. In place of Eq. (15) we now have

$$
\begin{equation*}
\frac{j_{n}^{\prime}\left(x_{2}^{0}\right)}{n_{n}^{\prime}\left(x_{2}^{0}\right)}=E_{n}\left(x_{2}^{0}\right), \quad x_{1}^{0}=\tau x_{2}^{0}, \quad w_{1}^{0}=\tau x_{2}^{0} \frac{c_{2}}{c_{1}} \tag{28}
\end{equation*}
$$

while, by using Eqs. (28), (A12), (A22) and the Wronskian $j_{n}^{\prime}\left(x_{2}^{0}\right) n_{n}^{\prime \prime}\left(x_{2}^{0}\right)-j_{n}^{\prime \prime}\left(x_{2}^{0}\right) n_{n}^{\prime}\left(x_{2}^{0}\right)=\left[\left(x_{2}^{0}\right)^{2}-n(n+1)\right] /\left(x_{2}^{0}\right)^{4}$, we obtain in place of Eq. (16)

$$
\begin{equation*}
\frac{d D_{n n}^{0}\left(x_{2}^{0}\right)}{d x_{2}}=-\frac{\left(x_{2}^{0}\right)^{2}-n(n+1)}{\left(x_{2}^{0}\right)^{3} n_{n}^{\prime}\left(x_{2}^{0}\right)}-x_{2}^{0} n_{n}^{\prime}\left(x_{2}^{0}\right) \frac{d E_{n}\left(w_{1}^{0}, x_{1}^{0}\right)}{d x_{2}} . \tag{29}
\end{equation*}
$$

Equations (29) and (A13) substituted in (13) give $x_{2}^{(2)}$. The expression for $x_{2}^{(4)}$ is much more lengthy, but is obtained immediately from Eqs. (13), (14), (29), (A12)-(A15) and (A22)-(A24).

According to the second method, the boundary condition at the spheroidal surface is expressed as $\hat{u} \cdot \nabla p_{2}=0$, with \hat{u} the normal unit vector there, where ${ }^{11}$

TABLE I. Dirichlet conditions, $\tau=R_{1} / R_{2}=0.2(0.5), \rho_{2} / \rho_{1}=0.820, c_{2} / c_{1}=0.787$.

TABLE II. Neumann conditions, $\tau=R_{1} / R_{2}=0.2(0.5), \rho_{2} / \rho_{1}=0.820, c_{2} / c_{1}=0.787$.

	n	m	s			
			1	2	3	4
$\left(x_{2}^{0}\right)_{\mathrm{ns}}$	0		0 (0)	4.593 68(5.321 42)	$8.07678(8.53948)$	11.565 52(12.299 21)
	1		$2.07857(2.06535)$	$5.93543(6.58494)$	$9.27624(10.48381)$	12.682 46(13.641 99)
	2		3.341 69(3.329 69)	7.284 93(7.708 81)	$10.61320(12.05094)$	$13.91158(15.27241)$
	3		4.514 05(4.506 37)	8.582 49(8.834 41)	$11.96813(13.25097)$	15.248 40(17.063 92)
	0	0	- (-)	0.352 66(0.409 12)	0.365 22(0.314 75)	0.364 96(0.439 78)
	1	0	$0.02751(0.02360)$	0.189 10(0.254 63)	$0.20383(0.18961)$	$0.21425(0.23787)$
$g_{\mathrm{nsm}}^{(2)}$	2	1	$0.48429(0.49139)$	$0.40848(0.54161)$	$0.42008(0.38818)$	$0.43534(0.48228)$
		0	$0.18270(0.18115)$	$0.23160(0.29920)$	$0.23717(0.28805)$	0.245 22(0.22455)
		1	0.257 92(0.25654)	$0.28216(0.36385)$	$0.28650(0.34741)$	$0.29537(0.27029)$
	3	2	$0.48360(0.48268)$	$0.43384(0.55781)$	$0.43447(0.52550)$	0.445 82(0.40752)
		0	0.212 60(0.211 25)	0.239 93(0.289 24)	0.242 25(0.329 32)	0.245 21(0.229 13)
		1	$0.24278(0.24135)$	0.263 22(0.317 19)	0.264 97(0.360 01)	0.267 92(0.250 27)
		2	$0.33331(0.33162)$	$0.33307(0.40104)$	$0.33311(0.45208)$	$0.33604(0.31368)$
		3	$0.48421(0.48208)$	0.449 50(0.540 80)	0.446 69(0.605 54)	$0.44958(0.41936)$
$g_{\text {nsm }}^{(4)}$	0	0	- (-)	$0.38861(0.33151)$	$0.50944(0.55664)$	$0.49798(2.13997)$
	1	0	$0.00279(-0.00142)$	$0.23009(0.25039)$	0.390 53(0.186 52)	$0.46300(1.21865)$
	2	1	0.353 85(0.377 20)	$0.36874(0.51654)$	0.488 42(0.220 76)	0.549 29(1.239 80)
		0	-0.045 04(0.008 38)	$0.00061(0.06821)$	0.143 08(-1.642 10)	$0.29670(-0.03119)$
		1	$0.20457(0.20567)$	0.279 89(0.377 77)	$0.40147(0.22816)$	$0.53514(0.52547)$
	3	2	0.354 56(0.361 04)	$0.35828(0.57367)$	$0.42437(0.28477)$	$0.50773(0.58357)$
		0	0.037 14(0.059 73)	0.007 27(0.251 12)	$0.06614(-0.70153)$	$0.25699(-0.29288)$
		1	0.104 04(0.118 83)	$0.10113(0.29771)$	$0.16940(-0.35043)$	$0.33523(-0.122$ 20)
		2	0.257 61(0.256 91)	0.300 40(0.418 80)	0.378 67(0.377 97)	0.484 26(0.210 74)
		3	$0.35650(0.35631)$	$0.35823(0.55840)$	0.392 42(0.508 95)	0.447 05(0.168 60)

