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The acoustic eigenfrequenciesf nsm in a spheroidal cavity containing a concentric penetrable sphere
are determined analytically, for both Dirichlet and Neumann conditions in the spheroidal boundary.
Two different methods are used for the evaluation. In the first, the pressure field is expressed in
terms of both spherical and spheroidal wave functions, connected with one another by well-known
expansion formulas. In the second, a shape perturbation method, this field is expressed in terms of
spherical wave functions only, while the equation of the spheroidal boundary is given in spherical
coordinates. The analytical determination of the eigenfrequencies is possible when the solution is
specialized to small values ofh5d/(2R2), (h!1), with d the interfocal distance of the spheroidal
boundary and 2R2 the length of its rotation axis. In this case exact, closed-form expressions are
obtained for the expansion coefficientsgnsm

(2) and gnsm
(4) in the resulting relationf nsm(h)5 f ns(0)@1

1h2gnsm
(2) 1h4gnsm

(4) 1O(h6)#. Analogous expressions are obtained with the use of the parameterv
512(R2 /R28)

2, (uvu!1), with 2R28 the length of the other axis of the spheroidal boundary.
Numerical results are given for various values of the parameters. ©1999 Acoustical Society of
America.@S0001-4966~99!05803-8#

PACS numbers: 43.20.Ks@ANN#
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INTRODUCTION

Calculation of eigenfrequencies in acoustic cavities
various shapes is an important problem with many appl
tions in room acoustics,1 acoustic levitation2,3 and high ac-
curacy measurements of sound speed in gases.4 The shape of
the boundaries severely limits the possibility for analytic
solution of such problems. For complicated geometries
merical techniques are used. Analytical, perturbational m
ods were used elsewhere, in order to obtain the acou
eigenfrequencies in a spherical cavity with an eccentric in
sphere, for both Dirichlet and Neumann boundary con
tions, in the case of small eccentricity between the t
spheres,5 or for a small inner sphere.6,7 In spheroidal cavities
calculation is more complex, due to the complexity of sph
roidal functions. In Refs. 8 and 9 the eigenfrequencies o
prolate spheroidal cavity were calculated, for Dirichlet a
Neumann boundary conditions, too. The same is valid als
Refs. 10 and 11 for concentric spheroidal–spherical cavit
by analytical, perturbational methods. In this last case
only the prolate but also the oblate spheroidal boundaries
examined.

In the present paper the acoustic cavity, shown in Fig
is examined also for both Dirichlet and Neumann conditio
in its spheroidal boundary, which has major and minor se
axesR2 and R28 , respectively, and interfocal distanced. It
contains a concentric penetrable sphere with radiusR1 . This
cavity is a perturbation of the concentric spherical one w
radii R1 and R2 . Only the prolate spheroidal boundary
shown, but corresponding formulas for the oblate one
obtained immediately. The length of the rotation axis in ea

a!Electronic mail: iroumel@cc.ece.ntua.gr
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case is 2R2 , while that of the other axis is 2R28 .
The acoustic eigenfrequencies in the former cavity

determined by two different methods. In the first of them t
pressure field is expressed in terms of both spherical
spheroidal wave functions, while use is made of the we
known expansion formulas connecting these functions.12 In
the second method we use shape perturbation. In this
the pressure field is expressed in terms of spherical w
functions only, while the equation of the spheroidal boun
ary is given in spherical coordinatesr andu. In both cases,
after the satisfaction of the boundary conditions, we obt
an infinite determinantal equation for the evaluation of t
eigenfrequencies. In the special case of smallh5d/(2R2),
(h!1) we are led to an exact evaluation, up to the orderh4,
for the elements of the infinite determinant and, finally, f
the determinant itself. It is then possible to obtain the eig
frequencies in the form f nsm(h)5 f ns(0)@11h2gnsm

(2)

1h4gnsm
(4) 1O(h6)#. The expansion coefficientsgnsm

(2) andgnsm
(4)

are independent ofh and are given by exact, closed-form
expressions, whilef ns(0) are the eigenfrequencies of the co
responding spherical cavity withh50.

The main advantage of such an analytical solution lies
its general validity for each small value ofh and for all
modes, while numerical techniques require repetition of
evaluation for each differenth, with accuracy deteriorating
quickly for higher order modes.

Analogous expansions are obtained by using the par
eterv512(R2 /R28)

2, (uvu!1).
Our method can be applied also in the correspond

exterior ~scattering! problem.
The cases of the Dirichlet and Neumann conditions

the spheroidal boundary are examined in Secs. I and II,
1539(3)/1539/9/$15.00 © 1999 Acoustical Society of America
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spectively. Finally, Sec. III includes numerical results a
discussion.

I. DIRICHLET BOUNDARY CONDITIONS

As shown in Fig. 1, the density, the sound speed and
wave number arer1 , c1 , k1 andr2 , c2 , k2 inside the pen-
etrable sphere~region 1! and between it and the spheroid
boundary~region 2!, respectively. The materials of both re
gions are considered as fluids or fluidlike, i.e., they do
support shear waves.

Let p1 andp2 be the acoustic pressure fields in region
and 2, respectively. These fields, which satisfy the sc
Helmholtz equation, have the following expressions:

p15 (
n50

`

(
m50

n

j n~k1r !Pn
m~cosu!@Cnm cosmw

1Dnm sinmw#, ~1!

p25 (
n50

`

(
m50

n

@ j n~k2r !2Ennn~k2r !#Pn
m~cosu!

