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Trapped modes about multiple cylinders
in a channel
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(Received 23 September 1996 and in revised form 20 December 1996)

The trapped modes which can occur in a long narrow wave channel containing any
number of different-sized bottom-mounted circular cylinders arbitrarily spaced along
the centreline of the channel are considered. The modes, all of which are antisymmetric
with respect to the centreplane of the channel are of two types: Neumann modes,
in which the fluid has normal velocity zero on the channel walls corresponding to
a localized sloshing near the cylinders, and Dirichlet modes, in which the dynamic
pressure vanishes on the channel walls. These latter modes have no physical meaning
in the water-wave context but have been observed in a related acoustic context where
the same governing equations and boundary conditions apply.

It is shown that in general there are 6 N trapped modes for any configuration
of N cylinders, the precise number depending critically on the geometry of the
configuration. Both types are of importance in predicting the exciting forces on
individual cylinders within a large but finite periodic arrangement of cylinders.

1. Introduction
The existence of trapped modes in the presence of a single rigid vertical circular

cylinder placed on the centreline and extending throughout the depth of a long
narrow wave channel was first demonstrated by Callan, Linton & Evans (1991)
for sufficiently small cylinders. The governing equations also describe the trapped
modes near a symmetrically placed rigid circular boundary in a two-dimensional
acoustic waveguide. Numerical computations made by Callan et al. (1991) indicated
that just a single trapped mode existed for each value of a/d 6 1 where a is the
cylinder radius and 2d is the width of the channel. Recent careful experiments by
C. H. Retzler (private communication, 1996) have confirmed the predicted trapped
mode frequencies of Callan et al. (1991) for three different-sized circular cylinders.
The trapped modes take the form of a persistent local oscillation near the cylinder
at a unique frequency below the first cut-off frequency for the channel, and are
antisymmetric with respect to the centreplane of the channel and symmetric with
respect to a plane through the axis of the cylinder perpendicular to the sides of the
channel.

A numerical method using an appropriate Green function for determining trapped
modes for more general cylinders in terms of homogeneous solutions of a Fredholm
integral equation was presented in Linton & Evans (1992). In particular the results give
good agreement with Callan et al. (1991) in the circular cylinder case. Subsequently
Evans, Levitin & Vassiliev (1994) proved the existence of trapped modes for a general
class of cylinders placed symmetrically with respect to the channel centreplane and
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on which a Dirichlet condition is satisfied by the potential function describing the
motion thereby ensuring that the motion was antisymmetric with respect to this
plane. More recently this work has been extended by Davies & Parnovski (1997) to
include, for example, a pair of identical cylinders being reflections of each other in
the centreplane. They provide both existence and non-existence results for trapped
modes depending on the shape, size and position of the obstacle(s) in the channel or
acoustic waveguide.

In this paper we return to the case of the circular cylinder on the centreplane and
generalize the results of Callan et al. (1991) to the case of any number of circular
cylinders of arbitrary size, all positioned on the centreplane. The motivation for this
is three-fold. First, current theory says nothing about the number of trapped waves in
the case of separate cylinders placed along the centreplane. Secondly, some interesting
questions arise. For instance, since trapped modes are a localized phenomenon, one
might expect that for N (> 1) different-sized circular cylinders spaced sufficiently
far apart there will be N distinct trapped mode frequency curves each approaching
its respective value for the corresponding single cylinder as spacing increases. The
question arises as to what happens as the spacing decreases until the cylinders touch.
Do the N curves coalesce or do some disappear at some critical spacing for certain
sized cylinders ? For example, computations by Evans & Linton (1991) of the trapped
modes in the case of a cylinder of rectangular cross-section indicate that additional
trapped modes only arise if the dimension of the rectangle in the direction of the
sides of the channel exceeds the width of the channel.

Finally, the importance of trapped modes in the offshore industry has been brought
into prominence recently by the work of Maniar & Newman (1997) who have
discovered extremely large wave diffraction forces and corresponding large amplitudes
of free-surface elevations between adjacent elements of an array consisting of a
large number of identical bottom-mounted circular cylinders. These effects occur at
frequencies extremely close to the trapped mode frequencies predicted by the theory
of Callan et al. (1991) and tabulated in Linton & Evans (1992). Maniar & Newman
(1997) point out that such periodic arrays have applications to structures such as
floating bridges or proposed designs for floating airports. In practice, however, it is
clear that at least a double array of supporting cylinders will be needed so that it
is important to predict the corresponding trapped mode frequencies for more than a
single cylinder on the centreplane.

In order to illustrate how large forces can occur in even a relatively small double
array of cylinders, we have computed in figure 1 the maximum total force on the
middle pair of cylinders in a double array of 2 × 9 cylinders in head seas using the
interaction theory of Linton & Evans (1990). The different curves refer to different-
sized cylinders. This theory enables the exciting force on any bottom-mounted circular
cylinder in an array of cylinders of arbitrary size and position to be determined by
solving an infinite system of equations for unknown Fourier-type coefficients, Ak . The
exciting forces turn out simply to involve sums and differences of A1 and A−1. It is clear
from figure 1 that at well-defined wavenumbers or frequencies, the maximum total
force on the cylinders in the middle of the row becomes large. Indeed, these peaks in
the force are present (to a lesser extent) in the force curves for all elements in the array.
We shall show that in each curve the first peak located at κd < 1

