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The effect of incident waves on arrays of identical bottom-mounted circular cylinders 
arranged in a circle are considered. The present paper is motivated by the recent work 
of Maniar and Newman [Maniar, H.D. and Newman, J.N., Journal of Fluid 
Mechanics, 1997, 339, 309-3301, who show how large forces can be generated on 
long linear arrays at certain frequencies corresponding to trapped modes present in an 
infinite periodic linear array. Their analysis for the linear array motivates the idea of 
‘near trapping’ in circular arrays in which it is assumed that adjacent cylinders only 
differ by a change in phase characterised by an integer, p. By using the interaction 
theory of Linton and Evans [Linton, C.M. and Evans, D.V., Journal of Fluid 
Mechanics, 1990,215,549-5691 it is shown how large peaks in the forces on circular 
arrays of four, five and six cylinders develop as the gap between the cylinders is 
reduced, and the peaks are shown to correspond to particular values of p by examining 
the complex roots of the near-trapping system. The largest forces appear to arise when 
the near-trapped mode corresponds to a standing wave motion, in agreement with the 
largest forces in linear arrays. 0 1997 Elsevier Science Limited 

1 INTRODUCTION 

The effect of ocean waves on the supporting columns of an 

offshore structure is clearly of fundamental importance in 
design considerations and numerous papers have been 
written exploring the possibility that the waves scattered 
by the columns could constructively interfere, causing 
large exciting wave loads or drift forces in certain circum- 

stances. The simplest configuration, that of an array of 
bottom-mounted cylinders of circular cross-section, has 
received most attention since, apart from its applicability 
to the supports of an oil-drilling platform, it also models 
the scattering of a plane acoustic wave in two dimensions 
by an array of ‘hard’ cylinders, once the depth dependence 
has been removed. In this context the most notable early 
work was that of Twersky [l], who constructed a solution 
for the scattered field by using an iterative procedure in 
which the successive scattering by each cylinder was intro- 
duced at each order to produce an infinite series of orders of 
‘scattering’. Ohkusu [2] applied Twersky’s method in the 
context of water waves rather than acoustics whilst Spring 
and Monkmeyer [3] utilised a direct method to obtain the 
first-order exciting forces on elements of the array by apply- 
ing the boundary condition on all cylinders simultaneously. 

Linton and Evans [4] improved upon this and provided 
simple expressions for the first-order exciting forces and 
mean drift forces in terms of the coefficients of an infinite 
system of equations. This formulation has recently been 
used by Huang and Eatock-Taylor [5] to solve for the full 
second-order diffraction potential. For more complicated 
arrays of axisymmetric bodies the method of Twersky has 
been adopted by Mavrakos and Koumoutsakos [6], whilst a 
general approach applicable to any array in which the dif- 
fraction characteristics of each of the individual elements is 
known has been developed by Kagemoto and Yue [7]. 

The present paper is motivated by recent work of Maniar 
and Newman [8] on the first-order exciting forces on a large 
number of identical, equally spaced, bottom-mounted circu- 
lar cylinders in a line. They showed that at an incident wave 
frequency close to that of a trapped mode, which arises in 
the case of a cylinder on the centre-plane of a channel, large 
forces are experienced by those cylinders near the centre of 
the array. The existence of such trapped modes was first 
proved by Callan et al. [9] using a method developed by 
Ursell [lo] in proving existence in the case of a totally 
submerged, infinitely long horizontal cylinder. Callan et al. 
[9] showed that the modes, which are antisymmetric with 
respect to the mid-plane of the channel and satisfy the 
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Fig. 1. Arrangement, dimensions and cylinder labels for circular arrays of four, five and six cylinders. 

condition of no flow through the channel walls, occur at a 
unique wavenumber for all sizes of cylinder. Experimental 
confirmation of these modes has recently been provided by 
Retzler (private communication). Subsequently, theoretical 
results of Evans et aE. [l l] and Davies and Pamovski [ 121 
have shown the existence of such trapped modes for a wide 
range of cylinder cross-sections. Maniar and Newman [8] 
show that as the number of cylinders in the linear array 
increases, the force on the cylinders near the centre of the 
array also increases for a frequency close to the trapped- 
mode frequency since the array more closely resembles an 
infinite array which is equivalent through reflections in the 
channel walls to the trapped-mode situation. However, 
Maniar and Newman [8] also obtained large forces at a 
frequency corresponding to what they term Dirichlet 
trapped modes. These are trapped modes which have no 
physical interpretation in the water-wave context but 
which have been predicted and confirmed experimentally 
in acoustics; see, for example, Parker and Stoneman [13] 
for an extensive review. The Dirichlet modes have the 
property that they vanish on the sides of the channel or, 
equivalently, on each mid-plane between adjacent cylinders 
in an infinite periodic array. 

The large forces experienced by cylinders in a finite array 
are a consequence of what we shall term near-trapping. By 
this we mean a local oscillation in the vicinity of the array at 
a well-defined frequency which decays slowly as its energy 
leaks away due to wave radiation at large distances. 