FIG. 2. Eigenfrequencies of a spherical cavity with a penetrable sphere; $\rho_{2} / \rho_{1}=0.820, c_{2} / c_{1}=0.787$-Dirichlet conditions.

$$
\begin{align*}
& \hat{u}=\left(1-\frac{h^{4}}{8} \sin ^{2} 2 \theta\right) \hat{u}^{\prime} \tag{30}\\
& \hat{u}^{\prime}=\hat{r}+\frac{h^{2}}{2} \sin 2 \theta\left(\pm 1+h^{2} \cos ^{2} \theta\right) \hat{\theta}+O\left(h^{6}\right)
\end{align*}
$$

So

$$
\begin{align*}
\hat{u} \cdot \nabla p_{2}=\hat{u}^{\prime} \cdot \nabla p_{2}= & \frac{\partial p_{2}}{\partial r}+\frac{h^{2}}{2} \sin 2 \theta(\pm 1 \\
& \left.+h^{2} \cos ^{2} \theta\right) \frac{1}{r} \frac{\partial p_{2}}{\partial \theta}=0 . \tag{31}
\end{align*}
$$

We next substitute from Eq. (2) into (31), thus obtaining the equation

FIG. 3. First order expansion coefficients for eigenfrequencies in a spheroidal cavity with a penetrable sphere; $\rho_{2} / \rho_{1}=0.820, \quad c_{2} / c_{1}=0.787-$ Dirichlet conditions.

FIG. 4. Second order expansion coefficients for eigenfrequencies in a spheroidal cavity with a penetrable sphere; $\rho_{2} / \rho_{1}=0.820, c_{2} / c_{1}=0.787-$ Dirichlet conditions.

$$
\begin{align*}
\sum_{n=0}^{\infty} & \sum_{m=0}^{n}\left\{\left[j_{n}^{\prime}\left(k_{2} r\right)-E_{n} n_{n}^{\prime}\left(k_{2} r\right)\right] P_{n}^{m}(\cos \theta)\right. \\
& +\frac{h^{2}}{2} \sin 2 \theta\left(\pm 1+h^{2} \cos ^{2} \theta\right) \frac{1}{k_{2} r}\left[j_{n}\left(k_{2} r\right)-E_{n} n_{n}\left(k_{2} r\right)\right] \\
& \left.\cdot \frac{d P_{n}^{m}(\cos \theta)}{d \theta}\right\}\left[A_{n m} \cos m \varphi+B_{n m} \sin m \varphi\right]=0 \tag{32}
\end{align*}
$$