2
π approximates to

the wavenumber of the symmetric trapped mode which arises in the case of two such
cylinders spaced with centres two cylinder diameters apart in a wave-tank of width
2d. The peak lying in 1

2
π < κd < π will be shown to approximate to the symmetric

Dirichlet trapped mode described in Maniar & Newman (1997). In the water-wave
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Figure 1. Maximum exciting force against non-dimensional wavenumber κd in the case of head
seas interacting with a double array of 2 × 9 cylinders all of radius a. The two rows are 4a apart
and in each row the centres are 2d apart. (a) a/d = 1

2
, (b) a/d = 1

4
.

context this is a non-physical trapped mode satisfying Dirichlet conditions on the
tank walls as well as on the centreplane, thereby extending the cut-off to κd = π,
but as Maniar & Newman (1997) have pointed out, such modes are important in
understanding the large forces and free-surface amplitudes of motion which occur in
long finite arrays of cylinders near Dirichlet frequencies. Such Dirichlet modes are
well-known in acoustics and have been observed in wind tunnels containing cascades
of flat horizontal plates spanning the full width of the tunnel. For an extensive review
of such acoustic resonances, see Parker & Stoneman (1989). An approximate but
accurate formula for predicting the Dirichlet resonant frequencies near a thin plate
is given by Evans & Linton (1994), whilst McIver & Linton (1995) have produced
non-existence results for Dirichlet modes for certain geometries including the case
of multiple cylinders discussed here. They relax the requirement of a Dirichlet
condition on the centreplane so that the corresponding possibility of modes satisfying
1
2
π < κd < π does not arise.
The plan of the paper is as follows. In the next section we formulate the problem

and solve the problem of determining all the trapped modes which can occur when
any number of rigid bottom-mounted vertical circular cylinders are placed on the
centreplane of a channel. The cylinders can have any radii and can be spaced
arbitrarily and we seek trapped modes which are antisymmetric about the centreplane
and satisfy Neumann conditions on the channel walls. Henceforth we call such modes
Neumann modes.

The solution is based on the multipole method, in which singular solutions of the
Helmholtz equation satisfying an antisymmetry condition on the channel centreplane
are modified to include the boundary conditions on the channel walls. The total
potential about any cylinder may then be expressed as a Fourier-type sum over
all relevant multipoles and the total potential anywhere in the channel as the sum
over all cylinders. The remaining condition to be satisfied, that of no-flow on the
cylinder surfaces, is achieved by use of a Bessel function addition theorem, as in
Linton & Evans (1990), yielding a homogeneous determinant system whose non-
trivial solutions correspond to the trapped mode frequencies. The same method has
recently been used by Linton & McIver (1996) to determine the scattering properties
of any number of circular cylinders of arbitrary size and position in a channel. The
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method is an extension of that used by Callan et al. (1991) for the single cylinder.
Crucial to that method was the fact that the channel multipoles turned out to be
purely imaginary leading to a homogeneous real infinite system of equations. It
turns out that here too the more general multipoles in which symmetry about the
plane through the centre of a cylinder perpendicular to the channel walls is not
assumed also turn out to be pure imaginary and again produce a real system of
equations.

Also in §2 a description is given of the changes necessary to treat the Dirichlet
trapped modes for any number of circular cylinders. The potential now satisfies
a Dirichlet condition on the channel walls and since the modifications turn out to
be minor the details are omitted. Despite the similarity in derivation there is a
fundamental qualitative difference in behaviour of Neumann and Dirichlet trapped
modes. Thus, whereas for a single circular cylinder Callan et al. (1991) showed that
a trapped mode exists for all a/d 6 1, the corresponding Dirichlet trapped mode has
been shown by Maniar & Newman (1997) to occur provided a/d . 0.677. It is easy
to see how such a geometric cut-off might arise by considering the Dirichlet trapped
modes which occur in the simplest case of a cylinder of rectangular cross-section
on the centreplane. An examination of the possible modes which can exist in the
region between the channel walls and the side of the rectangle on which Dirichlet
and Neumann conditions are to be satisfied respectively, and the region between the
channel walls and the centreplane on each of which a Dirichlet condition holds, shows
that in order for the lowest cut-off to exist, it is necessary that b/d < 1

2
where b(d) is

the half-width of the rectangle (channel). Both the Neumann and Dirichlet trapped
modes for a rectangle have recently been computed by the authors using a powerful
Galerkin method used in related scattering problems. See, for example, Porter (1995)
and Evans & Fernyhough (1995) who solve the general problem of Rayleigh–Bloch
waves along a periodic rectangular coastline. The computations confirm the condi-
tion b/d < 1

2
for Dirichlet modes near rectangular cylinders. In §2.4 the existence

or otherwise of Dirichlet modes is discussed and new results presented guarantee-
ing their existence in the case of single cylinders of arbitrary cross-section on the
centreplane.

It should be emphasized that the success of the method depends upon obtaining
a real infinite system of equations in the Neumann case with κd < 1

2
π and in the

Dirichlet case with 1
2
π < κd < π. For κd above these values the systems are complex

and the question of the existence of trapped modes is less clear. However, recently
the authors (Evans & Porter 1997) have provided strong numerical evidence that such
trapped modes embedded in the continuous spectrum do indeed exist but only for
a single wavenumber at a precise value of a/d for both the Neumann and Dirichlet
cases.