Prompted by these results for large but finite linear arrays 
of identical bottom-mounted cylinders, we decided to look 
at the familiar and important case of a circular array of N 
equally spaced, identical, bottom-mounted cylinders to see 
if large forces corresponding to near-trapping could occur 
here also. The case for N = 4 and 5 has clear relevance to the 
supporting columns of an offshore drilling platform. The 
method employed is that used by Linton and Evans [4], 
which they applied to precisely this problem but without 
the possibility of near-trapping in mind. Our initial investi- 
gations were for large N since we expected, by analogy with 
the finite linear array, that this was necessary to obtain near- 
trapping. In fact, this proves not to be the case. We find that 
near-trapping occurs for N as small as four and that as N 
increases, the exciting force on each cylinder shows rapid 
variations at particular frequencies and spacings between 
cylinders. Because of their important applicability we 

shall concentrate in the present paper on interpreting our 
results for N = 4,5 and 6. We shall make use of the general 
formulation of Linton and Evans [4] which is given in 
Appendix A. 

In Section 2 we discuss the results for the exciting force 
and mean second-order drift forces on configurations of 

four, five and six cylinders arranged in a circle and show 
how extremely large forces can indeed occur at certain 
spacings and wave frequencies. We seek near-trapping solu- 
tions directly by dropping the incident wave-field and 

making assumptions about the phase factors between neigh- 
bouring cylinders. The ideas developed by Maniar and 
Newman [8] for linear arrays are applied to the circular 
array, notably in dictating the choice of the integer p, 
which relates the difference in phase between adjacent 
cylinders in the circular array, for predicting the large 
forces and motions. The results are discussed in Section 3 
where free-surface plots are used to explain the occurrence 
of the large forces on cylinders in circular arrays at frequen- 
cies corresponding to near-trapping. 

2 FORCES ON CIRCULAR ARRAYS OF 
IDENTICAL CYLINDERS 

In this section we shall be concerned with the forces on 
circular arrays of four, five and six cylinders arranged as 
shown in Fig. 1. For simplicity we shall only consider an 
incident wave progressing in the positive x-direction (fli, = 
0) such that the cylinder labelled as 1 is the lead cylinder and 
so that the results for the forces are symmetrical. Note that 
this labelling is different from that used in Fig. 25 and 
throughout the rest of the paper in developing the analysis. 
The cylinders have diameter 2a with 2d being the distance 
between adjacent cylinders. It is illuminating to define a 
gap-to-diameter ratio, g/2a = d/a - 1, being the ratio of 
the gap between adjacent cylinders to a cylinder diameter. 
The circled numbers against the peaks in the curves that 
follow will be referred to later in the paper. The results 
are derived by computing eqns (A.20) and (A.23) using B, 
calculated from eqn (A. 16). 

Results for the total maximum force on each of the four 
cylinders in a circular array with 0inc = 0 against the non- 
dimensional wavenumber Ka as the ratio a/d varies are pre- 
sented in Figs 2a-e. In Fig. 2a, a/d = 0.5 as in Linton and 
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Fig. 2. Resultant force on four cylinders against wavenumber, KU: 

einc = 0, aid = 0.5 (a), 0.55 (b), 0.6 (c), 0.7 (d), 0.8 (e). 

Evans [ 141. Notice the peak in the force on each cylinder at 
roughly the same value of Ka = 1.66. Figures 2b to e show 
the effect of bringing the cylinders closer together and it can 
be seen that the peaks increase markedly as a/d increases (or 
gI2a decreases) to such an extent that for a/d = 0.8 (gI2a = 
0.25) in Fig. 2e the peak force on allfour cylinders is some 
54 times the force on an isolated cylinder. This can only be 
due to a near-trapped wave at the wavenumber given by 
tea = 4.08482. 

In Figs 4a to d six cylinders are considered as a/d varies 
from 0.5 to 0.8. The picture is more complicated here with 
several peaks present. The dominant peak however, labelled 
by a circled 3, rises to a value of 225 times the force on a 
single cylinder in isolation, again for all six cylinders, for a 
spacing of a/d = 0.8 and a wavenumber tea = 2.92921. It is 
clear that this frequency also corresponds to a near -trapped 
mode. 

By using eqns (A.23), (A.24) we can also compute the 
mean second-order drift force in radial and tangential direc- 
tions on all of the cylinders in the array. Rather than show 
curves of these, which are not particularly interesting apart 
from at the near-trapping frequencies, we only present, in 
Table 1, maximum drift forces attained at these frequencies 
for the most extreme case considered in the first-order force 
plots of ald = 0.8. 

The sequence of Figs 3a-f repeats the process for five The total drift force on the cylinder array as a whole, 
cylinders starting with a spacing ratio of a/d = 0.4 and however, does not experience a peak as the wavenumber 
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Fig. 2-Continued. 

shows good agreement with the wide-spacing results of 
McIver and Evans [15] (shown as crosses in Fig. 3a). The 
peak labelled 0 shows how the force on each cylinder grows 
to a maximum of nearly seven times the force on an isolated 
cylinder at a value of a/d = 0.6 but lessens in magnitude as 
a/d increases further, occurring at increasing values of ~a as 
ald increases. In Fig. 3e, f another peak appears, giving a 
peak force of 22 times the isolated cylinder force at a 
spacing of ald = 0.8 and at the wavenumber Ka = 4.6105. 
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Fig. 3. Resultant force on five cylinders against wavenumber, ~a: 

Zinc = 0, a/d = 0.4 (a), 0.45 (b), 0.5 (c). 0.6 (d), 0.7 (e), 0.8 (f). 

passes through the resonant wavenumber due to cancella- 
tion from the individual elements of the array. The values 
for the peak drift force in Table 1 seem to be related roughly 
to the square of the corresponding peak forces from Figs 2e, 
3f and Fig. 4d. 