3@Anm cosmw1Bnm sinmw#. ~2!

In Eqs.~1!, ~2! r, u, w are the spherical coordinates wi
respect toO, j n andnn are the spherical Bessel functions
the first and second kind, respectively, andPn

m is the associ-
ated Legendre function of the first kind.

By satisfying the boundary conditions atr 5R1

p15p2 ,
1

r1c1

]p1

]~k1r !
5

1

r2c2

]p2

]~k2r !
, ~3!

FIG. 1. Geometry of the cavity.
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and using the orthogonal relations for the associa
Legendre13 and the trigonometric functions we obtain th
following expression forEn

En5
j n~x1! j n8~w1!2q jn~w1! j n8~x1!

nn~x1! j n8~w1!2q jn~w1!nn8~x1!
, ~4!

where

w15k1R1 , x15k2R1 , q5
r1c1

r2c2
, ~5!

and the primes denote derivatives with respect to the a
ment.

In order to satisfy the remaining boundary conditio
p250 at the spheroidal boundary, denoted bym5m0 , we
follow two different methods. In the first of them we expan
the spherical wave functions, appearing in Eq.~2!, into con-
centric spheroidal ones by the formula12

zn
~s!~k2r !Pn

m~cosu!

5
2

2n11

~n1m!!

~n2m!! (
l 5m,m11

`

8
i l 2n

Nml

3dn2m
ml Sml ~c,h!Rml

~s!~c,j!, c5k2d/2. ~6!

In Eq. ~6! j5coshm, h are the spheroidal coordinates (w is
common in both systems!, zn

(s) (s51 – 4) is the spherica
Bessel function of any kind,Rml

(s) is the corresponding radia
spheroidal function of the same kind,Sml anddn2m

ml are the
angular spheroidal function of the first kind and its expans
coefficients, while

Nmn52 (
r 50,1

`

8
~dr

mn!2~r 12m!!

~2r 12m11!r !
. ~7!

The prime over the summation symbols in Eqs.~6! and ~7!
indicates that whenn2m is even/odd these summations sta
with the first/second value of their summation index and c
tinue only with values of the same parity with it.

We substitute from Eq.~6! into Eq. ~2! satisfying the
boundary conditionp250 atm5m0(j5j0) and we next use
the orthogonal properties of the angular spheroidal12 and the
trigonometric functions, to obtain finally the following infi
nite set of linear homogeneous equations for the expan
coefficientsAnm ~or Bnm)

(
n5m,m11

`

8 a l nmAnm50, l >m,m11, ~8!

where

a l nm5
2i 2n~n1m!!

~2n11!~n2m!!

3dn2m
ml @Rml

~1! ~c,coshm0!2EnRml
~2! ~c,coshm0!#. ~9!

In Eqs. ~8! and ~9! l and n are both even or odd, startin
with that value ofm or m11, which has the same parity wit
them. So, Eq.~8! separates into two distinct subsets, o
with l , n even and the other withl , n odd.

We next substituteRml
(1) andRml

(2) from Eq.~7! of Ref. 10
into Eq. ~9! and set each one of the two determinan
1540okkorakis and J. A. Roumeliotis: Modal frequencies of a cavity
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D(a l nm) ~one with l , n even and the other withl , n odd!
of the coefficientsa l nm in Eq. ~8! equal to 0. So, we obtain
two determinantal equations of the same form for the eva
ation of the eigenfrequencies, which are treated simu
neously under the symbolD(a l nm). By dividing a l nm by
the product 2i 2n tanhmm0(dl 2m

ml )2(n1m)/@(2n11)(n
2m)! #, as in Ref. 10, we do not change the roots of t
determinantal equation. We next use the symbola l n for the
resulting coefficient, deleting the subscriptm for simplicity,
and replacec5k2d/2 by its equal onec5x2h, where x2

5c coshm05k2R2 andh5d/(2R2). For large values ofh the
determinantal equation can be solved only numerically,
for small h ~h!1! an analytical solution is possible. In th
last case we can set up to the orderh4,

ann5Dnn
~0!1h2Dnn

~2!1h4Dnn
~4!1O~h6!,

an62,n5h2Dn62,n
~2! 1h4Dn62,n

~4! 1O~h6!, ~10!

an64,n5h4Dn64,n
~4! 1O~h6!.

Exact expressions for the variousD’s used in our calcu-
lations are given in Eqs.~A1!–~A5! of the Appendix.

Relations~10! allow a closed-form evaluation of the de
terminantD(a l n)5D(a l nm), up to the orderh4, in steps
exactly the same with those in Ref. 10, which will not
repeated here.

The resonant wave numbersk25k2(h), as well asx2

5x2(h)5k2(h)R2 have also expansions of the form

k2~h!5k2
~0!1h2k2

~2!1h4k2
~4!1O~h6!, ~11!

x2~h!5x2
~0!1h2x2

~2!1h4x2
~4!1O~h6!,

x2
~r!5k2

~r!R2 , r50, 2, 4, ~12!

where k2
(0)[k2

0 and x2
(0)[x2

0 correspond to the concentri
spherical cavity with radiiR1 andR2 ~h50!.