By using Eq. (20) we get expansions similar to Eq. (21) for $j_{n}^{\prime}\left(k_{2} r\right)$ and $n_{n}^{\prime}\left(k_{2} r\right)$, but with one more prime in each one of their Bessel functions. We also obtain the expansion ${ }^{11}$

$$
\begin{align*}
\frac{j_{n}\left(k_{2} r\right)}{k_{2} r}= & \frac{j_{n}\left(x_{2}\right)}{x_{2}} \mp \frac{h^{2}}{2}\left[-\frac{j_{n}\left(x_{2}\right)}{x_{2}}+j_{n}^{\prime}\left(x_{2}\right)\right] \sin ^{2} \theta \\
& +\frac{h^{4}}{2}\left\{\left[\frac{j_{n}\left(x_{2}\right)}{x_{2}}-j_{n}^{\prime}\left(x_{2}\right)\right] \sin ^{2} \theta\right. \\
& \left.+\frac{1}{4}\left[-\frac{j_{n}\left(x_{2}\right)}{x_{2}}+j_{n}^{\prime}\left(x_{2}\right)+x_{2} j_{n}^{\prime \prime}\left(x_{2}\right)\right] \sin ^{4} \theta\right\} \\
& +O\left(h^{6}\right) \tag{33}
\end{align*}
$$

and a similar one for $n_{n}\left(k_{2} r\right) / k_{2} r$.
We next substitute the former expansions into Eq. (32) and we use the orthogonal properties of the associated Legendre and the trigonometric functions, thus obtaining again the set (22), certainly with different α 's and so D 's, which are given in Eqs. (A16)-(A19) of the Appendix.

The rest steps are identical with those in the first method, i.e., we obtain again Eqs. (10)-(14), (17) and (28), (29) with identical as their final results $\left[x_{2}^{(2)}\right.$ is obtained from Eqs. (13), (29) and (A17), while $x_{2}^{(4)}$ from Eqs. (13), (14), (29), (A16)-(A19) and (A22)-(A24)], as is expected for the same problem. This is a very good check for their correctness.

The parameter v, instead of h, can be also used in this case by keeping in mind Eqs. (19) and (23)-(26).

By using the limiting value $\rho_{1} \rightarrow \infty(q \rightarrow \infty)$, with c_{1} finite, in Eq. (4), we obtain $E_{n}=j_{n}^{\prime}\left(x_{1}\right) / n_{n}^{\prime}\left(x_{1}\right)$, corresponding

FIG. 5. Eigenfrequencies of a spherical cavity with a penetrable sphere; $\rho_{2} / \rho_{1}=0.820, c_{2} / c_{1}=0.787-$ Neumann conditions.
to a hard inner sphere. So, the various results become identical with the corresponding ones in Refs. 10 and 11. The same is valid also for a simple spheroidal cavity, where E_{n} $=0$. In this last case Eq. (29) is replaced by $d D_{n n}^{0}\left(x_{2}^{0}\right) / d x_{2}$ $=x_{2}^{0} j_{n}^{\prime \prime}\left(x_{2}^{0}\right)$.

III. NUMERICAL RESULTS AND DISCUSSION

In Table I the roots $\left(x_{2}^{0}\right)_{n s}(n=0-3, s=1-4)$ of Eq. (15) as well as the corresponding values of $g_{\text {nsm }}^{(2)}$ and $g_{\text {nsm }}^{(4)}$ are given in the Dirichlet case, for $\tau=R_{1} / R_{2}=0.2,0.5, \rho_{2} / \rho_{1}$ $=0.820, c_{2} / c_{1}=0.787$. In Table II the roots $\left(x_{2}^{0}\right)_{n s}$ of Eq. (28) are given, as well as g 's in the Neumann case, for the same τ 's and the values of the parameters as before. The value $\left(x_{2}^{0}\right)_{01}=0$ corresponds to the smallest eigenvalue k_{2}^{0} $=k_{1}^{0}=0$ (with constant eigenfunction) of the Helmholtz equation under Neumann conditions. As $\left(x_{2}^{0}\right)_{01}=0$, also $f_{01}(0)=0$ and $f_{010}(h)=0$, so the values of $g_{010}^{(2)}$ and $g_{010}^{(4)}$ do not matter.