We shall see later that these large forces are accompanied 
by large motions in the vicinity of the cylinders. In a sense 
this is to be expected since as the gap ratio gl2a decreases 
the enclosed water region resembles more closely a harbour 
with a narrow entrance and large motions can be expected at 
frequencies close to the ‘resonant’ frequencies of the 
internal fluid region. This is confirmed in Fig. 5 which 
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Fig. 3-Continued. 

plots, for four cylinders, the maximum force on the lead 
cylinder against the gap ratio, and shows how the force 
increases with decreasing g/2a. One has to take care when 
numerically computing the forces for g/2a smaller than 0.2, 
since a larger truncation parameter is needed in the infinite 
system of equations. That the large force is not simply a 
narrow entrance harbour effect can be seen from Fig. 6, 
where the forces on four cylinders with a/d = 0.8 are com- 
puted when the diameter of one of the cylinders is increased 
by just 2%. Despite the narrowing of the gap between it and 
its neighbours we see by comparison with Fig. 2e that the 
maximum force is reduced to less than 4.5 once the sym- 
metry has been broken. 
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Table 1. Modulus of mean second-order drift forces in the 
three resonant cases for N = 4,5,6 with Blor = 0, a/d = 0.8 

Cylinder number 

1 294 3 

N=4 
Ku = 4.08482 2384 2393 

Cvlinder number 

2364 

1 235 3,4 

N=5 
Ku = 4.6105 341 123 

Cvlinder number 

265 

1 2,6 3,5 6 
N 3.6, 

3.4, 
2.5, 
2.3 

N=6 
Ku = 2.92922 45 807 45 833 45 815 45 627 

It is clear that the large forces and amplitudes of motion in 
the vicinity of the cylinders at frequencies and spacings 

corresponding to near-trapping are related to the near-van- 
ishing of the determinant of the infinite system [eqn (A. 16)J. 
It is clear that this determinant is independent of the incident 
wave, which only appears on the right-hand side of eqn 

(A.16), and that a more direct approach to near-trapping is 
to assume that the B,’ are related purely through a phase 
factor describing the angle between cylinder k and cylinder 
j. A similar assumption was made by Maniar and Newman 
[8] in considering the long linear array. The result of this 
assumption is shown in Appendix A, eqn (A.24), to reduce 

the infinite system to the simpler single infinite system, eqn 
(A.25), with K,, given by eqn (A.28). Different choices ofp 
give rise to different radial and tangential phase relation- 
ships between forces on adjacent cylinders but we can make 
progress for general p as follows. Thus, from eqn (A.26), we 
first replace the summation variable, j, by - j and then 
substitute, without loss of generality, the value of k = 1 to 
give 

K_,,-.(p)=Z.O~~,‘H,-,(ZxKsin s) 

0+Q 
n+ 8.1, 

8.8, 

8.0, -7 8.9 

0 CD 5 . ._ . . . 
3 

x ,i &I - n)r ei(n + m + Zp)?rjlN (1) 

in an obvious notation, but different to that used in eqn 

(A.27), and comparison with eqn (A.28) gives us 

K-,, -,(P)=(- l)“-mK,m(N-~) (2) 

whilst it is clear from eqn (A.28) that 

K,,(O) = K,,(N) (3) 

It follows from using eqn (2) in eqn (A.25) that 
( - l)“B!,(N -p) satisfies the same homogeneous 
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Fig. 4. Resultant force on six cylinders against wavenumber, Ku: 

no l 
0 0 7 @inc = 0, a/d = 0.5 (a), 0.6 (b), 0.7 (c), 0.8 (d). 
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Fig. 5. The variation of non-dimensional peak force (-, left 
scale) and wavenumber ~a at which it occurs (- - -, right scale) on 
the lead cylinder in acircular array, N = 4 (0i, = 0), as the gap 

ratio gl2a varies. 

equation as B:(p) and that the two systems share the same 
determinant. This immediately gives us that the values of 
ud at which the determinant vanishes for a particular value 
of p are the same as those for N - p. Moreover 

&(p)=C( - l)‘“B!,(N-p) 

and so 

&(N-p)=C(- l)“B!-,(p) (4) 

which implies that C2 = 1 or C = t 1. In particular, choos- 

ing P = N/2, N even, gives 

Bo,(N/2) = ? ( - l)“&,(N/2) (5) 

We can also use the information in eqn (3) to deduce from 
eqn (A.29 that B:(O) = C&(N), which, when used in eqn 
(4) with p = 0, gives 

&(O) = C( - l)mB;(0) (6) 

It remains for us to look at the radial and tangential forces 
due to these two modes of resonance. Thus from eqn (A.20) 

4.6 
:- 

*,;: -_.__ 

4 = 1 

tea 

Fig. 6. Resultant force on unsymmetric arrangement of four 
cylinders against wavenumber, xa: Bi, = 0, alId = 0.82, aid = 

0.8, i = 2,3,4. 

with p = N/2 in eqn (A.24) to relate cylinder j to cylinder 0 

X;(N/2) = - $( - l)i(B!_ ,(N/2) -&N/2)) 

i( - l)jBy(N/2), C=l 
= 

o,c=-1 

X{(N/2) = - 3 - l)j@!_ t(N/2) +&N/2)) 