The expressions ofx2
(2) and x2

(4) in terms of D’s are
exactly the same as in Ref. 10 and are given by the form

x2
~2!52FdDnn

0 ~x2
0!

dx2
G21

Dnn
~2!~x2

0!, ~13!

x2
~4!52FdDnn

0 ~x2
0!

dx2
G21F ~x2

~2!!2

2

d2Dnn
0 ~x2

0!

dx2
2

1x2
~2!

dDnn
~2!~x2

0!

dx2

1Dnn
~4!~x2

0!2
Dn12,n

~2! ~x2
0!Dn,n12

~2! ~x2
0!

Dn12,n12
0 ~x2

0!

2
Dn,n22

~2! ~x2
0!Dn22,n

~2! ~x2
0!

Dn22,n22
0 ~x2

0!
G , ~14!

whereDnn
(0)[Dnn

0 . As it is evident from Eq.~8!, the various
subscripts in Eq.~10! and so also in Eqs.~13!, ~14! should be
equal or greater thanm>0. In the opposite case the corr
spondinga ’s andD’s are equal to zero and so disappear.

In Eqs. ~13! and ~14! we have used the relationsx1

5tx2 , w15tx2c2 /c1 , wheret5R1 /R25constant, sox2 is
the only variable.

Formulas~13! and~14! are also valid for the oblate cav
ity, with the only difference thatD (2)’s change their signs
1541 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999 G. C. K
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andR2 is the minor semiaxis of the oblate boundary. So,x2
(2)

changes its sign, whilex2
(4) remains the same.

The eigenfrequencies for the problem of two concen
spheres with radiiR1 and R2 , used in Eqs.~13!, ~14!, are
given by the equation@Eq. ~A1! in the Appendix# Dnn

0 50, or

j n~x2
0!

nn~x2
0!

5En~x2
0!, x1

05tx2
0 , w1

05tx2
0 c2

c1
, t5

R1

R2
.

~15!

By using Eqs.~15!, ~A1!, ~A22! from the Appendix and
the Wronskian13 j n(x2

0)nn8(x2
0)2 j n8(x2

0)nn(x2
0)51/(x2

0)2, we
obtain

dDnn
0 ~x2

0!

dx2
52

1

~x2
0!2nn~x2

0!
2nn~x2

0!
dEn~w1

0 ,x1
0!

dx2
. ~16!

Equations~16! and ~A2! substituted in~13! give x2
(2) . The

expression forx2
(4) is much more lengthy, but is obtaine

immediately from Eqs.~13!, ~14!, ~16!, ~A1!–~A5! and
~A22!–~A24!.

By setting Eq.~12! in the form x2(h)5x2
0@11h2g(2)

1h4g(4)1O(h6)# we obtain the eigenfrequencies in the ca
ity of Fig. 1 by the expression

f nsm~h!5 f ns~0!@11h2gnsm
~2! 1h4gnsm

~4! 1O~h6!#,

n50,1,2,..., s51,2,3,..., m50,1,2,...,n, ~17!

wheref ns(0)5c2(x2
0)ns /(2pR2) are the eigenfrequencies o

the concentric spherical cavity,x2
05(x2

0)ns are the successive
positive roots of Eqs.~15! and g(2),(4)5x2

(2),(4)/x2
0@gnsm

(2),(4)

5(x2
(2),(4))nsm/(x2

0)ns#.
We next apply the second method for the determinat

of the eigenfrequencies. This is a shape perturbation me
with no use of spheroidal wave functions. Equations~1!–~5!
are also valid in this case. In order to satisfy the remain
boundary conditionp250, at the spheroidal surface, we e
press the equation of this surface in terms of r andu, as in
Ref. 14

r 5
R2

A12v sin2 u
, ~18!

where11

v512S R2

R28
D 2

57h22h41O~h6!. ~19!

The upper/lower sign in Eq.~19! corresponds to the pro
late (v,0)/oblate (v.0) spheroidal boundary.

We expand Eq.~18! into power series inh, thus obtain-
ing up to the orderh4

r 5R2F17
h2

2
sin2 u2

h4

2
sin2 uS 12

3

4
sin2 u D1O~h6!G .

~20!

By using Eq. ~20! we get the following expansion11

(x25k2R2):
1541okkorakis and J. A. Roumeliotis: Modal frequencies of a cavity
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j n~k2r !5 j n~x2!7
h2

2
x2 j n8~x2!sin2 u2

h4

2
x2 sin2 u

•$ j n8~x2!2 1
4 @3 j n8~x2!1x2 j n9~x2!#sin2 u%

1O~h6!, ~21!

and a similar one fornn(k2r ).
We next substitute the former expansions into Eq.~2!

satisfying the boundary condition at the spheroidal surf
and we use the orthogonal properties of the associ
Legendre13 and the trigonometric functions, concluding fi
nally to the following infinite set of linear homogeneou
equations for the expansion coefficientsAnm ~or Bnm), up to
the orderh4:

an24,nAn24,m1an22,nAn22,m1annAnm1an12,nAn12,m

1an14,nAn14,m50, n>m. ~22!