Both tables are referred to the prolate cavity. For the oblate one $g^{(2)}$'s simply change their signs, while $g^{(4)}$'s re-

FIG. 6. First order expansion coefficients for eigenfrequencies in a spheroidal cavity with a penetrable sphere; $\rho_{2} / \rho_{1}=0.820, c_{2} / c_{1}=0.787-$ Neumann conditions.

FIG. 7. Second order expansion coefficients for eigenfrequencies in a spheroidal cavity with a penetrable sphere; $\rho_{2} / \rho_{1}=0.820, c_{2} / c_{1}=0.787-$ Neumann conditions.
main unchanged. (The same will be valid also in Figs. 3, 4, 6 and 7, which follow.)

For the values of the parameters used, all $g^{(2)}$'s in both tables are positive. Keeping in mind Eq. (17), this means that the eigenfrequencies of the prolate/oblate cavity are greater/ smaller than those of the corresponding spherical one, up to the order h^{2}.

From the former tables and many other available results, it is evident that $\left(x_{2}^{0}\right)_{n s}(n \geqslant 0, s \geqslant 1)$ and so also $f_{n s}(0)$ for Neumann conditions are smaller than the corresponding ones for Dirichlet conditions. The same is valid for $f_{\text {nsm }}(h)$, as can be easily proved for the results given in these tables, in the case with $h \ll 1$.

In Fig. 2 we plot the roots $\left(x_{2}^{0}\right)_{n s}(n=0-2, s=1,2)$ of Eq. (15) versus τ, for a concentric spherical cavity with radii R_{1} and R_{2} and Dirichlet conditions. The various numbers designating the curves in this and the rest of the figures correspond to the subscripts of the ordinate. For $\tau \rightarrow 0\left(R_{1}\right.$ $\rightarrow 0), E_{n} \rightarrow 0$ and so $\left(x_{2}^{0}\right)_{n s}$ tend to the zeros of $j_{n}\left(x_{2}^{0}\right)$, corresponding to a simple spherical cavity with parameters ρ_{2}, c_{2}. For $\tau \rightarrow 1\left(R_{1} \rightarrow R_{2}\right), x_{1}^{0} \rightarrow x_{2}^{0}$, so Eq. (15) is reduced to $j_{n}\left(w_{1}^{0}\right)=j_{n}\left(x_{2}^{0} c_{2} / c_{1}\right)=0$ corresponding to a simple spherical cavity with parameters ρ_{1}, c_{1} and $\left(x_{2}^{0}\right)_{n s}$ in this case are equal with those for $\tau \rightarrow 0$, multiplied by c_{1} / c_{2}.

In Figs. 3 and 4 we plot $g_{\text {nsm }}^{(2)}$ and $g_{\text {nsm }}^{(4)}$, respectively, versus τ, for the cavity of Fig. 1 with Dirichlet conditions. For $\tau \rightarrow 0$ the various g 's tend to the corresponding ones for a simple spheroidal cavity ${ }^{11}$ with parameters ρ_{2}, c_{2}, by taking in mind Eqs. (26). So, $g^{(2)}$'s are independent of s in this case, as it was proved in Ref. 11 and is seen in Fig. 3. For $\tau \rightarrow 1$ (for the prolate cavity is necessary that $h \rightarrow 0$, as τ $\rightarrow 1)$ the same remarks as before are valid for g 's, where now the simple spheroidal cavity has parameters ρ_{1}, c_{1}. Also in this case $g^{(2)}$, s are independent of s, as is seen in Fig. 3 , and are equal with those for $\tau \rightarrow 0$, multiplied by ρ_{2} / ρ_{1}. This can be proved easily by using the result ${ }^{11} g_{\mathrm{nsm}}^{(2)}=F$ [F is given in Eq. (A10)] for $\tau \rightarrow 0$, as well as Eqs. (13), (16), (A7), (15), the Wronskian following it and (A22) for $\tau \rightarrow 1$, i.e., with $x_{1}^{0} \rightarrow x_{2}^{0}$ and $j_{n}\left(w_{1}^{o}\right)=0$.