0, C=l 
= 

- (- 1)+&N/2), C= - 1 

(7) 

03) 

In other words, the force is either radial or tangential, but 
never a combination of the two, and switches in sign from 
one cylinder to the next. Likewise, with p = 0 (or N) 

X$(O) = - &B!_ ,(O) -BY(O)) 

1 &(O), C=l 
= 

0, c=-1 
(9) 

Xi(O) = - gf_ ,(O) + B?(O)) 

i 

a C=l 
= 

-B’?(O), c=-1 

giving the previous result; namely that the force can only 
ever be either totally radial or totally tangential, but here 
the sense in which the force acts is the same for all the 
cylinders in the array. This mode therefore corresponds to 
either a tangential torque on the array or a radial pull on the 
array. These four cases are illustrated in Fig. 7. For other 
values of p, there does not appear to be a simple way of 
predicting the direction of the force on the cylinders in the 
array. 

The four possible resonant modes summarised in Fig. 7 
can each be shown to possess symmetries of motion about 
lines joining the centre of the array to the centres of the 
cylinders and those from the centre passing midway 
between adjacent cylinders. For example, in case (a)(i) in 
Fig. 7, from the expression for the potential close to 
cylinder k 

Fig. 7. An illustration of the two possible forces in the resonant 
modes corresponding to (a) p = N/2, (b) p = 0,N. 
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where F, = ( - l)“F_, is defined in eqn (A.1 1). Then 

Ln=rn 

- ( - l)“& .(N/2)) (12) 

since p = N/2, 

= 0, for C = 1, or case (a)(i) (13) 

and therefore there is symmetry about the lines joining the 
centre of the array to the centres of the cylinders. Similarly, 
it is trivial to show that there is antisymmetry about the 
lines passes midway between adjacent cylinders in this 
case. 

It appears from our computations that all four near- 
trapped mode types associated with p = 0, N/2 and illus- 
trated in Fig. 7 exist, and this can be seen more clearly by 
looking at the free-surface plots. 

3 RESULTS FOR CIRCULAR ARRAYS OF FOUR, 
FIVE AND SIX CYLINDERS 

In order to assist our understanding of the various resonant 
motions due to near-trapping that have become apparent in 
the force plots, and whose frequencies can be predicted from 
the determinant system [eqn (A.291, we shall also use free- 
surface plots. The elevation of the free surface, H(x,y,t) = 

Re(rl(x,y) e-i”“l, non-dimensionalised with respect to an 
incident wave of unit amplitude, is given by 

a(-& Y) = fk%% Y) 

In all the free-surface plots presented in this paper, we 
shall use two plots: one showing Re{b}, the other 141. 
The former of these two corresponds to the free-surface 
elevation at a particular instant in time during the cycle, 
namely at t = n&u, n = O,l,. . . [this can be seen by 
considering equation eqn (A.l)], and allows us to observe 
the relative position of peaks and troughs. Alternatively, we 
could have presented plots of Im[+) which corresponds to 
the free-surface elevation at t = (n + 1/2)?r/w, n = O,l,. . . . 
Instead, we choose to plot 141, which corresponds the 
maximum free-surface elevation attained over a cycle. 
The circular array of cylinders are arranged as in Fig. 1 
in such a way that the distance between consecutive centres 
is unity (2d = l), and attention is focused on the interior 
domain, since the motion outside the array is relatively 
insignificant and of little interest. Also, since it is near- 
trapped resonant modes that we seek, we plot the free sur- 
face due to the scattered potential only by discarding the 
influence of the incident wave rather than by using the total 
potential. In the vicinity of cylinderj, say, we may use the 
computationally efficient method of calculating the poten- 
tial given by the expression in eqn (A.1 1). 

Before going any further, it is reasonable to ask whether 
the assumption for a near-trapped mode given in eqn 
(A.24) provides all the possible resonances. Numerical 
experiments performed on a range of array sizes and wave 
parameters suggest that no others exist. In other words, all 
resonances correspond to a value of p in the determinant 
system, eqns (A.25) (A.28) which has assumed eqn (A.24) 
expressing only a change in phase from one cylinder to the 
next for the occurrence of a near-trapped mode. An alter- 
native approach would be to appeal to symmetries of the 
problem as was done by Gaspard and Rice [ 161 in their 
consideration of the resonances of a three-disc system on 
which a ‘soft’ condition was applied. 

It is the determinant system, eqn (A.25) that we turn our 
attention to next. Given that all resonances are accounted 
for by a value of p, the determinant system provides a 
far more efficient way of locating the frequency at which 
near-trapped modes occur. Not only this, but we can also 
identify, by means of the value of p, the behaviour of the 
type of mode. The reader is reminded that choosing N - p 
gives the same results as choosing p [this comes from eqn 
(2)] and so we need only restrict ourselves to considering 
values of p I [N/2]. 

For the purpose of locating the frequency at which a near- 
trapped mode occurs, and hence where we may expect to 
find large first- and second-order forces acting on the 
array, it is sufficient to scan through the non-dimensional 
wavenumber, Ku, as a real parameter and monitor the modu- 
lus of the value of the complex determinant. Then whenever 
the modulus of the determinant dips close to zero, one 
would expect to find a resonant motion in the forcing 
problem. But it is perhaps more enlightening to seek the 
precise zeros of the determinant by regarding Ku as a com- 
plex variable. This extra dimension adds to the computa- 
tional effort in locating trapped modes, requiring the use of 
Newton’s method in two dimensions, but in essence is 
straightforward. 