The third subscriptm is omitted from the variousa ’s in
Eq. ~22!, for simplicity. Their expressions are also given
the general expansions~10!, but with differentD’s, which
are given in Eqs.~A6!–~A9! of the Appendix. As it is evi-
dent from Eq.~2!, the first subscripts ofA’s ~andB’s! should
be always equal or greater thanm>0. In the opposite case
A’s ~and B’s! are equal to zero and disappear. The sam
valid also for the correspondinga ’s andD’s.

If m has the same/opposite parity withn, i.e., n2m is
even/odd, the first subscript of thea ’s in Eq. ~22! starts from
the minimum valuem/m11 and continues with the value
m12/m13, m14/m15, etc. So, Eq.~22! separates into two
distinct subsets, one withn even and the other withn odd.
Setting each one of the determinants of the coefficientsa, in
these subsets, equal to zero, we obtain two determina
equations of the same form for the evaluation of the eig
frequencies, which are treated simultaneously. The rest s
are exactly the same as with the first method. So, Eqs.~11!–
~17! are also valid here with identical final results as in th
method @x2

(2) is obtained from Eqs.~13!, ~16! and ~A7!,
while x2

(4) from Eqs.~13!, ~14!, ~16!, ~A6!–~A9! and~A22!–
~A24!#, as it is expected for the same problem. This cons
a very good check for their correctness.

The problem can be also solved, from the beginning,
using the eccentricity parameterv instead ofh. In this case
the expansion of the general quantityy with respect tov is

y5y~v !5y01vyv
~1!1v2yv

~2!1O~v3!, ~23!

while its expansion with respect toh is

y5y~h!5y01h2yh
~2!1h4yh

~4!1O~h6!. ~24!

By using Eq.~19! into ~23!, as well as the relation

v25h41O~h6! ~25!

we finally obtain11

yv
~1!57yh

~2! ,yv
~2!57yh

~2!1yh
~4! . ~26!

These last expressions are unique for both the prolate an
oblate cavity (v includes the sign!, becauseyh

(2) simply
changes its sign in these two cases.
1542 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999 G. C. K
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By using the limiting valuer1→0 (q→0), with c1 fi-
nite, in Eq.~4!, we obtainEn5 j n(x1)/nn(x1), corresponding
to a soft inner sphere. In the special case withr15r2 and
c15c2 , q51, w15x1 andEn50. Use of the small argumen
formulas for the various Bessel functions13 in Eq. ~4! asR1

→0, gives alsoEn50. The last two cases correspond to
simple spheroidal cavity, i.e., in the absence of the in
sphere. In all three cases the various results become iden
with the corresponding ones in Refs. 10 and 11. ForEn50,
Eq. ~16! is replaced bydDnn

0 (x2
0)/dx25 j n8(x2

0).

II. NEUMANN BOUNDARY CONDITIONS

Equations~1!–~5! are also valid in this case. In order t
satisfy the boundary condition]p2 /]m50 (]p2 /]j50) at
m5m0 (j5j0), according to the first method, we follow
steps identical to those for the Dirichlet case. So, we
again formulas~6! and~7! and conclude finally to the infinite
set ~8!, with the difference thata l nm is now given by the
expression

a l nm5
2i 2n~n1m!!

~2n11!~n2m!!

3dn2m
ml F ]Rml

~1! ~c,coshm0!

]m
2En

]Rml
~2! ~c,coshm0!

]m G .
~27!

The remarks after Eq.~9! are again valid in this case. W
next substitute]Rml

(1) /]m and]Rml
(2) /]m from Eq.~33! of Ref.

10 into Eq. ~27! and follow the same procedure as in th
Dirichlet case. So, we obtain again Eqs.~10!–~14! and ~17!
but with different expressions for the various expansion
efficients, which are given in Eqs.~A12!–~A15! of the Ap-
pendix. In place of Eq.~15! we now have

j n8~x2
0!

nn8~x2
0!

5En~x2
0!, x1

05tx2
0 , w1

05tx2
0 c2

c1
, ~28!

while, by using Eqs.~28!, ~A12!, ~A22! and the Wronskian
j n8(x2

0)nn9(x2
0)2 j n9(x2

0)nn8(x2
0)5@(x2

0)22n(n11)#/(x2
0)4, we

obtain in place of Eq.~16!

dDnn
0 ~x2

0!

dx2
52

~x2
0!22n~n11!

~x2
0!3nn8~x2

0!
2x2

0nn8~x2
0!

dEn~w1
0 ,x1

0!

dx2
.

~29!

Equations~29! and ~A13! substituted in~13! give x2
(2) . The

expression forx2
(4) is much more lengthy, but is obtaine

immediately from Eqs.~13!, ~14!, ~29!, ~A12!–~A15! and
~A22!–~A24!.

According to the second method, the boundary condit
at the spheroidal surface is expressed asû•¹p250, with û
the normal unit vector there, where11
1542okkorakis and J. A. Roumeliotis: Modal frequencies of a cavity
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TABLE I. Dirichlet conditions,t5R1 /R250.2(0.5),r2 /r150.820,c2 /c150.787.

n m

s

1 2 3 4

0 3.177 90~3.559 71! 6.501 60~7.210 62! 9.936 19~10.366 79! 13.365 58~14.325 24!

1 4.486 10~4.711 36! 7.745 53~8.862 57! 11.066 88~12.032 23! 14.494 62~15.773 77!

(x2
0)ns 2 5.761 16~5.865 33! 9.088 70~10.073 77! 12.345 25~13.870 28! 15.656 05~17.058 48!