In Fig. 5 the roots $\left(x_{2}^{0}\right)_{n s}(n=0-2, s=1-3)$ of Eq. (28) are plotted versus τ, for a concentric spherical cavity with radii R_{1} and R_{2} and Neumann conditions [$\left(x_{2}^{0}\right)_{01}=0$, as in Table II]. For $\tau \rightarrow 0,\left(x_{2}^{0}\right)_{n s}$ tend to the zeros of $j_{n}^{\prime}\left(x_{2}^{0}\right)$, corresponding to a simple spherical cavity with parameters ρ_{2}, c_{2}. For $\tau \rightarrow 1$, Eq. (28) is reduced to $j_{n}^{\prime}\left(w_{1}^{0}\right)$ $=j_{n}^{\prime}\left(x_{2}^{0} c_{2} / c_{1}\right)=0$ (for a simple spherical cavity with ρ_{1}, c_{1}) and $\left(x_{2}^{0}\right)_{n s}$ are equal with the corresponding ones for $\tau \rightarrow 0$, multiplied by c_{1} / c_{2}.

In Figs. 6 and 7 we plot $g_{\text {nsm }}^{(2)}$ and $g_{\text {nsm }}^{(4)}$, respectively, versus τ, for the cavity of Fig. 1 with Neumann conditions. For $\tau \rightarrow 0$ the various g 's tend to the corresponding ones for a simple spheroidal cavity ${ }^{11}$ with parameters ρ_{2}, c_{2} [we keep in mind Eqs. (26)]. So, $g_{o s o}^{(2)}(s \geqslant 2)$ are independent of s in this case, as is seen in Fig. 6. For $\tau \rightarrow 1$ the same remarks are valid for g 's in a simple spheroidal cavity with parameters ρ_{1}, c_{1}. So $g_{o s o}^{(2)}$ are independent of s also in this case (Fig. $6)$.

APPENDIX

The expressions for the various D 's appearing in Eq. (10) and used in our calculations are the following (the upper/lower sign corresponds to the prolate/oblate cavity):

1. Dirichlet boundary conditions

A. First method (use of spheroidal wave functions)

$$
\begin{align*}
D_{n n}^{0}= & u_{n n} \tag{A1}\\
D_{n n}^{(2)}= & \pm \frac{x_{2}^{2}}{2(2 n+1)}\left[\frac{(n+m+1)(n+m+2)}{(2 n+3)^{2}} u_{n+2, n}\right. \\
& \left.-\frac{(n-m-1)(n-m)}{(2 n-1)^{2}} u_{n-2, n}\right], \tag{A2}\\
D_{n n}^{(4)}= & x_{2}^{4} \frac{(n+m+1)(n+m+2)}{(2 n+1)(2 n+3)^{2}(2 n+7)} \\
& \times\left[\frac{1-4 m^{2}}{(2 n-1)(2 n+3)^{2}} u_{n+2, n}\right. \\
& \left.+\frac{(n+m+3)(n+m+4)}{8(2 n+5)^{2}} u_{n+4, n}\right] \\
& -x_{2}^{4} \frac{(n-m-1)(n-m)}{(2 n-5)(2 n-1)^{2}(2 n+1)} \\
& \cdot\left[\frac{1-4 m^{2}}{(2 n-1)^{2}(2 n+3)} u_{n-2, n}\right. \\
& \left.-\frac{(n-m-3)(n-m-2)}{8(2 n-3)^{2}} u_{n-4, n}\right] \tag{A3}\\
D_{n+2, n}^{(2)}= & \pm x_{2}^{2} \frac{(n+m+1)(n+m+2)}{2(2 n+3)^{2}(2 n+5)} u_{n+2, n}, \\
D_{n, n+2}^{(2)} & =\mp x_{2}^{2} \frac{(n-m+1)(n-m+2)}{2(2 n+1)(2 n+3)^{2}} u_{n, n+2} \tag{A4}
\end{align*}
$$

where

$$
\begin{equation*}
u_{v s}=j_{v}\left(x_{2}\right)-E_{s} n_{v}\left(x_{2}\right) . \tag{A5}
\end{equation*}
$$

