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Summary. A general solution of the creeping flow equations suitable for a flow that is bounded by a non- 
deforming planar interface is presented. New compact representations for the velocity and pressure fields 
are given in terms of two scalar functions which describe arbitrary Stokes flow. A general reflection theo- 
rem is derived for a fluid-fluid interface problem containing Lorentz reflection formula as a particular 
case. The theorem allows a better interpretation of the image system for various singularities in the pre- 
sence of a planar interface. The general solution is further used to describe the first-order approximation 
of the deformed interface by performing normal stress balance. It is found that the normal stress im- 
balance and the interface displacement are independent of the viscosity ratio of two fluids (!) and only 
depend on the location of initial singularity. 

1 Introduction 

The motion of  a particle near the interface between two immiscible liquids is of  fundamental 

importance in many engineering applications. The interface plays a significant role in a wide 

range of  interesting problems including the locomotion of  microorganisms, Brownian motion 

of  colloidal particles, as well as in studies of  surface phenomena in suspension mechanics. 

Such problems can be modelled using the creeping flow approximation. More importantly, 

useful information can be gained from the solutions of  the problems formulated using Stokes 
flow approximation to understand the theory. 

There are powerful methods for solving Stokes flow problems of  which the boundary inte- 

gral element method and the singularity method have been found more effective. The singu- 

larity method has been known for years since the pioneering work of  Lorentz [1], and Oseen 

[2]. A detailed discussion on this technique with applications may be found in Chwang and 
Wu [3] and references therein. Jones et al. [4] adapted the image methods to derive the solu- 

tion to Stokeslet (point force) problem with a fluid-fluid interface. Exploiting the solution 

they evaluated the diffusion coefficient for the motion of  two polymer models (rigid rod and 
spherical) along the interface between two fluids. The Fourier transform technique has also 

been employed to solve the low Reynolds number flow problems [5]-[7]. Further, the use of  

Papkovitch-Neuber approach has been found convenient for constructing solutions in the 
case of  bounded flows [8], [9]. 

In this paper, we present a concise method for calculating the detailed Stokes flow in the 
presence of  a planar interface which separates two immiscible fluids. Following [10], we pre- 
sent an exact solution of  Stokes equations in terms of  two scalar functions describing arbi- 
trary flows. In particular, this new representation is used to construct a general solution to the 
problem of arbitrary Stokes flow in the presence of  a fluid-fluid interface under the assump- 
tion that the interface remains flat. A general theorem is developed which gives the reflection 
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formula in the two fluid regions, extending Lorentz's [i] (see also [11]) result for the plane 
wall. The image systems for various point singularities are obtained in a straightforward man- 
ner by using the theorem, and their limiting cases are discussed. Although these results may 
be alternatively derived using the method due to Lee et al. [12], the present technique yields 
much more clearly the form of the image system in both regions. Furthermore, the theorem is 
used to perform the normal stress balance which leads to the computation of interface displa- 
cement. The features of these quantities are shown graphically. The present results may conve- 
niently be used: i) to derive analytic expressions for the resistance and mobility functions for a 
particle or drop far away from a flat fluid-fluid interface; ii) to study diffusion of a polymer 
adsorbed at the interface between two immiscible fluids; and iii) as the basis of numerical 
schemes, with the point singularities distributed on the particle and drops, and interface 
treated with the appropriate images. Moreover, the present technique may also be employed 
for other divergence-free models such as transient Stokes flows [13] and flow through porous 
medium using the Brinkman model [14]. 

2 The problem 

The governing equations for slow steady motion of a viscous incompressible fluid are 

Wp = #X;72u, (1) 

V . u  = o ,  (2) 

where p, u, # are the pressure, the velocity and the viscosity, respectively, and X72 is the Lapla- 
clan operator in three dimensions. 

The general solution of (I) and (2) is (see Appendix I) 

u = V x W • (i,A) +X7 x (i,B), (3) 

o (V2A) (4) 
P = Po + # ~ z  z 

(iz is the unit vector in z-direction). The scalar functions A(t), ~, z) and B(~, ~b, z) satisfy 

X74A = 0 Biharmonicequation, (5) 

~72B = 0 Harmonic equation, (6) 

~), ~b, z being cylindrical coordinates. The functions Ao(o, O, z) and B0(~, ~b, z) for some 
motions generating singularities in the absence of boundaries are listed in Table 1. We remark 
that the representation (3) could also be effectively used for other divergence-free models such 
as unsteady creeping flows and flow through a permeable medium (Brinkman model). It is 
found that in these cases the functions X72A and B satisfy the Helmholtz equations. We note 

that if we take A -  ~(0, z)cos qS, B -  )~(~' z) sin q~, then (3) and (4) reduce to the solution 
Q 

form adopted more recently by Feng et al. [14] to discuss the asymmetric motion of a disk in a 
Brinkman medium. However, we shall herein present the application of the representation (3) 
to steady Stokes flow problems. 