3 6.987 53~7.031 11! 10.414 10~11.145 51! 13.694 39~15.437 97! 16.949 25~18.601 91!

0 0 0.344 06~0.428 86! 0.360 30~0.313 11! 0.366 44~0.409 89! 0.358 75~0.364 37!

1 0 0.199 71~0.244 14! 0.204 75~0.242 79! 0.213 32~0.189 74! 0.219 74~0.264 96!

1 0.399 43~0.488 28! 0.409 49~0.485 57! 0.426 65~0.379 48! 0.439 48~0.529 93!

2 0 0.237 73~0.269 14! 0.238 29~0.320 50! 0.242 98~0.225 86! 0.251 36~0.290 21!

1 0.285 28~0.322 96! 0.285 94~0.384 60! 0.291 58~0.271 04! 0.301 63~0.348 25!

gnsm
(2) 2 0.427 92~0.484 45! 0.428 92~0.576 90! 0.437 37~0.406 56! 0.452 44~0.522 37!

3 0 0.244 36~0.261 26! 0.244 16~0.326 41! 0.244 99~0.288 47! 0.249 00~0.238 21!

1 0.266 57~0.285 01! 0.266 36~0.356 08! 0.267 26~0.314 70! 0.271 64~0.259 87!

2 0.333 22~0.356 27! 0.332 94~0.445 10! 0.334 07~0.393 37! 0.339 55~0.324 84!

3 0.444 29~0.475 02! 0.443 93~0.593 47! 0.445 43~0.524 49! 0.452 73~0.433 11!

0 0 0.287 40~0.380 06! 0.454 87~0.258 68! 0.500 62~1.697 56! 0.472 91~0.779 97!

1 0 0.172 25~0.222 26! 0.312 11~0.188 53! 0.439 25~0.430 22! 0.446 97~1.412 77!

1 0.315 19~0.463 98! 0.422 44~0.315 38! 0.525 28~0.563 89! 0.538 78~1.234 51!

2 0 0.008 16~0.164 49! 0.073 86~20.986 60! 0.237 85~20.508 26! 0.301 96~20.184 46!

1 0.234 09~0.297 28! 0.333 31~0.340 12! 0.470 29~0.213 73! 0.568 60~1.321 73!

gnsm
(4) 2 0.330 57~0.453 67! 0.383 07~0.513 66! 0.465 10~0.192 64! 0.532 06~1.147 67!

3 0 0.040 08~0.177 55! 0.024 64~0.109 70! 0.159 16~21.073 90! 0.366 18~0.305 79!

1 0.110 71~0.217 35! 0.125 24~0.211 68! 0.249 18~20.650 71! 0.427 43~0.414 20!

2 0.266 72~0.318 24! 0.333 72~0.447 47! 0.426 93~0.195 64! 0.537 91~0.639 27!

3 0.340 52~0.424 66! 0.370 07~0.606 64! 0.415 51~0.195 52! 0.477 79~0.680 55!

TABLE II. Neumann conditions,t5R1 /R250.2(0.5),r2 /r150.820,c2 /c150.787.

n m

s

1 2 3 4

0 0 ~0! 4.593 68~5.321 42! 8.076 78~8.539 48! 11.565 52~12.299 21!

1 2.0785 7~2.065 35! 5.935 43~6.584 94! 9.276 24~10.483 81! 12.682 46~13.641 99!

(x2
0)ns 2 3.341 69~3.329 69! 7.284 93~7.708 81! 10.613 20~12.050 94! 13.911 58~15.272 41!

3 4.514 05~4.506 37! 8.582 49~8.834 41! 11.968 13~13.250 97! 15.248 40~17.063 92!

0 0 - ~-! 0.352 66~0.409 12! 0.365 22~0.314 75! 0.364 96~0.439 78!

1 0 0.027 51~0.023 60! 0.189 10~0.254 63! 0.203 83~0.189 61! 0.214 25~0.237 87!

1 0.484 29~0.491 39! 0.408 48~0.541 61! 0.420 08~0.388 18! 0.435 34~0.482 28!

2 0 0.182 70~0.181 15! 0.231 60~0.299 20! 0.237 17~0.288 05! 0.245 22~0.224 55!

1 0.257 92~0.256 54! 0.282 16~0.363 85! 0.286 50~0.347 41! 0.295 37~0.270 29!

gnsm
(2) 2 0.483 60~0.482 68! 0.433 84~0.557 81! 0.434 47~0.525 50! 0.445 82~0.407 52!

3 0 0.212 60~0.211 25! 0.239 93~0.289 24! 0.242 25~0.329 32! 0.245 21~0.229 13!

1 0.242 78~0.241 35! 0.263 22~0.317 19! 0.264 97~0.360 01! 0.267 92~0.250 27!

2 0.333 31~0.331 62! 0.333 07~0.401 04! 0.333 11~0.452 08! 0.336 04~0.313 68!

3 0.484 21~0.482 08! 0.449 50~0.540 80! 0.446 69~0.605 54! 0.449 58~0.419 36!

0 0 - ~-! 0.388 61~0.331 51! 0.509 44~0.556 64! 0.497 98~2.139 97!

1 0 0.002 79~20.001 42! 0.230 09~0.250 39! 0.390 53~0.186 52! 0.463 00~1.218 65!