B. Second method (shape perturbation)

$$
\begin{align*}
& D_{n n}^{0}=u_{n n} \tag{A6}\\
& D_{n n}^{(2)}=\mp x_{2} F u_{n n}^{\prime}, \tag{A7}\\
& D_{n n}^{(4)}=x_{2} G\left(3 u_{n n}^{\prime}+x_{2} u_{n n}^{\prime \prime}\right)-x_{2} F u_{n n}^{\prime}, \tag{A8}\\
& D_{n+2, n}^{(2)}= \pm x_{2} \frac{(n+m+1)(n+m+2)}{2(2 n+3)(2 n+5)} u_{n+2, n+2}^{\prime}, \\
& D_{n, n+2}^{(2)}= \pm x_{2} \frac{(n-m+1)(n-m+2)}{2(2 n+1)(2 n+3)} u_{n n}^{\prime}, \tag{A9}
\end{align*}
$$

where

$$
\begin{align*}
F= & \frac{n^{2}+m^{2}+n-1}{(2 n-1)(2 n+3)}, \tag{A10}\\
G= & \frac{(n+m+1)(n+m+2)(n+m+3)(n+m+4)}{8(2 n+1)(2 n+3)^{2}(2 n+5)} \\
& +\frac{(n-m-1)(n-m)(n+m+1)(n+m+2)}{2(2 n-1)^{2}(2 n+3)^{2}} \\
& +\frac{(n-m-3)(n-m-2)(n-m-1)(n-m)}{8(2 n-3)(2 n-1)^{2}(2 n+1)},
\end{align*}
$$

(A11)
while the number of primes over $u_{v s}$, in any case, denotes the number of primes over $j_{v}\left(x_{2}\right)$ and $n_{v}\left(x_{2}\right)$ (i.e., the order of their derivatives with respect to their argument x_{2}) in Eq. (A5).

2. Neumann boundary conditions

A. First method (use of spheroidal wave functions)

$$
\begin{align*}
D_{n n}^{0}= & x_{2} u_{n n}^{\prime} \tag{A12}\\
D_{n n}^{(2)}= & \mp\left[x_{2} u_{n n}^{\prime}-m u_{n n}\right. \\
& -x_{2}^{3} \frac{(n+m+1)(n+m+2)}{2(2 n+1)(2 n+3)^{2}} u_{n+2, n}^{\prime} \\
& \left.+x_{2}^{3} \frac{(n-m-1)(n-m)}{2(2 n-1)^{2}(2 n+1)} u_{n-2, n}^{\prime}\right], \tag{A13}\\
D_{n n}^{(4)}= & x_{2}^{2} \frac{(n+m+1)(n+m+2)}{2(2 n+1)(2 n+3)^{2}}\left\{-x_{2} u_{n+2, n}^{\prime}+m u_{n+2, n}\right. \\
& +\frac{2 x_{2}^{3}}{2 n+7} \cdot\left[\frac{1-4 m^{2}}{(2 n-1)(2 n+3)^{2}} u_{n+2, n}^{\prime}\right. \\
& \left.\left.+\frac{(n+m+3)(n+m+4)}{8(2 n+5)^{2}} u_{n+4, n}^{\prime}\right]\right\}
\end{align*}
$$

$$
\begin{align*}
& -x_{2}^{2} \frac{(n-m-1)(n-m)}{2(2 n-1)^{2}(2 n+1)}\left\{-x_{2} u_{n-2, n}^{\prime}+m u_{n-2, n}\right. \\
& +\frac{2 x_{2}^{3}}{2 n-5} \cdot\left[\frac{1-4 m^{2}}{(2 n-1)^{2}(2 n+3)} u_{n-2, n}^{\prime}\right. \\
& \left.\left.-\frac{(n-m-3)(n-m-2)}{8(2 n-3)^{2}} u_{n-4, n}^{\prime}\right]\right\}, \quad \text { (A144 } \tag{A14}\\
D_{n+2, n}^{(2)} & = \pm x_{2}^{3} \frac{(n+m+1)(n+m+2)}{2(2 n+3)^{2}(2 n+5)} u_{n+2, n}^{\prime}, \\
D_{n, n+2}^{(2)} & =\mp x_{2}^{3} \frac{(n-m+1)(n-m+2)}{2(2 n+1)(2 n+3)^{2}} u_{n, n+2}^{\prime} . \tag{A15}
\end{align*}
$$