Results are presented in §3 in the form of curves describing the variation of non-
dimensional trapped mode wavenumber with different parameters for a variety of
cylinder configurations for both Neumann and Dirichlet modes. Because of their
importance in applications special attention is paid to the case of two identical
cylinders. Other cases considered include two or three different-sized cylinders and
four identical equally spaced cylinders. Also shown are curves illustrating the relative
amplitudes of motion of the trapped modes in one or two cases. The details of the
analysis, including the derivation of the multipoles and the application of the Bessel
addition theorem are relegated to Appendices.
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Figure 2. Plan view of two cylinders in a channel.

2. Formulation
2.1. Formulation of the problem for Neumann modes

The origin is placed in the free surface midway between parallel channel walls situated
at y = ±d. The z-axis is measured vertically upwards with the channel bottom at
z = −h and the undisturbed free surface at z = 0. Polar coordinates will also be
used and are defined in the usual manner: x = r cos θ, y = r sin θ. N fixed vertical
circular cylinders are placed on the centreplane of the channel and extend uniformly
throughout the depth. The jth cylinder is given a radius aj and its centre positioned
at (x, y) = (dj, 0), j = 1, 2, . . . , N. It is convenient to define local polar coordinates
(rj , θj) associated with cylinder j (see figure 2).

Under the usual assumptions of linear water-wave theory, we assume a velocity
potential, Φ(x, y, z, t), which is expressed as

Φ(x, y, z, t) = Re
{
φ(x, y)f(z)e−iωt

}
(2.1)

where

f(z) = −igA cosh κ(z + h)/ω cosh κh (2.2)

and where the depth dependence has been extracted and time-harmonic motion of
angular frequency ω is assumed with the wavenumber κ the positive root of the usual
dispersion relation

ω2/g = κ tanh κh. (2.3)

Then φ satisfies the Helmholtz equation,

(∇2 + κ2)φ(x, y) = 0 (2.4)

exterior to the cylinders,

∂φ

∂rj
= 0 on rj = aj , j = 1, . . . , N (2.5)

expressing no-flow through the cylinders and on the channel walls, y = ±d, the
condition

∂φ

∂y
= 0 for Neumann modes, (2.6)

φ = 0 for Dirichlet modes. (2.7)
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For most of this section we shall restrict our attention to Neumann trapped modes
satisfying (2.6); the changes necessary for Dirichlet trapped modes satisfying (2.7) will
be outlined in §2.4.

In seeking a trapped mode, we also require the potential to be antisymmetric about
the channel centreplane and decay away from the cylinders. Thus

φ(x, 0) = 0, −∞ < x < ∞ (2.8)

and

φ(x, y)→ 0 as |x| → ∞, −d 6 y 6 d. (2.9)

We only consider the solution in 0 < y < d (0 < θ < π) with the extension to
−d < y < 0 given by φ(x,−y) = −φ(x, y) as a direct consequence of condition (2.8).

Note that in the context of acoustics, rather than water waves, we would write
Φ = Re{φe−iωt} where κ = ω/c and c is the speed of sound.

We introduce the multipole potentials (see Appendix A) based on cylinder j by

ψjn(rj , θj) = Yn(κrj) sin nθj −Re
1

π

∫ iπ+∞

−∞

eγd−nv

cosh γd
sinh γyj sin(κxj cosh v − nπ/2) dv

(2.10)
where γ = κ sinh v, using local coordinates xj = rj cos θj , yj = rj sin θj about the
centre, (dj, 0), of cylinder j. They satisfy

(∇2 + κ2)ψjn = 0, rj 6= 0

ψjn(rj , 0) = ψjn(rj , π) = 0,

∂ψjn
∂y

= 0 on y = d

ψjn → 0 as |x| → ∞ for κ < π/2d.

We then construct possible trapped mode potentials as the sum over all multipoles
and all cylinders:

φ(r, θ) =

N∑
j=1

∞∑
n=1

Ajnψ
j
n(rj , θj) (2.11)

for some constants, Ajn, by looking for possible non-trivial solutions satisfying the
remaining condition on the cylinders, namely (2.5). In order to impose this condition,
we need to shift from the local coordinates of a typical cylinder j to a cylinder k, say.
Thus, from Appendix B, we have the result

Yn(κrj) sin nθj =

∞∑
m=1

FjkmnJm(κrk) sinmθk, (2.12)

with Fjkmn defined by (B2) and from (B8) we have

sinh γyj sin(κx cosh yj − nπ/2)

= −2

∞∑
m=1

cos{κ(dk − dj) cosh v + 1
2
(m− n)π}Jm(κrk) sinmθk sinhmv. (2.13)
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It follows from (2.10), (2.12), (2.13), that

ψjn(rj , θj) = Yn(κrj) sin nθj +

∞∑
m=1

CmnJm(κaj) sinmθj,

=

∞∑
m=1

(
Fjkmn + Cjk

mn

)
Jm(κrk) sinmθk, j 6= k (2.14)

where

Cjk
mn = Re

2

π

∫ iπ+∞

−∞

eγd−nv sinhmv

cosh γd
cos{κ(dk − dj) cosh v + 1

2
(m− n)π} dv. (2.15)

Note that Cjk
mn = (−1)m−nCkj

mn. We have also written

Ckk
mn ≡ Cmn = Re

2

π

∫ iπ+∞

−∞

eγd−nv sinhmv

cosh γd
cos 1

2
(m− n)π dv. (2.16)