Based on the above formulation, we now consider an arbitrary Stokes flow in the pre- 
sence of a planar interface which separates two immiscible fluids. We use the index i = 1, 2 
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Table 1. Some slow viscous singularities in an unbounded flow 

Stokes flow singularities Ao (p, q~, z) B0 (0, 0, z) 

F 1 z - c  
Stokeslet at (0, 0, c) - -  - -  R1 cos r 

Rotlet (perpendicular) 0 

F2 R~ 
Rotlet (parallel) . . . .  cos q5 

cos r 0 Stokes-dipole D Rll 

Point source S x l n ( R l - ( z - c )  0 

z - - e  
Stokes-quadrupole (degenerate) D ~ cos r 0 

F1 
- -  Rz sin r 
4~r# 

f3  1 

8~r#//1 

F 2  z - c  . 
- - -  ~ s ,n r 

8~r# 

to des ignate  the two di f ferent  fluids. F r o m  (3), the c o m p o n e n t s  o f  u (i) in the d i rec t ions  of  

6, r z are 

uo(~ ) 02A (i) 1 0 B  (i) 
-060z ~ 6 0 r  ' (7)  

U4(i) 02A(i) OB (i) 
- o r  06 ' (8)  

uz(i ) = ( 02A (i) 1 0 A  (i) 1 02A (i) ) 
- \~-~ +?-b~-~ ~ ~2 0r " (9) 

OA(~) ~(i) 
I f  we assume 'A(i)(6, r z) = A (i) (6, z) and  B (i) = 0 and  fur ther  - - -  - the above  equa-  

t ions  reduce  to 06 p 

u(~ ) _ 1 0~(~) (10) 
6 Oz ' 

ur (~) = 0,  (11) 

u ( i ) _  1 0@ ~) (12) 
6 0co ' 

where  O(i) (Q, z) is the usual  Stokes  s t r eam funct ion.  

2.1 Boundary conditions 

The b o u n d a r y  cond i t ions  at  a s t a t i ona ry  (p lanar)  in terface  are: 

(i) The  n o r m a l  veloci ty  c o m p o n e n t s  a t  the in ter face  vanish ,  

(ii) con t inu i ty  o f  tangent ia l  veloci ty  componen t s ,  

(iii) con t inu i ty  o f  t angent ia l  stresses. 

I f  we take  z = 0 as the p l a n a r  interface,  then  the above  cond i t ions  in te rms o f  A(i) and  B (i) r ead  

A (l) = 0 ,  A (2) = O, (13) 

Az (1) = Az (2) , (14) 
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# (1)A(1)~z = ~u(2)A (2)~ , (15) 

B (I) = B (2) , #(1)Bz(1) =/z(2)Bz (2] , (16) 

where the subscripts denote partial differentiation. While the tangential stresses are continu- 
ous across the planar interface, the normal  stress suffers a jump across the interface. The 

jump in the normal  stress must be balanced by surface tension, and this determines a first- 
order approximat ion to the deviation of the interface shape f rom flat (i.e., interface dislace- 
ment  0 .  Thus, for small displacement, the equation for the interface becomes [15] 

T~722r z ATzz : [p(1)--p(2)~-2Q~(2)0~U'Z(2~)- ~ (1) 0~z(1) X~l (17) 
Oz Oz / J  ~=0' 

where T is the surface tension, V2 2 is the two-dimensional Laplacian in z and y, Ar~  is the 

normal  stress imbalance, and u ( 1 )  u(2) are the z-components of  velocities in the respective 
regions. The first-order approximation to the interface shape may be found by solving the 

two-dimensional Poisson equation defined in (17). For  the situations where the surface ten- 
sion cannot  alone balance the induced normal  stress on the interface, an additional term due 
to hydrostatic pressure difference must be included to have a meaningful solution to Eq. (17). 
In the following section we present a general solution for a fluid-fluid interface problem. 