B. Second method (shape perturbation)

$$
\begin{align*}
& D_{n n}^{0}= x_{2} u_{n n}^{\prime}, \tag{A16}\\
& D_{n n}^{(2)}= \mp \tag{A17}\\
& x_{2}^{2} F u_{n n}^{\prime \prime} \mp M u_{n n}, \\
& D_{n n}^{(4)}= x_{2}^{2} G\left[3 u_{n n}^{\prime \prime}+x_{2} u_{n n}^{\prime \prime \prime}\right]+\frac{L}{2(2 n+1)}\left[u_{n n}+x_{2} u_{n n}^{\prime}\right] \tag{A18}\\
&-x_{2}^{2} F u_{n n}^{\prime \prime}-M u_{n n}, \\
& D_{n+2, n}^{(2)}= \pm \frac{(n+m+1)(n+m+2)}{2(2 n+3)(2 n+5)}\left[x_{2}^{2} u_{n+2, n+2}^{\prime \prime}\right. \tag{A19}\\
&-2(n+3) u_{n+2, n+2],} \\
& D_{n, n+2}^{(2)}= \pm \frac{(n-m+1)(n-m+2)}{2(2 n+1)(2 n+3)}\left[x_{2}^{2} u_{n n}^{\prime \prime}+2 n u_{n n}\right],
\end{align*}
$$

where

$$
\begin{align*}
M= & \frac{1}{2 n+1}\left[\frac{(n+1)\left(n^{2}-m^{2}\right)}{2 n-1}-\frac{n\left((n+1)^{2}-m^{2}\right)}{2 n+3}\right]_{(\mathrm{A} 20)} \\
L= & \frac{(n-m)(n+m+1)}{2 n+1}\left[\frac{(n+1)(n+m)}{2 n-1}+\frac{n(n-m+1)}{2 n+3}\right] \\
& \times\left(\frac{n+m}{2 n-1}-\frac{n-m+1}{2 n+3}\right) \\
& -\frac{n\left((n+1)^{2}-m^{2}\right)(n+m+2)(n+m+3)}{(2 n+3)^{2}(2 n+5)} \\
& +\frac{(n+1)(n-m-2)(n-m-1)\left(n^{2}-m^{2}\right)}{(2 n-3)(2 n-1)^{2}} . \tag{A21}
\end{align*}
$$

3. Two useful derivatives

The following two derivatives of E_{n} are very useful in Eqs. (13), (14), for the evaluation of $x_{2}^{(2)}$ and $x_{2}^{(4)}$ in any case, i.e., for Dirichel and Neumann conditions and for both methods. Various recurrence relations and Wronskians for spherical Bessel functions ${ }^{13}$ have been used for their evaluation:

$$
\begin{align*}
\frac{d E_{n}}{d x_{2}}= & -\left\{\tau x_{1}^{2}\left(1-\frac{\rho_{1}}{\rho_{2}}\right)\left[j_{n}^{\prime}\left(w_{1}\right)\right]^{2}+q^{2} \tau j_{n}^{2}\left(w_{1}\right)\right. \\
& \left.\times\left[x_{1}^{2}-\frac{\rho_{2}}{\rho_{1}} w_{1}^{2}-n(n+1)\left(1-\frac{\rho_{2}}{\rho_{1}}\right)\right]\right\} /\left(x_{1}^{4} Q^{2}\right) \tag{A22}
\end{align*}
$$

$$
\begin{align*}
\frac{d^{2} E_{n}}{d x_{2}^{2}}= & -\frac{2 \tau^{2}}{x_{1}^{4} Q^{2}}\left\{x_{1}\left(1-\frac{\rho_{1}}{\rho_{2}}\right) j_{n}^{\prime}\left(w_{1}\right)\left[j_{n}^{\prime}\left(w_{1}\right)+w_{1} j_{n}^{\prime \prime}\left(w_{1}\right)\right]\right. \\
& +q^{2} \frac{c_{2}}{c_{1}} j_{n}\left(w_{1}\right) j_{n}^{\prime}\left(w_{1}\right) \cdot\left[x_{1}^{2}-\frac{\rho_{2}}{\rho_{1}} w_{1}^{2}-n(n+1)\right. \\
& \left.\left.\times\left(1-\frac{\rho_{2}}{\rho_{1}}\right)\right]+q^{2} j_{n}^{2}\left(w_{1}\right)\left(x_{1}-\frac{w_{1}}{q}\right)\right\} \\
& -2 \tau \frac{d E_{n}}{d x_{2}}\left(\frac{2}{x_{1}}+\frac{Q_{1}+Q_{2} c_{2} / c_{1}}{Q}\right) \tag{A23}
\end{align*}
$$