1 0.353 85~0.377 20! 0.368 74~0.516 54! 0.488 42~0.220 76! 0.549 29~1.239 80!

2 0 20.045 04~0.008 38! 0.000 61~0.068 21! 0.143 08~21.642 10! 0.296 70~20.031 19!

1 0.204 57~0.205 67! 0.279 89~0.377 77! 0.401 47~0.228 16! 0.535 14~0.525 47!

gnsm
(4) 2 0.354 56~0.361 04! 0.358 28~0.573 67! 0.424 37~0.284 77! 0.507 73~0.583 57!

3 0 0.037 14~0.059 73! 0.007 27~0.251 12! 0.066 14~20.701 53! 0.256 99~20.292 88!

1 0.104 04~0.118 83! 0.101 13~0.297 71! 0.169 40~20.350 43! 0.335 23~20.122 20!

2 0.257 61~0.256 91! 0.300 40~0.418 80! 0.378 67~0.377 97! 0.484 26~0.210 74!

3 0.356 50~0.356 31! 0.358 23~0.558 40! 0.392 42~0.508 95! 0.447 05~0.168 60!
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sin2 2u D û8,

~30!

û85 r̂ 1
h2

2
sin 2u~611h2 cos2 u!û1O~h6!.

So

û•¹p25û8•¹p25
]p2

]r
1

h2

2
sin 2u~61

1h2 cos2 u!
1

r

]p2

]u
50. ~31!

We next substitute from Eq.~2! into ~31!, thus obtaining
the equation

FIG. 2. Eigenfrequencies of a spherical cavity with a penetrable sph
r2 /r150.820, c2 /c150.787—Dirichlet conditions.

FIG. 3. First order expansion coefficients for eigenfrequencies in a sph
dal cavity with a penetrable sphere;r2 /r150.820, c2 /c150.787—
Dirichlet conditions.
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(
n50

`

(
m50

n H @ j n8~k2r !2Ennn8~k2r !#Pn
m~cosu!

1
h2

2
sin 2u~611h2 cos2 u!

1

k2r
@ j n~k2r !2Ennn~k2r !#

•

dPn
m~cosu!

du J @Anm cosmw1Bnm sinmw#50. ~32!

By using Eq.~20! we get expansions similar to Eq.~21!
for j n8(k2r ) and nn8(k2r ), but with one more prime in each
one of their Bessel functions. We also obtain the expansio11

j n~k2r !

k2r
5

j n~x2!

x2
7

h2

2 F2
j n~x2!

x2
1 j n8~x2!Gsin2 u

1
h4

2 H F j n~x2!

x2
2 j n8~x2!Gsin2 u

1
1

4F2
j n~x2!

x2
1 j n8~x2!1x2 j n9~x2!Gsin4 uJ

1O~h6! ~33!

and a similar one fornn(k2r )/k2r .
We next substitute the former expansions into Eq.~32!

and we use the orthogonal properties of the associated
endre and the trigonometric functions, thus obtaining ag
the set~22!, certainly with differenta ’s and soD’s, which
are given in Eqs.~A16!–~A19! of the Appendix.

The rest steps are identical with those in the fi
method, i.e., we obtain again Eqs.~10!–~14!, ~17! and ~28!,
~29! with identical as their final results@x2

(2) is obtained from
Eqs. ~13!, ~29! and ~A17!, while x2

(4) from Eqs.~13!, ~14!,
~29!, ~A16!–~A19! and~A22!–~A24!#, as is expected for the
same problem. This is a very good check for their corre
ness.

The parameterv, instead ofh, can be also used in thi
case by keeping in mind Eqs.~19! and ~23!–~26!.

By using the limiting valuer1→` (q→`), with c1 fi-
nite, in Eq.~4!, we obtainEn5 j n8(x1)/nn8(x1), corresponding

e;

i-

FIG. 4. Second order expansion coefficients for eigenfrequencies in a s
roidal cavity with a penetrable sphere;r2 /r150.820, c2 /c150.787—
Dirichlet conditions.
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to a hard inner sphere. So, the various results become i
tical with the corresponding ones in Refs. 10 and 11. T
same is valid also for a simple spheroidal cavity, whereEn

50. In this last case Eq.~29! is replaced bydDnn
0 (x2

0)/dx2

5x2
0 j n9(x2

0).

III. NUMERICAL RESULTS AND DISCUSSION

In Table I the roots (x2
0)ns ~ n50 – 3, s51 – 4) of Eq.

~15! as well as the corresponding values ofgnsm
(2) andgnsm

(4) are
given in the Dirichlet case, fort5R1 /R250.2,0.5,r2 /r1

50.820,c2 /c150.787. In Table II the roots (x2
0)ns of Eq.

~28! are given, as well asg’s in the Neumann case, for th
samet ’s and the values of the parameters as before.
value (x2

0)0150 corresponds to the smallest eigenvaluek2
0

5k1
050 ~with constant eigenfunction! of the Helmholtz

equation under Neumann conditions. As (x2
0)0150, also

f 01(0)50 and f 010(h)50, so the values ofg010
(2) andg010

(4) do
not matter.

Both tables are referred to the prolate cavity. For
oblate oneg(2)’s simply change their signs, whileg(4)’s re-

FIG. 5. Eigenfrequencies of a spherical cavity with a penetrable sph
r2 /r150.820, c2 /c150.787—Neumann conditions.