3 Reflection theorem 

Let a Stokes flow of a viscous incompressible fluid in the absence of boundaries be described 

by the biharmonic function A0(0, 0, z) and the harmonic function B0(& 0, z), whose singulari- 
ties lie in the region z > 0. When the boundary  z = 0 is introduced, the modified functions for 
the regions z > 0 and z < 0 satisfying the boundary conditions (13)-(16)  on z = 0 are: 

[ o 1 A(l/(e, 0, z) = A0(6, r z) + A - A0(o, r  + 2z N A0(e, r - z )  - z2V2A0(o, r - z )  

- (1 - ~ )  Ao(6,  r  (18) 

EC(t) (6 , qS, z) = t3o(6, O, z) - ABo(6, r  + (1 - A) Bo(6, O, -z)  , (19) 

for z > 0, and 

[ (9 Ao(g, 0, z)-z2V.72Ao(@, ~, z)], (20) A (~)(6, 0, ~) = (1 - A) 2z 

B(2) (~,, ~, z) = 2(1 - A) Bo(~,, r z) (21) 

#(2) 
for z < 0, where A - ~(1) _}_ /3,(2) " 

The proof  of  the theorem is given in Appendix lI. It is worth mentioning here that the reflec- 
tion at the fluid-fluid interface is just a linear combinat ion (in A) of  the results for a rigid 
plane wall and a shear free surface. It may be noted that  when A = 1, we recover the Lorentz 
reflection formula [1]; for A = 0 the results reduce to the shear-free case. It  should also be 
pointed out that, in the axisymmetric case, the stream function W/(i) has the same form as 
A (i) (B(';) being identically zero) in the two regions. 
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The velocity components in the respective flow regions can be computed directly using 
(7)-(9), and the pressure may be obtained from (4). The normal stresses in the two regions 
are, respectively, 

0 8 A o ( ~ , r  
9-~) = #(1) 2 Oz 3 0 V2Ao(~ ' r z) - 2 OaA~ r -z)  0 V2Ao(8 ' r -z)]  

3 ~ Oz3 - + 3 

[ o3 l + A#O)z 4 04A~ 4 r z) 60zzO V2Ao(o ' r z) - 2z ~ V2Ao(8, r - z )  , 

04Ao(o,~,z ) 
9-}z 2) = (1 - A) #(2)z 4 0z n 

- 2z ~ z  3 V2Ao(~,  r z) . 

Therefore, the 

0 2 
4~zzO V2Ao(8, O,z) _ 2 ~ V2Ao(o,r ) 

normal stress imbalance on the interface z = 0 is 

a~zz:~") [20~Ao(o,+,z)o~3 3 o V2Ao(O,+,~l_ 2 O3Ao(Q,+,-~)O~ 

(22) 

(28)  

0 ] 
+ 3 0 z  V2A~ r - z )  . (24) 

z=0 

From (24), we see that the normal stress imbalance, in general, does not depend on the vis- 
cosity ratio. This in turn implies that the interface displacement is independent of the viscosity 
ratio of the two fluids! 

4 Images of singularities 

We now use the theorem derived in the previous section to construct the image systems for 
various singularities in a two-fluid space with a planar interface. 

F1 
u00 -- 87r#0) 

f l  
U0r  - -  871_p(1) 

F~ 
U0 z - -  87r#(1  ) 

4.1 StokesIet at (0, 0, e) 

A solution to the Stokeslet problem in a two fluid system using image methods was first 
obtained by Jones et al. [4] in connection with their study concerning diffusion of polymers. 
Their work seems to be unnoticed, and the same solution was derived little later by Aderogba 
and Blake [7] using Fourier transform technique and by Lee et al. [12] using the reciprocal 
theorem. Here, we rederive their results using our method and add further flow details. 

Consider a Stokeslet of strength F1 located at (0, 0, e) whose axis is along the positive x- 
direction, i.e., tangential to the plane boundary z = 0. The velocity components due to this 
Stokeslet in an unbounded fluid, in cylindrical coordinates, are: 

- - -  ~11 + cos  r  (25)  

[ ~llsinr (26) 

--V I co + 
L R1 J ' 
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where R12 = gz + (z - c) 2 and 02 = x 2 + y2. The expressions for A0 and B0 are obtained by 
integrating Eq. (3) after substituting u0 into its right hand side. This yields 

A~162 Flsrr#O) [(z-c) R~c~162 

Bo(0,r - F~ 47r/.t(1) [ @ sin r " 