We now may write

φ(r, θ) =

∞∑
n=1

Aknψ
k
n(rk, θk) +

N∑
j=1
6=k

∞∑
n=1

Ajnψ
j
n(rj , θj) (2.17)

and so imposing (2.5) by using (2.14) gives

0 =
1

κ

∂φ

∂rk

∣∣∣∣
rk=ak

=

∞∑
n=1

Akn

{
Y ′n (κak) sin nθk +

∞∑
m=1

CmnJ
′
m(κak) sinmθk

}
+

N∑
j=1
6=k

∞∑
n=1

Ajn

∞∑
m=1

(
Fjkmn + Cjk

mn

)
J ′m(κak) sinmθk, k = 1, . . . , N. (2.18)

Equating coefficients of sinmθk:

AkmY
′
m(κak) + J ′m(κak)

∞∑
n=1

AknCmn + J ′m(κak)

N∑
j=1
6=k

∞∑
n=1

Ajn(F
jk
mn + Cjk

mn) = 0,

k = 1, . . . , N; m = 1, 2, . . . (2.19)

This is the system whose non-trivial solutions determine the trapped mode frequencies.
It is also possible to derive a simple expression for the potential in the vicinity of
cylinder k using the same technique as, for example, Linton & Evans (1990) of
substituting the infinite system of equations (2.19) back into the expression for the
potential φ(rk, θk) about the kth cylinder. This results in

φ(rk, θk) =

∞∑
m=1

Akm sinmθk

{
Ym(κrk)−

Y ′m(κak)

J ′m(κak)
Jm(κrk)

}
(2.20)

which is valid within the limitations of Graf’s Addition Theorem, that is for rk <
|dk − dj |, ∀j 6= k.

2.2. Two equal cylinders

In the case of two identical cylinders (a1 = a2 = a) placed at d1 = −d2 we may
exploit the geometric symmetry and look for a potential exhibiting a trapped mode
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that is either odd or even about the plane x = 0. This allows the system (2.19) to be
simplified in the following manner.

An even/odd solution implies φ(x, y) = ±φ(−x, y) respectively. From (2.11) this
requires

0 =

∞∑
n=1

{
A1
nψ

1
n(r1, θ1)∓ A2

nψ
2
n(r1, π − θ1)

}
. (2.21)

But from (2.14)

ψ2
n(r1, π − θ1) = Yn(κr1)(−1)n+1 sin nθ1 +

∞∑
m=1

CmnJm(κr1)(−1)m+1 sinmθ1

= (−1)n+1ψ1
n(r1, θ1) (2.22)

once we have used (−1)m−nCmn = Cmn since Cmn = 0 for m− n odd. Thus from (2.21),

A1
n = ±(−1)n+1A2

n for even/odd solutions resp. (2.23)

Using this in the original coupled system, (2.19), reduces it simply to

A1
mY

′
m(κa) + J ′m(κa)

∞∑
n=1

A1
n

{
Cmn + (−1)n+s(F21

mn + C21
mn)
}

= 0, (2.24)

where s = 1 (0) denotes an even (odd) solution. This process could clearly be repeated
for symmetrical arrangements involving larger numbers of cylinders.

2.3. Computations

In order to compute the determinant of (2.19) we need Fjkmn, given in Appendix B, and
we need to evaluate the integrals in (2.15) and (2.16) to determine Cmn and Cjk

mn. This
is done by dividing the contour integral into the three parts described in Appendix
A, namely C1 = (−∞, 0), C2 = (0, iπ), C3 = (iπ, iπ +∞) and using variable changes
v = −u, v = i(u+ 1

2
π), v = iπ + u respectively to give

Cjk
mn = Djk

mn + Ejk
mn, (2.25)

where

Djk
mn = − 4

π

∫ ∞
0

e−γd

cosh γd
sinhmv sinh nv cos{κ(dk − dj) cosh v + 1

2
(m− n)π} dv (2.26)

whilst we consider all even/odd combinations of n, m for Ejk
mn (from the line segment

C2):

E
jk
2p,2q = − 4

π

∫ π/2

0

tan(βd) sin 2pu sin 2qu cos{κ(dk − dj) sin u} du, (2.27)

E
jk
2p+1,2q+1 = − 4

π

∫ π/2

0

tan(βd) cos(2p+ 1)u cos(2q+ 1)u cos{κ(dk− dj) sin u}du, (2.28)

E
jk
2p+1,2q = − 4

π

∫ π/2

0

tan(βd) cos(2p+ 1)u sin 2qu sin{κ(dk − dj) sin u} du, (2.29)

E
jk
2p,2q+1 = +

4

π

∫ π/2

0

tan(βd) sin 2pu cos(2q + 1)u sin{κ(dk − dj) sin u} du. (2.30)
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Note that Cmn = Ckk
mn, and in this case dk − dj = 0 simplifies the above expressions

through the cos and sin factors.
It is clear from the equations above that Cjk

mn = (−1)m−nCjk
nm, providing yet another

symmetry relation that can be exploited to enhance computational efficiency.