In eqn (A.l) we assumed the decomposition @(ny,z,t) = 
Re{r$(x,y) cash K(Z + h) e-‘ut), where Re( w) > 0 has been 
assumed throughout in order to satisfy the radiation con- 
dition and we must choose wi = Im(o) s 0 to avoid 
exponential growth of the potential with increasing time. 
Then it is straightforward to show, by using eqn (A.2) 
that Wi I 0 then Kj e Im{ K] 5 0. If Ki = 0, then Wi =O 
and so the motion is harmonic with no decay in time. That 
is, a genuine trapped mode. If K~ is negative, then there is 
exponential decay in time and the mode is only near- 
trapped. Of course, the more negative Ki, the faster the 
decay of an initial resonant disturbance. 

The zeros of the complex determinant in the cylinder 
array are found in the following way. For each value of 
p, we perform a search of the complex Ku space close 
to the real line for a value of ald = 0.8 using Newton’s 
method and pick out the complex values of Ku corre- 
sponding to a zero of the determinant in this region. For 
each of these values a/d is then varied from 0.8 to 0.5 in 
small steps, so as to trace the path of the zero as the 
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Im{ tixb) 

0 1 2 3 5 6 7 6 

Fig. 8. Location of zeros of determinant in complex wavenumber KU space for N = 4 cylinders as a/d varies from 0.5 to 0.8: p = 2 (-), 
p= 1 (- - -), p = 0 (+ .); u/d = 0.5 (Cl), 0.6 ( * ), 0.7 ( x ), 0.8 ( f ). 

cylinders are separated. This provides us with the most 
compact way of illustrating the influence of near-trapping 
for any geometry consisting of N cylinders in a circular 
array. For example in Fig. 8, it can be seen how the peak 
in Linton and Evans [ 141 is due to the real-valued Ka passing 

‘close’ to the pole in the complex plane at approximately 
1.67 - O.li and, as a/d is increased to 0.8, this pole moves to 
within 0.001 of the real line. Furthermore, the mode 
corresponds to p = 2 ( = N/2). Thus, in the plots of 
maximum force against Ka presented in Figs 2a-e, the 
peak in the forces can be associated with the occurrence 
of a pole in the complex plane close to the real axis. Clearly, 
as the pole moves closer to the real axis, one would 
expect the response in the forced problem to increase. We 
are also able to use Fig. 8 to identify the types of modes 

responsible for the peaks in the forces, and these are repre- 
sented in Figs 2-4 by the circled values next to each of 
the peaks. 

Figures 9 and 10 show the free-surface elevations 
Re{ 9) and 141 at the closest real values of KU for a/d = 
0.5 and a/d = 0.8, respectively. Even in the case of 

(4 

a/d = 0.5, corresponding to the relatively small peak in 
Fig. 2a, we see that the maximum elevation is some 3.5 

times that of the incident wave. It can be seen that the 
maximum wave amplitude for the a/d = 0.8 near-trapped 
case is predicted to be over 150 times the incident wave 
amplitude and is responsible for the peak in the first-order 
force of 54 times that on an isolated cylinder. The motion in 
between the cylinders resembles a floppy saddle: where 
there is a wave peak on one cylinder, there is a trough on 
a neighbouring cylinder. From Fig. 8 we see that this mode 
is associated with a value p = 2 and this ties in with the 
prediction made by the analysis earlier for a p = N/2 mode 
where the force alternates in sign from one cylinder to the next. 

The only other pole in the complex plane that comes near 
to the real line is the p = 0 mode as the cylinders are moved 
close together. Again, the free-surface plot in Fig. 11 shows 
that this rather weak near-trapped mode contributes to a 

tangential force on the array as predicted by the theory. 
Note that in order to excite this mode we would need to 
use an incident wave that destroys the geometric symmetric 
of the array and we have chosen einc = 12.25” in Fig. 11 

(b) 
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Fig. 9. (a) Re($] and (b) h$l for N = 4, u/d = 0.5, KU = 1.66, elnc = 0”. 
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Wave Height 

7-l 
150: g 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.8 

Fig. 10. (a) Re(+} and (b) 141 for N = 4, u/d = 0.8, KU = 4.08482, 19~“~ = 0”. 

(there is nothing special about this value). However, in 
Fig. 2a-e an incident wave with Bin, = 0 was used which 
preserved the symmetry and so no peaks corresponding to 
this p = 0 mode are observed. 