Applying the theorem we obtain for z > 0 

Ab)(O,O,z) - FI [(z c) ] 
871"/"/'(1) 7 R1 COS (~ 

F1 [ (z + c) ( ~ 
+ ~  (1 -2A)  g R 2 + A  2c 

B(')(o,O,z)-F~ [/h ] F, (,_2A) R2 

where  ]~2 2 ~ 0 2 -t- (z -[- c) 2. F o r  z < 0 

A(2)(&r (1)F1 ( l - A )  [2 (z-c) 

F1 [ & B(2;(O,r = 4T~iy#@) (1- A ) 2--0 

(28) 

(29) 

sin r  ( a )  

0 cos r - 2d (~ - ~) ] < cos r + 2~ ~ ~ cos r , (32) 

sin qS] . (33) 

The image terms in (30), (31) can be interpreted in the following way: 

(i) The second terms of (30) and (31) represent a Stokeslet of strength (1 - 2A) times the 
initial Stokeslet, but located at the image point (0, 0, c). 

(ii) The third term on the r.h.s of (30) is a Stokes-doublet of strength 2cAF1 located at 
(0, 0, -c) and 

(iii) the fourth term on the r.h.s of (30) is a potential-doublet (degenerate Stokes-quadrupole) 
of strength -2c2AF1 at (0,0, c). 

The image system just obtained agrees with that obtained by Aderogba and Blake [7]. 
Clearly, the strength of the image singularities depends on the viscosity ratio and the loca- 
tion of the initial Stokeslet. It is surprising to note that the sign of the image Stokeslet is 
positive or negative according to whether A > or < 1/2. When A = 1/2, the image Stokes- 
let vanishes! This in turn implies that when two identical fluids are separated by an inter- 
face, the net force (due to image singularities) acting on the interface is zero, and the 
image system in this case is considerably reduced. It is also found that when the Stokeslet 
is normal to the interface (axisymmetric case) the image Stokeslet is independent of the 
viscosity ratio. For the extremal values of A Eqs. (30), (31) reduce to rigid and shear-free 
cases, respectively. 

The image system in the region z < 0 consists of a Stokeslet, a Stokes-doublet and a poten- 
tial-doublet of strengths 2(1 - A) F1, 2c(1 - A) F1, -2c2(1 - A)/71, respectively. The tar-field 
effect in both the regions is that of a Stokeslet of strength 2(1 - A) F~. Now the normal stress 
imbalance at z = 0, due to the Stokeslet singularity is 

F1 12xc 2 
-Arzz = 8T R0 ~ '  (34) 
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Fig. 1. Normal stress imbalance on the line y = z = 0 due to a Stokeslet 
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Fig. 2. Variation of interface displacement in z-direction 

where R0 2 = L) 2 + c 2. I t  follows from (17) that  

- 27rT L) 2 1 . (35) 

Equat ions  (34) and (35) are the same as those derived by Jones et al. [4], and Lee et al. [12] for 

the normal  stress imbalance and Aderogba  and Blake [7] for the interface displacement.  Fo r  

the sake of  completeness,  the normal  stress imbalance and the interface displacement are 

plot ted in Figs.1 and 2 for the values o f c =  2, 3, 4, respectively. I t  may be seen that  the normal  

stres imbalance becomes larger as the Stokeslet  approaches  closely to the interface. F o r  the 

positive force, the fluid interface is increased in the positive direction and depressed on the 

negative side. 

4.2 Ro t l e t  at  (0, 0, c) 

Now, consider a rotlet  of  strength F3 located at (0, 0, e) whose axis is along the z-direction, 

i.e., perpendicular  to the p lanar  interface. The corresponding expressions for A0 and B0 are 
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given in Table 1. The flow fields in the two regions are described by the functions: 

For z > 0: 

A(1)(@, qS, z) = 0, 

B(1)(o,O,z) Fa [1  F8 [ 1 ]  
87f,U,(1 ) ~ll-~STy(l ) ( 1 - 2 A )  E ' 

(36) 

(37) 

For  z < 0: 

A(2)(& ~b, z) = 0, 

B(2)(8,0, z ) _  F3 2 ( 1 _ A ) [  I ] 
87r# (1) RTs " 

(38) 

(39) 

The flow field in the region z > 0 consists of  a rotlet of  strength (1 - 2A) F3 located at the 
image point. Here again, the sign of the image rotlet depends on the viscosity ratio (and at the 
critical value it vanishes). This tells that when a sphere rotates in front of  a planar interface 
that separates two fluids, the torque on the sphere increases or decreases depending on the 
value of the ratio A. When the viscosities of  the fluids are identical, the torque on the sphere is 
the same as that  when a sphere rotates in an unbounded fluid. When A = 1, we recover the 
results of  Blake and Chwang [6], and for A - 0 we obtain the image system for a shear-free 
interface. In both cases the image is a rotlet a result analogous to that in electrostatics. The 

region z < 0 has a rotlet (as an image) of  strength 2(1 - A)F3 at the point (0, 0, c). The flow 
fields for a rotlet whose axis is tangential to the planar interface arise from 