2.4. Dirichlet trapped modes

Dirichlet trapped modes require (2.7) to be satisfied instead of the Neumann channel
wall condition, (2.6). The potential in this non-physical channel is now a sum over
multipoles which differ from those used in §§2.1–2.3 by the fact that they satisfy
Dirichlet conditions on y = ±d. In fact, these Dirichlet multipoles are shown in
Appendix A to be very similar to those in the Neumann case, the only change being
the replacement of cosh γd by sinh γd in the denominator of the integrand. The
resulting changes in the analysis of §§2.1–2.3 are therefore confined solely to those
parts which rely on the form of the multipoles. Thus the systems to be solved for
the general cylinder configuration and the two equal-cylinder case are still (2.19) and
(2.23) respectively, but with different Cmn, C

jk
mn. These coefficients are determined in

the same fashion as in the Neumann case and it turns out that the only changes
requires in the computations of Cmn, C

jk
mn are that cosh γd is replaced by − sinh γd in

(2.26) and tan βd is replaced by − cot βd in (2.27)–(2.30).
The case of a single cylinder can also be determined from the general formulation.

Thus in (2.19) the last term is omitted and using the fact that Cmn = 0 for m− n odd
the system decouples leaving

A1
2mY

′
2m(κa1) + J ′2m(κa1)

∞∑
n=1

A1
2nC2m,2n = 0 (2.31)

and

A1
2m+1Y

′
2m+1(κa1) + J ′2m+1(κa1)

∞∑
n=1

A1
2n+1C2m+1,2n+1 = 0 (2.32)

corresponding to odd and even potentials about the plane of symmetry through the
centre of the cylinder and perpendicular to the channel walls respectively. It turns out
that (2.31) has no solution and so the Dirichlet trapped modes for a single cylinder
are determined by the system (2.32) with the appropriate modifications to C2m+1,2n+1

in (2.25) outlined above.
It is of interest to derive this result directly using the methods of Callan et al.

(1991). Thus referring to that paper, the modifications required are the substitution
of cosh γd and tan βd in their equation (2.10) with − sinh γd and − cot βd for use in
their system (2.13) in agreement with the reduced form of the general system, (2.32),
above.

As mentioned in the Introduction, we expect to find fundamental differences in
the conditions for existence of Dirichlet and Neumann trapped modes. Evans et
al. (1994) have shown that for a cylinder of fairly general cross-section, positioned
on and symmetric about the centreplane, there always exists a Neumann trapped
mode. If however one considers disjoint cylinders being reflections of each other in
the centreplane, the situation is much more complicated. Thus Davies & Parnovski
(1996) have shown that the existence or otherwise of Neumann modes is highly
sensitive to geometry whilst for the same geometry of disjoint cylinders McIver &
Linton (1995) have provided a simple geometric condition under which Dirichlet
trapped modes satisfying κd < 1

2
π do not exist. For a single cylinder of fairly

arbitrary cross-section on the centreplane it proves possible to extend the methods
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of Evans et al. (1994) to cover the Dirichlet case. Thus if the cross-section of the
cylinder is described by y = f(x), f(±a) = 0, 0 6 f(x) < d, |x| 6 a, it can be shown
that Dirichlet modes exist provided

I =

∫ a

−a
sin(2πf(x)/d) dx > 0. (2.33)

For example, for a rectangular block with f(x) = b, |x| 6 a, this gives b/d < 1
2

as
expected and it is immediately clear from (2.33) that provided f(x) < d/2, I > 0 and
so a trapped mode exists for all f. The circular cylinder gives I = πaJ1(2πa/d) >
0 provided a/d . 0.6098 consistent with the figure 0.677 computed by Maniar
& Newman (1997). By considering cylinders having cross-sections described by
(x/a)n + (y/b)n = 1 for different n > 0 it is found that a Dirichlet mode exists for all
b/d < 1 if n 6 1 and for b/d = B(n) if n > 1 where B(n) is monotone decreasing with
n and B(1) = 1, B(∞) = 1

2
. Since for n 6 1 all cylinders of this type of cross-section

are contained within the triangular cross-section given by n = 1, it is tempting to
surmise that a Dirichlet mode exists for all cross-sections contained within the open
region bounded by y = 0, |x|/a+ |y|/d = 1. This does not follow since it is not true
that I > 0 for all even f satisfying f(x) < d(1− x/a).

It is not yet clear how the methods of Evans et al. (1994) can be extended to cover
the cases of multiple cylinders considered in this paper.

3. Results
In computing both the Neumann and Dirichlet trapped modes we need to find the

real zeros of the determinant of the system (2.24) in the case of two equal cylinders,
or, for a more general geometrical configuration, the real zeros of the determinant
of the system (2.19). In the case of Neumann modes, we use (2.25)–(2.30) and for
Dirichlet modes we use a slightly modified version of (2.25)–(2.30) (see §2.3).

In order to solve both systems (2.23) and (2.19) numerically, we first need to
truncate the system to a size M, say, which is equivalent to discarding the Fourier
modes AkM+1, A

k
M+2, . . . about each cylinder a priori. We therefore need to be careful

in choosing M to ensure that enough modes are taken to approximate the trapped
mode solution to an acceptable degree of accuracy. In the case of a single cylinder,
as described in Callan et al. (1991), as few modes as M = 3 or 4 is sufficient for
five decimal places of accuracy provided µ(= a/d) . 1