We now consider the case of five cylinders, where it is not 
possible to generate ap = N/2 mode. In order to identify the 

near-trapped modes in this case, we again look at the poles 
of the determinant system in terms of complex Ka. Fig. 12 
shows the path of the poles for p = 0, 1 and 2 as u/d varies 
between 0.5 and 0.8 as in the previous case of N = 4. It can 
be seen from Fig. 12 that, for the spacing a/d = 0.8, there are 
three poles in the vicinity of the real line denoted by ( + ); 
two associated with the mode p = 0 and one with p = 1. 
Moreover, one of the p = 0 modes runs roughly parallel to 
the real line over the range of spacings 0.5 < aid < 0.8, 
whilst the poles associated with the remaining two modes 
will only have an influence on the forced problem as a/d 
approaches 0.8. The p = 1 mode eventually gets closest and 
is responsible for the maximum peak of 22 in the force plot 
in Fig. 3f. Figures 13-15 show the free surface excited by 
this particular near-trapped mode for three different incident 
wave angles: tYi,, = O”, 9” and 18”. The reason for choosing 

three incident angles and not just Bi,c = 0 is to illustrate 
the motion induced by a p = 1 mode. It can be seen that 
a single line of symmetry is sought (which depends on 
the incident angle) about which the fluid moves in an 
antisymmetric fashion. This is not apparent in the 6inc = 
0” case, which forces an additional even symmetry. The 

p = 0 mode corresponding to the pole running roughly 
parallel to the real axis in Fig. 12 can be seen in Fig. 3a-f 
to have an effect on the forces over the whole range of a/d 
from 0.4 to 0.8, with a maximum force on all cylinders in the 
array of approximately seven times the force on an isolated 
cylinder at a/d = 0.6. The free surface for a/d = 0.8 in this 
case is illustrated in Fig. 16 and it can be seen that the 
motion on all cylinders is the same and in phase, corre- 

sponding to the p = 0 mode predicted by the theory and 
illustrated in Fig. 7(b)(i). Thus, we expect an equal radial 
force on all cylinders in this mode and this is confirmed by 
Fig. 3a-f. 

The remaining p = 0 mode corresponds to the motion 
depicted in Fig. 7(b)(ii) and the free surface elevation for 
a/d = 0.8 is shown in Fig. 17 where 0inc = 0. This 
motion gives us the peaks in the forces on all cylinders of 

Wave Height 

10 j 

Fig. 11. (a) Re(d) and (b) 141 for N = 4, a/d = 0.8, ~a = 5.797, @inc = 12.25”. 
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Fig. 12. Location of zeros of determinant in complex wavenumber Ka soace for N = 5 cvlinders as a/d varies from 0.5 to 0.8: p = 2 (-), 
p = 1 (- - -), p = 0 (. .); a/d = 0.5 (O), 0.6 ( * ), 0.5 ( X ), 0.8 ( + ). 

Fig. 13. (a) Re(+} and (b) 141 for N = 5, a/d = 0.8, Ka = 4.61048, OinC = 0”. 
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Fig. 14. (a) Re(+) and (b) 141 for N = 5, a/d = 0.8, Ka = 4.61048, 0inc = 9”. 
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Fig. 15. (a) Re(q5J and (b) 141 for N = 5, a/d = 0.8, KU = 4.61048, Bi, = 18". 

Fig. 16. (a) Re(+) and (b) I$1 for N = 5, afd = 0.8, Ka = 5.0413, eirc = 18”. 
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Fig. 17. (a) Re(4] and (b) 141 for N = 5, a/d = 0.8, Ka = 6.0413, 0i, = 0”. 
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Fig. 18. Location of zeros of determinant in complex wavenumber Ka space for N = 6 cylinders as a/d varies from 0.5 to 0.8: p = 3 (-), 
p = 2 (- - -), p = 1 (- - -), p = 0 (. .); a/d = 0.5 (O), 0.6 ( * ), 0.7 ( X ), 0.8 ( + ). 

approximately five times the isolated cylinder force at this 
spacing and with Ka = 6.0413 in Fig. 3f. 

The last case we look at in detail is six cylinders in a 
circular arrangement. Even with this small number of 
cylinders, the picture starts to get very complicated. As 
before, we track the poles of the complex determinant as 
a/d varies in Fig. 18 to identify the type of mode associated 
with the peaks in the forces in Fig. 4a-d in which the 

values of p are circled next to the corresponding peaks. 
The dominant mode in terms of generating large forces 
on the structure is the p = N/2 = 3 mode that has a pole 
at Ka = 2.92921 - O.OOOOO1i in the complex plane at 
a spacing of a/d = 0.8. This is responsible for the first- 
order exciting force of 225 on all six cylinders shown in 
Fig. 4d. In Fig. 19 it can be seen that the corresponding 
fluid motion is equivalent to the standing or ‘saddle’ mode 
seen in the case of four cylinders with p = N/2. There is 
another p = N/2 mode that becomes important as a/d 
increases beyond 0.7, creating a force of over eight times 
that on an isolated cylinder at Ka = 5.085 when a/d = 0.8 

(see Fig. 4d). From Fig. 20 this can be seen to represent a 
more complicated standing mode type motion with the phase 
and hence forces alternating in sign from one cylinder to the 
next as expected from the theory of Section 2. As in the pre- 
vious cases with arrays of four and five cylinders, there is ap = 
0 mode which induces moderately large tangential loads on the 
array in the presence of an incident wave field that breaks the 

symmetry of the problem. Thus, for a/d = 0.8, ehC = 15” and at 
Ka = 4.5582, we see in Fig. 21 the same p = 0 standing mode 
already seen in Figs 11, and 16 for four and five cylinders. 