A(1)(& ~b, z ) .  87r# (1)F2 [ _ R~ cos 0 + (1 _ 2A) ( / ~  cos 0 ) c o  

+ ~(2~ ~osr + 2~(~ + ~) co~ r 
<i{2 oR2 ' 

B(1) (<o, r z) -- 82 (1  ) ~ s in~ + (1 - 2A) s ine  (41) 
\ @R2 

(40) 

R1 cos,+  ~ ] 871"# ( 1 ~  T dl~l COS (~ ~0./~ COS r , (42) 

B(~)(~,r 82(~(1 A)[ -2(~-~)~i~]~  . (43) 

In this case, the image system in the two regions consists of  a rotlet, a Stokes-doublet and a 
degenerate Stokes-quadrupole. Furthermore,  the image rotlet vanishes in the region z > 0 at 
the critical value and changes sign accordingly as explained in the above cases. It may be 
noted that  the rotlet singularity dominates in the far-field. We note that  in the case of an 
initial rotlet perpendicular to the interface there is no jump in the normal  stress, and hence 
there is no deformation of the interface due to this singularity. But, when the rotlet axis is 
parallel to the planar interface, we have 

F2 12xc 
- A % z  -- 8re R05 ' (44) 

C - 2~T s 1 - . (48) 
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We observe that  the normal  stress imbalance and interface displacement differ from the Stokes- 

let case only by a factor c. Hence, the behavior  of  these quantities is quali tat ively similar as can 

be seen from Fig. 3 and 4. However,  the deformat ion of  the interface is less in the present case. 

4.3 Degenerate  Stokes-quadrupole at (0, O, e) 

The functions A0 and B0 for a degenerate Stokes-quadrupole  (potential-doublet)  located at 

(0,0,c)  are provided in Table 1. The image system can be constructed with the aid o f  the 

theorem and is given by: 

F o r  z > 0: 

s~ [/~- ~) ~o~ +] + s~ [ (~ + e) 
A(1)(e, ~, z) - 67r#(1 ) L L 0R1 ~ 6wp (a) L ~R2 cos 

, [ 2 ~ ( z +  c) Q ) j  
- " [ ~ T -  ~o~ + - 2~ --R~ oo~ r , (46) 

B(~)(& r z) = O. (47) 
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10 20 

And for z < 0: 

A(~)(o,6,~)_ s~ ( l -A)  [20(~-6  ~o ] 67~(1) k n~ cot r + 2~ ~ oos r , (48) 

B(2) (g, 6, z) : 0. (49) 

In the present case, the image system for the region z > 0 consists of a potential-doublet, a 
Stokes-quadrupole and a potential-quadrupole,of  strengths S1,2AS1,2cASt at the image 

point. The image singularities in the region z < 0 are a Stokes-quadrupole and a potential- 

quadrupole at the point (0, 0, c). It is important  to note that, in the present case, the form of 

the image system remains the same for all nonzero values of  A. It can be easily seen from 

(46) (49) that the far-field effect is dominated by the potential-doublet for the region z > 0, 

while the motion in the far-field for the region z < 0 is influenced by the higher order singula- 
rities. The normal stress imbalance in the present case is 

-zs~=2s~ z 1 -  . (50) 
R03 ~2j 

From Fig. 5 we see that the normal stress imbalance increases as the initial singularity 
approaches closely to the interface and is positive or negative according to whether x < or 

> 0. We note here that the latter feature is different from the other two cases discussed earlier. 
The interface deformation for this case may be found from (17). 

5 Conclusions 

A simple reflection theorem generalizing Lorentz's formula is offered for computing Stokes 

flow images systematically in a two-fluid space with a planar interface, employing a general 
representation of  velocity and pressure fields. Exploiting this new result, the image systems 
for: i) a Stokeslet, ii) a rotlet, and iii) a degenerate Stokes-quadrupole, positioned in front of  a 
flat surface separating two immiscible fluids are constructed in a straightforward manner. The 
flow details together with the limiting cases are also discussed in each case. It is observed that 
the viscosity ratio of  two fluids has influence on the image systems, velocity and pressure 
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fields. But, surprisingly, the normal stress imbalance and hence the interface displacement are 

independent of  the viscosity ratio. However, the latter quantities are found to vary according 

to the location of  the initial singularity in each case. Other motions generating singularities 

may be treated in a similar manner. The method of  solution described here can also be suita- 

bly used for transient flows as well as flows through a porous medium. Finally, the present 

solution scheme can be applied, in principle, to motion of  particles, polymers and drops in the 

presence of  a flat interface. 