2
and even for µ = 1, only

12 modes are needed for a similar accuracy. In the case of multiple cylinders, the
criterion for choosing M is more complicated since one has to take into account
the expected interaction effect of one cylinder on a neighbouring cylinder. Indeed in
the results that follow we have allowed cylinders to touch and careful computational
experiments suggest that for moderately sized cylinders M = 24 is good enough for
less than 0.5% error at touching. However, it seems that a large number of modes is
necessary for two cylinders almost spanning the width of the channel which is why
the curves that follow in figure 3 stop some way short of µ = 1. This is perhaps due
to the gradual isolation of an interior fluid region from the rest of the channel with
two cylinders approaching µ = 1. Most of the results that follow are in terms of a
cylinder separation parameter, λ, chosen to lie within the interval λ ∈ [1, 6], where
λ = 1 is always associated with touching cylinders. With this definition, we choose
M to be the integer part of 24/λ3/2 + 12µ and expect results that are accurate to
at least two decimal places. It remains for us to look for trapped mode frequencies
by finding real zeros of the determinant of the truncated 2M × 2M version of (2.24)
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Figure 3. Variation of (a) Neumann and (b) Dirichlet trapped mode frequencies as µ varies in the
case of two cylinders for different values of the spacing parameter λ (shown against the curves).
Symmetric modes (——), antisymmetric modes (− − −).

or the NM × NM version of (2.19). This is done using an LU decomposition
routine to provide a value of the determinant which is used within a root-solving
algorithm.

The number of possible configurations of cylinders we could consider is of course
limitless but we shall concentrate mainly on the case of two identical cylinders because
of its connection with finite double arrays of cylinders which occur in offshore floating
structures as discussed in the Introduction. The non-dimensional trapped mode
wavenumber κd is in this case a function of two dimensionless parameters µ and λ
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describing the size and spacing of the centres of the cylinders. We choose µ = a/d and
let the centres of the cylinders be located at (±λa, 0) so that λ is a spacing parameter
being the ratio of cylinder separation to cylinder diameter. When λ = 1 the cylinders
are touching and as λ→∞ we would expect results for the trapped modes to approach
the single-cylinder results as the interaction between them diminishes. In fact since the
trapped modes are a localized phenomenon we might expect the single-cylinder results
to be approached for relatively small values of λ. This proves to be the case as figure
3 illustrates. Here, Neumann and Dirichlet trapped mode wavenumbers κd obtained
by computing the real zeros of the determinant in the system (2.24) are plotted
against µ for different λ. Also shown is the unique curve for both the Neumann
and Dirichlet trapped modes for an isolated cylinder which we label λ = ∞. We
consider the Neumann modes first, all of whose wavenumbers satisfy κd < π/2. The
solid curves are symmetric Neumann trapped modes obtained by choosing s = 1 in
equation (2.24) whilst the dashed curves above the λ = ∞ curve are all antisymmetric
Neumann trapped modes and obtained by choosing s = 0 in equation (2.24). We
can draw the following conclusions about the Neumann modes from figure 3. For
sufficiently large µ there exist two trapped modes, a low frequency symmetric mode
and a higher frequency antisymmetric mode, for each value of λ. However, for fixed
λ, as µ decreases a value is reached at which the antisymmetric mode disappears. This
may be compared with the case of a cylinder of rectangular cross-section in a channel
considered by Evans & Linton (1991) where an additional trapped mode, alternately
antisymmetric and symmetric, appears each time the dimension of the rectangular
cylinder along the tank increases beyond an integer multiple of the channel width.
We have re-computed the Neumann trapped modes and obtained new results for the
Dirichlet trapped modes for the rectangular cylinder using an efficient and accurate
Galerkin approximation similar to that used by Porter (1995) in a related problem.
See also Evans & Fernyhough (1995). The corresponding results for a rectangle of
sides 2a, 4a which circumscribes the two circular cylinders when touching (λ = 1)
give fairly close agreement with the Neumann modes in figure 3(a) but not with the
two Dirichlet modes in figure 3(b), one of which persists for all µ ∈ (0, 1) whereas for
the rectangle there is a cut-off at µ = 1

2
.

It appears from figure 3 that, as expected, the curves for increasing λ approach the
single-cylinder results. This is more clearly seen in figure 4 which plots κd against
λ for µ = 1

2
. Both the Dirichlet and the Neumann curves rapidly approach the

corresponding single-cylinder trapped mode frequency as λ increases. Notice how the
antisymmetric Neumann mode cuts off below a certain value of λ > 1 whilst the
antisymmetric Dirichlet mode persists down to touching at λ = 1. This behaviour
can also be seen from figure 3 by considering the intersection of µ = 1

2
with curves of

different λ. However it is also clear from figure 3 that in general the behaviour of the
Dirichlet modes is more complicated than that of the Neumann modes. Maniar &
Newman (1997) have shown that for an isolated cylinder Dirichlet modes only exist
for 0 < µ . 0.677 and this is confirmed in figure 3 by the λ = ∞ curve where we find
the improved estimate 0.6789 as the cut-off value. The presence of a second identical
cylinder widens the range of µ for which (symmetric) Dirichlet modes exist and this
range increases slowly as the gap between the cylinders is reduced. Thus, even for
λ = 1.05 when the fluid gap is only 5% of a cylinder diameter, the range of existence
has only increased up to µ ≈ 0.772. However, computations right down to λ = 1,
corresponding to touching, suggest that a symmetric Dirichlet mode exists for all
µ ∈ (0, 1). Note that at λ = µ = 1 each of the two exterior fluid regions is the same as
the region exterior to a single cylinder with µ = 1 for which figure 3 shows there is no
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Figure 4. Variation of (a) Neumann and (b) Dirichlet trapped mode frequencies for two cylinders,
both µ = 1

2
as the spacing parameter, λ, varies.