where

$$
\begin{align*}
& Q=n_{n}\left(x_{1}\right) j_{n}^{\prime}\left(w_{1}\right)-q j_{n}\left(w_{1}\right) n_{n}^{\prime}\left(x_{1}\right), \\
& Q_{1}=n_{n}^{\prime}\left(x_{1}\right) j_{n}^{\prime}\left(w_{1}\right)-q j_{n}\left(w_{1}\right) n_{n}^{\prime \prime}\left(x_{1}\right) \tag{A24}\\
& Q_{2}=n_{n}\left(x_{1}\right) j_{n}^{\prime \prime}\left(w_{1}\right)-q j_{n}^{\prime}\left(w_{1}\right) n_{n}^{\prime}\left(x_{1}\right)
\end{align*}
$$

while $x_{1}=\tau x_{2}, w_{1}=\tau x_{2} c_{2} / c_{1}$ and $\tau=R_{1} / R_{2}$.
${ }^{1}$ P. M. Morse and K. U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968).
${ }^{2}$ M. Barmatz, "Overview of containerless processing technologies,' Proceedings of the Symposium of Materials Processing in the Reduced Gravity Environment of Space, Boston, MA, Nov. 1981 (Elsevier, New York, 1982), pp. 25-37.
${ }^{3}$ M. Barmatz and P. Collas, "Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing wave fields," J. Acoust. Soc. Am. 77, 928-945 (1985).
${ }^{4}$ M. R. Moldover, J. B. Meh1, and M. Greenspan, 'Gas-filled spherical resonators: Theory and experiment," J. Acoust. Soc. Am. 79, 253-272 (1986).
${ }^{5}$ J. D. Kanellopoulos and J. G. Fikioris, "Acoustic resonant frequencies in an eccentric spherical cavity,’’ J. Acoust. Soc. Am. 64, 286-297 (1978).
${ }^{6}$ J. A. Roumeliotis, J. D. Kanellopoulos, and J. G. Fikioris, "Acoustic resonance frequency shifts in a spherical cavity with an eccentric inner small sphere," J. Acoust. Soc. Am. 90, 1144-1148 (1991).
${ }^{7}$ J. A. Roumeliotis and J. D. Kanellopoulos, 'Acoustic eigenfrequencies and modes in a soft-walled spherical cavity with an eccentric inner small sphere," J. Franklin Inst. 329, 727-735 (1992).
${ }^{8}$ C. T. M. Chang, 'Natural resonant frequency of a prolate acoustical resonator,'’ J. Acoust. Soc. Am. 49, 611-614 (1971).
${ }^{9}$ P.-T. Chen, 'Variational formulation of interior cavity frequencies for spheroidal bodies,'’ J. Acoust. Soc. Am. 100, 2980-2988 (1966).
${ }^{10}$ G. C. Kokkorakis and J. A. Roumeliotis, "Acoustic eigenfrequencies in concentric spheroidal-spherical cavities," J. Sound Vib. 206, 287-308 (1997).
${ }^{11}$ G. C. Kokkorakis and J. A. Roumeliotis, "Acoustic eigenfrequencies in concentric spheroidal-spherical cavities: Calculation by shape perturbation," J. Sound Vib. 212, 337-355 (1998).
${ }^{12}$ C. Flammer, Spheroidal Wave Functions (Stanford U.P., Stanford, CA, 1957).
${ }^{13}$ M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).
${ }^{14}$ Y. Mushiake, 'Backscattering for arbitrary angles of incidence of a plane electromagnetic wave on a perfectly conducting spheroid with small eccentricity," J. Appl. Phys. 27, 1549-1556 (1956).

[^0]: ${ }^{\text {a) }}$ Electronic mail: iroumel@cc.ece.ntua.gr