From Fig. 4b-d we see a rather small peak corresponding 
to the mode p = 2, the relative wave amplification of which 
is shown in Fig. 22 when ald =0.8, Ka= 6.4617 and 
f3rnC = 0. Behind the intricate pattern is a symmetry of 
motion that has been confirmed for incident wave directions 
other than einc = 0. In much the same way as the p = 1 mode 
for five cylinders was seen to seek a single line of symmetry 
about which the fluid motion was antisymmetric, here the 
p = 2 mode attempts to induce a motion which has two 
perpendicular lines of symmetry. 

Wove Height Wave Height 

100’ 

-1.0 -0.5 0.0 0.5 1.0 

Fig. 19. (a) Re{q5) and (b) 1~~51 for N = 6, a/d = 0.8, Ka = 2.92922, tIinc = 0”. 



Near-trapping of waves by circular arrays of vertical cylinders 95 

1. 

Wave Height Wove Height 

j ! -7 20’ 

0. 

10 

Fig. 20. (a) Re(+} and (b) 141 for N = 6, u/d = 0.8, KU = 5.085, 0inc = 0”. 
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Fig. 21. (a) Re(d} and (b) h$i for N = 6, a/d = 0.8, KU = 4.5582, Binc = 15”. 
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Fig. 22. (a) Re{d) and (b) 141 for N = 6, a/d = 0.8, Ka = 6.4617, elnc = 0”. 
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Fig. 23. (a) Re[t$] and (b) I+1 for N = 6, u/d = 0.8, KU = 5.5321, 0inc = 0”. 

In the final plot for six cylinders in Fig. 23 we have 
sketched the free surface corresponding to the peak in the 
force in Fig. 4d at Ka = 5.5321 when ald = 0.8. This mode is 
difficult to interpret since it arises as a consequence of the 
compound effects of two poles of the complex determinant 
close to the real axis corresponding to the values p = 1 and 
p = 2. 

4 CONCLUSION 

In this paper we have considered the effect of incident 
waves on arrays of identical, bottom-mounted, circular 
cylinders arranged in a circle. The method uses the inter- 
action theory of Linton and Evans [4] to reduce the problem 
to the solution of an infinite system of equations for the 
Fourier coefficients in the expansion of the potential near 
any given cylinder. Particular attention was paid to circular 
arrays of four, five and six cylinders where it was shown that 
near-trapping and corresponding large forces and water dis- 
placements occur as the spacing between adjacent cylinders 
reduces. An understanding of this was gained through 
computation of the complex roots of the determinant of 
the system and by introducing an integer p related to the 
phase change in the potential in going from one cylinder to 
the next. Thus different values of p relate to different sym- 
metries of the array. 

It is possible, and for certain purposes desirable, to 
consider the circular array problem ab initio by using sym- 
metry arguments. Thus the N-cylinder circular array is 
invariant under the symmetry group CNV and the general 
potential near each cylinder can be written in terms of a 
decomposition over the irreducible representations of C,; 
see, for example, McWeeney [ 171. By using these represen- 
tations in eqn (A.16), separate infinite systems can be 
obtained for each of the representations and the zeros of 
the corresponding determinants in each case would corre- 
spond to near-trapping. Such an approach was used by Gas- 
pard and Rice [16] in studying the scattering by three discs 
on each of which a Dirichlet boundary condition is satisfied. 

The approach used here, to relate the Fourier coefficients at 
each cylinder through a value of p in eqn (A.24), was moti- 
vated by the work of Maniar and Newman [8] on the linear 
array and it has been shown that the peaks in the forces on 
circular arrays of four, five and six cylinders can in all cases 
be associated with a particular value of p. Generally speak- 
ing, for N even, solutions for p = 0 (or N) and p = N/2 
produce the largest forces and water motion, and correspond 
to standing wave motions which were seen in the linear 
array to cause the large peaks in the forces, whilst for N 
odd p = 0 and 1 appear to be the most important. 

Computations have been made on larger numbers of 
cylinders in a circular array and the structure of the possible 
solutions rapidly becomes very complex. In contexts other 
than in the offshore industry N > 6 is of greater interest, 
and more work needs to be done in understanding the 
large forces that can occur in such solutions owing to 
near-trapping. 
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APPENDIX A INTERACTION THEORY FOR AN 
ARBITRARY ARRAY OF CYLINDERS 

The formulation follows that of Linton and Evans [4], see 
Fig. 24 for coordinate system, where the velocity potential @ 
is expressed as 

+(n, y, z, t) = Re( 4(x, y) cash K(Z + h) e-a ) 641) 

where w/27r is the wave frequency, h the depth of water and 
K is the positive root of 

w* = gK tanh Kh (A21 
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Cylinder k 

@in, (Incident wave direction) 

/ 2 

Fig. 24. The coordinate system of Linton and Evans [14]. 

Then 4 satisfies 

(v2 + K2)%Y) = 0 

exterior to the cylinders and 

a4 0 
an= 

on each cylinder. 