solution. One explanation is that in this limit the trapped mode frequency coincides
with a sloshing frequency in the two identical bounded cusped interior regions. In
addition to this complicated behaviour for λ ≈ 1, the antisymmetric Dirichlet modes,
just as for the Neumann modes, also manifest a cut-off below certain values of µ
for each λ so that the overall picture is one of existence of antisymmetric Dirichlet
modes in intervals of µ for given λ which increase in length with increasing λ up
to 0 < µ . 0.6789 and the existence of symmetric Dirichlet modes for all µ for λ
sufficiently close to unity, or a cut-off above some value µ0 with 0.6789 . µ0 6 1 for
each λ. This is illustrated in figure 5 which repeats figure 4 with µ = 0.8. In this
case the Neumann antisymmetric mode exists for all λ > 1, whilst for µ = 0.8 the
antisymmetric Dirichlet mode does not exist and the symmetric mode only cuts in
for values of λ close to touching.
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5
as the spacing parameter, λ, varies.

It is possible to remove the channel walls and regard both types of trapped modes
as oscillations between adjacent pairs of cylinders in a doubly infinite row, the
Neumann modes having an antinode at each mid-plane between pairs of cylinders
and the Dirichlet modes a node. Following the discussion of Maniar & Newman
(1997) that a finite single row containing many cylinders could experience large forces
and free-surface motions at frequencies close to the Neumann and Dirichlet trapped
modes for a single cylinder in a channel, or its equivalent infinite row of cylinders, we
should expect that the peaks in figures 1(a) and 1(b) which give the maximum in-line
exciting force on the middle pair of cylinders in a double row of 2× 9 cylinders due
to head seas to be close to the corresponding symmetric trapped modes. In figures
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1(a),(b) the distance between two cylinders in a pair is 4a so that in both figures the
corresponding doubly infinite row requires λ = 2. It is clear from figure 4 at λ = 2
that this is indeed the case. Thus the computed values of the symmetric Neumann and
Dirichlet trapped mode wavenumbers for µ = 1

2
are κd = 1.29771 and κd = 3.02157

respectively compared to the peaks at 1.256 and 3.024 in figure 1(a) whilst for µ = 1
4

the trapped modes at κd = 1.46567 and 2.90894 compare to the peaks at 1.400 and
2.856 respectively in figure 1(b). The other peaks in figure 1(a, b) are believed to
correspond to nearly trapped waves. Notice how the dominant mode in figure 1(a)
when µ = 1

2
is a symmetric Neumann mode whereas in figure 1(b) when µ = 1

4
the

symmetric Dirichlet mode dominates. The same behaviour was found by Maniar &
Newman (1997, figure 1) in considering a single row of cylinders.

Because figure 1 describes the exciting forces in head seas, it shows no evidence of
the antisymmetric Neumann trapped modes at µ = 1

2
shown in figure 4 for λ = 2.

Computations for a double row of nine cylinders in obliquely incident waves having
an antisymmetric component again provide little indication of the antisymmetric
mode whilst the peak for the symmetric mode is reduced. It appears to be difficult
to generate a significant peak close to the antisymmetric trapped modes in a finite
double row by using a physically realistic wave train. However it proves possible
using equal and opposite obliquely incident waves which are antisymmetric about the
mid-line between the two rows of cylinders to create a similar amplification to that
shown in figure 1 in the wave forces on the middle cylinders close to the antisymmetric
Neumann mode for µ = 1

2
.

We now consider two unequal cylinders with µ = 0.3 and 0.7 and centres at
(−0.3λd, 0) and (0.7λd, 0) so that again λ = 1 is touching. There is no longer
symmetry and the full equations (2.19) must be used. It can be seen from figure 6
that the two Neumann modes, which exist for all λ, tend to the appropriate values for
isolated cylinders of these radii as λ increases. From figure 3 it is clear that the higher
frequency curve approaches the value for the 0.3 radius cylinder and the lower curve
approaches the 0.7 radius cylinder and we may infer from this that the eigenmodes
corresponding to points on the upper (lower) curve are larger (smaller) in the vicinity
of the smaller cylinder. We shall return to this later. Since from figure 3 there is no
Dirichlet mode for an isolated cylinder with µ = 0.7, we only expect to see a single
curve for λ large, corresponding to an isolated cylinder with µ = 0.3. However there
is no evidence of a further mode cutting in even for λ ≈ 1 as would be the case for
two identical cylinders with µ = 0.7.

We can extend this to three different cylinders having radii µ = 0.8, 0.2 and 0.5
and centres at the points (−λd, 0), (0, 0) and (0.7λd, 0) respectively so that λ = 1 again
refers to all three cylinders touching. The results are shown in figure 7 as the relative
spacing increases with λ. It can be seen that as λ increases there are three curves each
approaching the corresponding isolated-cylinder result. The upper curve tending to
the cylinder of radius 0.2 cuts out below a certain value of λ leaving the remaining
curves for all λ down to touching. This is consistent with the results for a cylinder
of rectangular cross-section and of dimensions 3d along the channel. There are only
two curves for the Dirichlet case consistent with the absence of such a mode for an
isolated cylinder with µ = 0.8, but both curves persist for all λ > 1.