FIG. 6. First order expansion coefficients for eigenfrequencies in a sph
dal cavity with a penetrable sphere;r2 /r150.820, c2 /c150.787—
Neumann conditions.
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n-
e

e

e

main unchanged.~The same will be valid also in Figs. 3, 4,
and 7, which follow.!

For the values of the parameters used, allg(2)’s in both
tables are positive. Keeping in mind Eq.~17!, this means that
the eigenfrequencies of the prolate/oblate cavity are grea
smaller than those of the corresponding spherical one, u
the orderh2.

From the former tables and many other available resu
it is evident that (x2

0)ns (n>0,s>1) and so alsof ns(0) for
Neumann conditions are smaller than the corresponding o
for Dirichlet conditions. The same is valid forf nsm(h), as
can be easily proved for the results given in these tables
the case withh!1.

In Fig. 2 we plot the roots (x2
0)ns (n50 – 2,s51, 2) of

Eq. ~15! versust, for a concentric spherical cavity with rad
R1 and R2 and Dirichlet conditions. The various numbe
designating the curves in this and the rest of the figures
respond to the subscripts of the ordinate. Fort→0(R1

→0), En→0 and so (x2
0)ns tend to the zeros ofj n(x2

0), cor-
responding to a simple spherical cavity with paramet
r2 , c2 . For t→1(R1→R2), x1

0→x2
0, so Eq.~15! is reduced

to j n(w1
0)5 j n(x2

0c2 /c1)50 corresponding to a simple
spherical cavity with parametersr1 , c1 and (x2

0)ns in this
case are equal with those fort→0, multiplied by c1 /c2 .

In Figs. 3 and 4 we plotgnsm
(2) and gnsm

(4) , respectively,
versust, for the cavity of Fig. 1 with Dirichlet conditions
For t→0 the variousg’s tend to the corresponding ones fo
a simple spheroidal cavity11 with parametersr2 , c2 , by tak-
ing in mind Eqs.~26!. So,g(2)’s are independent ofs in this
case, as it was proved in Ref. 11 and is seen in Fig. 3.
t→1 ~for the prolate cavity is necessary thath→0, as t
→1) the same remarks as before are valid forg’s, where
now the simple spheroidal cavity has parametersr1 , c1 .
Also in this caseg(2)’s are independent ofs, as is seen in Fig.
3, and are equal with those fort→0, multiplied byr2 /r1 .
This can be proved easily by using the result11 gnsm

(2) 5F @F is
given in Eq. ~A10!# for t→0, as well as Eqs.~13!, ~16!,
~A7!, ~15!, the Wronskian following it and~A22! for t→1,
i.e., with x1

0→x2
0 and j n(w1

o)50.

e;

i-

FIG. 7. Second order expansion coefficients for eigenfrequencies in a s
roidal cavity with a penetrable sphere;r2 /r150.820, c2 /c150.787—
Neumann conditions.
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In Fig. 5 the roots (x2
0)ns (n50 – 2,s51 – 3) of Eq.~28!

are plotted versust, for a concentric spherical cavity with
radii R1 and R2 and Neumann conditions@(x2

0)0150, as in
Table II#. For t→0, (x2

0)ns tend to the zeros ofj n8(x2
0), cor-

responding to a simple spherical cavity with paramet
r2 ,c2 . For t→1, Eq. ~28! is reduced to j n8(w1

0)
5 j n8(x2

0 c2 /c1)50 ~for a simple spherical cavity withr1 ,c1)
and (x2

0)ns are equal with the corresponding ones fort→0,
multiplied by c1 /c2 .

In Figs. 6 and 7 we plotgnsm
(2) and gnsm

(4) , respectively,
versust, for the cavity of Fig. 1 with Neumann conditions
For t→0 the variousg’s tend to the corresponding ones f
a simple spheroidal cavity11 with parametersr2 ,c2 @we keep
in mind Eqs.~26!#. So, goso

(2) (s>2) are independent ofs in
this case, as is seen in Fig. 6. Fort→1 the same remarks ar
valid for g’s in a simple spheroidal cavity with paramete
r1 , c1 . So goso

(2) are independent of s also in this case~Fig.
6!.

APPENDIX

The expressions for the variousD’s appearing in Eq.
~10! and used in our calculations are the following~the
upper/lower sign corresponds to the prolate/oblate cavity!:

1. Dirichlet boundary conditions

A. First method (use of spheroidal wave functions)

Dnn
0 5unn , ~A1!

Dnn
~2!56

x2
2

2~2n11!F ~n1m11!~n1m12!

~2n13!2 un12, n

2
~n2m21!~n2m!

~2n21!2
un22,nG , ~A2!

Dnn
~4!5x2

4 ~n1m11!~n1m12!

~2n11!~2n13!2~2n17!

3F 124m2

~2n21!~2n13!2
un12,n

1
~n1m13!~n1m14!

8~2n15!2
un14, nG

2x2
4 ~n2m21!~n2m!

~2n25!~2n21!2~2n11!

•F 124m2

~2n21!2~2n13!
un22,n

2
~n2m23!~n2m22!

8~2n23!2
un24,nG , ~A3!

Dn12,n
~2! 56x2

2 ~n1m11!~n1m12!