(A31 

(A4) 

We assume there are N circular cylinders having arbitrary 
position and radius and write 

~(AY)=~~II~(~IY) + i +kx9Y) 64% 
j=l 

where 

+inc(x, y) = eiKr co@ - ei.,) = 1, eiKri cos(4 - 6,) (Ah) 

and 

1k = ei(+ cos & +yk sin &.J 647) 

Thus the incident wave makes an angle Zinc with the x- 
direction and cylinder k has centre (xkryk). The general 
form for the scattered potential from cylinderj is 

#( = 2 A$@$, (Krj) eine, 048) 

where 

Zi = J,,‘(KUj)/H,,‘(KUj) (A9) 

and aj is the radius of cylinderj. Here H,, E J,, + iY, is the 
Hankel function of the first kind. By using Graf’s addition 
formula, Linton and Evans [4] showed that to satisfy eqn 
(A.4) then the coefficients Ai must satisfy 

A; + i f A’,Zi ei(“-m)~‘HH,_m(kRj~) 

= _ lk eim(*/2 - kc) 

for k= 1, . . . . N,--m<m<m (AlO) 

Here, Rj, is the distance between the centres of cylinders j 

and k, and ajk is the angle between the line from the centre 
of cylinder j to the centre of cylinder k and the positive X- 
direction. Notice that the effect of the incident wave is 
included through the term Binf on the right-hand side. 

It was shown in Linton and Evans [4] that the total poten- 
tial may be expressed in the coordinates of cylinder j, say, as 
simply 

+(rj,Oj) = g A’,F,(Krj) einej, rj < Rjk Vk (All) 

where 

F,, (“rj) = Z$H,, (Krj) - J,, (Klj) 6412) 

and where rj,Oj are polar coordinates measured from the 
centre of cylinder j in the positive x-direction. From the 
above equation, the first-order exciting force on the jth 
cylinder can be derived. Thus 

6413) 

where Fi is the first-order exciting force on a isolated cylin- 
der, radius aj, in the direction of the incident wave and the 
upper (lower) elements refer to the force in the X- (y-) 
direction. 

The above derivation is entirely general and has been 
included for completeness. We now assume that the N cylin- 
ders are identical (aj = a, j = 1,. . . ,N) and are equally spaced 
around a circle of radius R. It is convenient to exploit the 
symmetry of the cylindrical array and choose local polar 
coordinates at each cylinder measured from the line joining 
the centre of that cylinder to the centre of the array as shown 
in Fig. 25. It follows by elementary geometry that 

ofik = $k i-j) i- F sgn(k -j> G414) 

where we have chosen cylinder j to make an angle of 2?rjlN 
with the positive x-direction ( j = 1,2,. . .,N) and to have its 
centre at 

Xi = R cos(2ujlNr), yj = R sin(2rjlN) (Al5) 

Fig. 25. The coordinate system for the cylindrical array. 
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Substitution of eqns (A.14), (A.15) into eqn (A.lO) gives 

x ,i f&n - m)r sgn(k -j) ei(n + m)r(k - j)lN 

= _ ok eim(r12 + 2rklN - B,.,) 

for k= 1, . . . . N,-m<m<oo 

where now 

(A16) 

I, = $cR cos(2rklN - f&) 

from eqns (A.7), (A.15) and 

0417) 

Rjk = 2R sin 7 I I (Al81 

and we have also written 

(A19) 

Note that the same result can be obtained by using local 
polar coordinates from the outset in eqn (A.8) with Ai 
replaced by Bi. 

It is easily shown that the forces in the radial/tangential 
directions are 

normalised with respect to the force on an isolated cylinder 
of radius a in the direction of the incident wave. Either eqns 
(A.10) and (A.13) or eqns (A.16), and (A.20) can be used 
to determine the forces on cylindrical arrays of circular cylin- 
ders and, as expected, they give identical results. In particular, 
they confirm the corrected results of Linton and Evans for the 
first-order exciting force on four cylinders [ 141. 

We can also compute the mean second-order drift force 
defined to be 

where 

(A23 

on cylinder j in either the x- or y-direction by using Linton 
and Evans’ eqn (3.8) [4] or in radial/tangential directions 
by substituting eqn (A.19) in the former equation [using 
appropriate local coordinates (rj,flj)] to give 

(~23) 

where * denotes complex conjugate. This is non- 
dimensionalised by the mean second-order drift force on a 
cylinder in isolation, resolved in radial/tangential directions, 

see, for example, Linton and Evans [4], eqn (3.10). 
Following the approach of Maniar and Newman [8] 

for the linear array, we shall seek near-trapped modes 
directly from eqn (A.16) by putting the right-hand side 
equal to zero and assuming a relationship between the 
Bi. Thus it might be expected that, for a near-trapped 
mode, Bi would differ from Bi only by a phase factor 
reflecting the angle 27r(k - j)/N between tbe cylinders. 
More generally, whilst preserving single-valuedness we 
may write 

& = e@ -j)2rPlNB;I’, 
p an integer 

(~24) 
j,k=l,...,N 

whence substitution into eqn (A.16) gives 

B11,+ $ B;K,,,,=O 
n= --to 

(A23 

where the superscript zero indicates a cylinder in the 
‘zeroth’ position on the positive x-axis. Here 

K,,,,,=~,~H,,_,(2KRsin$) e21rpjilN 

+0 

x ei bN - m)?r sgn(j) ei(m + n)rj/N (AN 

after redefining the summation variable. This is easily seen 
to be independent of k by showing, in an obvious notation, 
that 

K,,(k)=K,,(k+l), k=1,2 ,..., N (~27) 

It follows that in particular we may choose k = N, in which 
case K,, reduces to 

K,, = 2 ei(n - m)*12 

X Tz Hn_,,, (ZxR sin ‘NI> ei(m+n-2p)lrilN (A28) 

and we have reduced eqn (A.16) to the single infinite 
system, eqn (A.25), with K,, as above. 
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