Ap p en d i x  I 

The representation for the velocity field u given by (3) satisfies the continuity equation (2), 

and substitution of  (3) into (1) yields 

( 0 )  
grad p - # Ozz V2A = #[izV4A - (iz x V) V2B], (51) 

where the Laplacian operator in cylindrical coordinates 0, r z is defined as 

0 2 1 0 1 0 2 0 2 
w 2 : - - +  . (52 )  

002 Oz2 

Further, from (3), we have 

LA = - i z . U ,  L B  = - ( i z . V  • u ) ,  (53) 

0 2 1 0 1 0 2 
where L = ~ + ~ O0 ~ 0 2 0r  2. Now, V2LA = -V~(iz .u)  = - iz .V2u.  Therefore, 

W4LA = - i z . V 4 u .  (54) 

Since L and V 4 commute and u is biharmonic, 

LV4A = O. (55) 

Similarly, LV2B = V2LB = -V2( iz .V • u) = -i~.V2(V x u), and since V x u is harmonic, 

LV B = 0 .  (56)  

Therefore, V4A = F(z), where F is an arbitrary function. Let A = G(z) + A'. This implies 
V4A = V4G + V4A '. Choose G(z) so that V4G = F(z). This choice is possible since V4G 
is an ordinary differential equation. This implies V 4 A ' =  0. We can neglect G(z) since 

V x i~G = 0 for any G(z). Therefore, without loss of  generality, we assume that 

~74A = 0. (57) 

By a similar argument we can assume that 

 72B = 0 .  ( s s )  

Using (57) and (58) in (51), we obtain 

O (V2A) (59) P = P 0 + P ~ z  
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Thus, the problem of  quasi-steady motion of a viscous incompressible fluid reduces to solving 
for the functions A and /3 that are biharmonic and harmonic, respectively. Note that  the 
representation (3) contains three independent harmonic functions (A, being biharmonic, has 
therefore two harmonic functions) and hence it is equivalent to Lamb 's  general solution [16] 
suitable for planar interfaces. Since z does not occur explicitly in the operator  given by 
Eq. (52), it is form-invariant  under the translation of the origin along the z-axis. We observe 
that if ~ (& ~b, z is a solution of (58) then so are 

o o o(o, r 2h - z), (60) o(6, +, 2h - z) ~ O(0, r 4 ,  0z 

where h is a constant. This switches the direction of  the z-axis and puts the origin at z - h. 
Further,  

ox? + ox? (61) 
V~(zO) = 2 5 7  z v ~ ~  : 2 0 7 '  

so that  

v~(zo)  = 0. (62) 

Appendix II 

Let the given flow be characterised by the biharmonic function A0 and the harmonic function 
B0. We describe the method of deriving the functions B (1) and B (2), and in a similar fashion 
the functions A (1) and A (2) may be obtained. We assume 

"B(1)(= 0, O, Z) = B0(=o , ~5, z) @ Bl(~O , O, 2h - z ) ,  

B(2)(0, r z) = B2(o, r z), 

(63) 

(64) 

where B1, B2 are harmonic functions and h is a constant. We take z = h as the interface and 
apply the boundary  conditions (16) to obtain 

B0(e, r h) + BI(0, 0, h) = B2(g, r h) ,  (65) 

O h [B0(g, r h) - B1 (& r h)] = #(2) 0~h/32 (& r h) .  (66) fL(I) 

From the above two equations, we obtain 

B(X)(g, 4, z) = Bo(& ~, z) - ABo(g,  r 2h - z) + (1 - A) B0(& 0, 2h - z),  (67) 

B(2)(o,r  A)Bo(~,O,z). (68) 

These equations reduce to (19) and (21) by putting h = 0. Now, since the function A0 is bihar- 
monic, it can be written as 

Ao(o, O, z) = P(• O, z) + (z - h) Q(g,  O, z) . (69) 

Here P and Q are harmonic functions. Choosing A (x) and A (2) in an appropriate  way and 
using the boundary  conditions (13)-(15) one could obtain (18) and (20) in a similar way as 
above. 
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