2~2n13!2~2n15!
un12,n ,

~A4!

Dn,n12
~2! 57x2

2 ~n2m11!~n2m12!

2~2n11!~2n13!2
un,n12 ,
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s

where

uvs5 j v~x2!2Esnv~x2!. ~A5!

B. Second method (shape perturbation)

Dnn
0 5unn , ~A6!

Dnn
~2!57x2Funn8 , ~A7!

Dnn
~4!5x2G~3unn8 1x2unn9 !2x2Funn8 , ~A8!

Dn12,n
~2! 56x2

~n1m11!~n1m12!

2~2n13!~2n15!
un12,n128 ,

~A9!

Dn,n12
~2! 56x2

~n2m11!~n2m12!

2~2n11!~2n13!
unn8 ,

where

F5
n21m21n21

~2n21!~2n13!
, ~A10!

G5
~n1m11!~n1m12!~n1m13!~n1m14!

8~2n11!~2n13!2~2n15!

1
~n2m21!~n2m!~n1m11!~n1m12!

2~2n21!2~2n13!2

1
~n2m23!~n2m22!~n2m21!~n2m!

8~2n23!~2n21!2~2n11!
,

~A11

while the number of primes overuvs , in any case, denote
the number of primes overj v(x2) andnv(x2) ~i.e., the order
of their derivatives with respect to their argumentx2) in Eq.
~A5!.

2. Neumann boundary conditions

A. First method (use of spheroidal wave functions)

Dnn
0 5x2unn8 , ~A12!

Dnn
~2!57Fx2unn8 2munn

2x2
3 ~n1m11!~n1m12!

2~2n11!~2n13!2
un12,n8

1x2
3 ~n2m21!~n2m!

2~2n21!2~2n11!
un22,n8 G , ~A13

Dnn
~4!5x2

2 ~n1m11!~n1m12!

2~2n11!~2n13!2 H 2x2un12,n8 1mun12,n

1
2x2

3

2n17
•F 124m2

~2n21!~2n13!2
un12,n8

1
~n1m13!~n1m14!

8~2n15!2
un14,n8 G J
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2x2
2 ~n2m21!~n2m!

2~2n21!2~2n11!
H 2x2un22,n8 1mun22,n

1
2x2

3

2n25
•F 124m2

~2n21!2~2n13!
un22,n8

2
~n2m23!~n2m22!

8~2n23!2
un24, n8 G J , ~A14!

Dn12,n
~2! 56x2

3 ~n1m11!~n1m12!

2~2n13!2~2n15!
un12,n8 ,

~A15!

Dn,n12
~2! 57x2

3 ~n2m11!~n2m12!

2~2n11!~2n13!2
un,n128 .

B. Second method (shape perturbation)

Dnn
0 5x2unn8 , ~A16!

Dnn
~2!57x2

2Funn9 7Munn , ~A17!

Dnn
~4!5x2

2G@3unn9 1x2unn- #1
L

2~2n11!
@unn1x2unn8 #

2x2
2Funn9 2Munn , ~A18!

Dn12,n
~2! 56

~n1m11!~n1m12!

2~2n13!~2n15!
@x2

2un12,n129

22~n13!un12,n12#, ~A19!

Dn,n12
~2! 56

~n2m11!~n2m12!

2~2n11!~2n13!
@x2

2unn9 12nunn#,

where

M5
1

2n11F ~n11!~n22m2!

2n21
2

n~~n11!22m2!

2n13 G ,
~A20!

L5
~n2m!~n1m11!

2n11 F ~n11!~n1m!

2n21
1

n~n2m11!

2n13 G
3S n1m

2n21
2

n2m11

2n13 D
2

n~~n11!22m2!~n1m12!~n1m13!

~2n13!2~2n15!

1
~n11!~n2m22!~n2m21!~n22m2!

~2n23!~2n21!2
. ~A21!

3. Two useful derivatives

The following two derivatives ofEn are very useful in
Eqs. ~13!, ~14!, for the evaluation ofx2

(2) and x2
(4) in any

case, i.e., for Dirichel and Neumann conditions and for b
methods. Various recurrence relations and Wronskians
spherical Bessel functions13 have been used for their evalu
ation:
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h
or

dEn

dx2
52H tx1

2S 12
r1

r2
D @ j n8~w1!#21q2t j n

2~w1!

3Fx1
22

r2

r1
w1

22n~n11!S 12
r2

r1
D G J Y ~x1

4Q2!,

~A22!

d2En

dx2
2

52
2t2

x1
4Q2H x1S 12

r1

r2
D j n8~w1!@ j n8~w1!1w1 j n9~w1!#

1q2
c2

c1
j n~w1! j n8~w1!•Fx1

22
r2

r1
w1

22n~n11!

3S 12
r2

r1
D G1q2 j n

2~w1!S x12
w1

q D J
22t

dEn

dx2
S 2

x1
1

Q11Q2c2 /c1

Q D , ~A23!

where

Q5nn~x1! j n8~w1!2q jn~w1!nn8~x1!,

Q15nn8~x1! j n8~w1!2q jn~w1!nn9~x1!, ~A24!

Q25nn~x1! j n9~w1!2q jn8~w1!nn8~x1!,

while x15tx2 , w15tx2c2 /c1 andt5R1 /R2 .
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