The occurrence of arrays of identical equally spaced cylinders in industrial appli-
cations beyond the offshore industry prompts us to return to this case to attempt a
general understanding of what is happening. Thus figure 8 presents curves for four
such cylinders each with µ = 1

2
from which we shall attempt to infer the behaviour
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Figure 6. Variation of (a) Neumann and (b) Dirichlet trapped mode frequencies for two cylinders,
a1/d = 0.3, a2/d = 0.7, as the spacing parameter, λ, varies.

in the general case of N cylinders. It should be emphasized that the computing time
required becomes large even for N as low as 4. It is clear from figure 8 that for N
cylinders there will be N Neumann modes for sufficiently large λ each approaching
the unique limit for a single cylinder at that value of µ. As λ reduces, some (or none)
of the N curves cut out, depending on the value of µ, leaving 6 N curves for λ = 1.
The N curves describe alternately symmetric and antisymmetric modes with respect
to a vertical plane through the mid-point of the array perpendicular to the channel
walls. The same qualitative behaviour appears to occur for Dirichlet modes provided
(as in the case in figure 9 where µ = 1

2
) there exists a Dirichlet mode at that value

of µ for an isolated cylinder. If this is not the case, the situation is the same as
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Figure 7. Variation of (a) Neumann and (b) Dirichlet trapped mode frequencies for three
cylinders, a1/d = 0.8, a2/d = 0.2 and a3/d = 0.5, as the spacing parameter, λ, varies.

described by figure 5 for the Dirichlet modes with only a single curve existing for a
limited range of λ close to touching, for any number of cylinders. As a final example
using identical cylinders we consider the case of three cylinders, each having µ = 1

2
positioned at (−4a, 0), (0, 0) and (2aλ, 0) so that two are touching when λ = 1. Figure
9 shows the variation in both types of trapped mode curves as the outer touching
cylinder moves off with increasing λ leaving the other two a distance 4a apart. For
both Neumann and Dirichlet modes, for large λ the middle curve approaches the
value for an isolated cylinder whilst the two outer curves approach the symmetric
and antisymmetric values given by λ = 2, µ = 1

2
in figure 3. As λ decreases the
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2
, evenly spaced, as the spacing parameter, λ, varies.

upper curve cuts out in each case leaving two curves of trapped modes down to
touching.

3.1. Relative wave amplitudes of trapped modes

Each point on all the curves we have computed corresponds to a trapped mode and
we can go back to the infinite systems of equations and determine a corresponding
wave field. In the case of two identical cylinders, the motion near to one is either
exactly in or out of phase with the motion near to the other. For all other con-
figurations of cylinders this is not the case although for N identical equally spaced
cylinders this statement is true for the overall wave fields either side of a vertical plane
perpendicular to the channel walls which divides the array equally. It is therefore
of interest to examine the relative amplitudes of these trapped modes in one or two
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Figure 9. Variation of (a) Neumann and (b) Dirichlet trapped mode frequencies for three equal
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2
, when two are fixed and the third moves vs. the spacing parameter, λ.

cases. To do this we need an expression for the potential on cylinder k. This is
obtained from (2.20) by putting rk = ak and simplifying using a Wronskian for Bessel
functions to give

φ(ak, θk) = −
∞∑
m=1

2Akm sinmθk
πκakJ ′m(κak)

. (3.1)

There is no difficulty with the denominator since from (2.19), Akm is zero whenever
J ′m(κak) is so their ratio is well-defined. The Akm are determined from (2.19) at the
particular trapped mode as an eigenvector of the homogeneous system. This can
easily be made a by-product of the trapped mode frequency computation which uses
an LU decomposition method to determine the value of the determinant within a
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root-solving algorithm. Once the trapped mode frequency has been calculated to
within a desired tolerance, a straightforward back substitution procedure involving
the factor U only yields the coefficients Akm scaled by ANM . Equation (3.1) is then used
to compute

Amp(ak/d) = max
θk∈(0,π)

{|φ(ak, θk)|} (3.2)

and Amp(ak/d)/Amp(aj/d) determines the ratio of the maximum wave elevation at
the cylinder of radius ak to that at the cylinder of radius aj at that trapped mode
frequency.

We illustrate this by returning to the case of two unequal cylinders k = 1, 2 with
µ = 0.3 and 0.7 respectively shown in figure 6. In figure 10(a) the lower curve shows
the variation of Amp(0.3)/Amp(0.7) with spacing along the lower Neumann curve in
figure 6 which approaches the trapped mode wavenumber for a cylinder of radius
0.7 as λ increases. Throughout the range of λ the maximum amplitude is greater at
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) corresponding to the four curves in figure 8(a).

the 0.7 cylinder than the 0.3 cylinder, the effect increasing as λ increases and as the
isolated-cylinder trapped mode value is approached. The upper curve describes the
variation of Amp(0.7)/Amp(0.3) along the upper Neumann curve in figure 6 which
approaches the trapped mode wavenumber for a cylinder of radius 0.3 as λ increases.
The shape of the curve is the same with the motion being dominated increasingly by
the 0.3 radius cylinder as λ increases, as expected. However for λ . 2 the motion near
the 0.7 cylinder dominates, increasingly so down to touching. It would appear that the
size of the cylinder compensates for being closer to the trapped mode wavenumber
of the smaller cylinder. Turning now to the Dirichlet modes, there is only a single
curve which approaches the isolated 0.3 radius cylinder. Thus in figure 10(b) the
curve describes the variation Amp(0.7)/Amp(0.3) with λ and again the motion is
increasingly dominated by the motion near the 0.3 radius cylinder as λ increases, as
expected.

As a second example we consider the relative amplitudes in the case of four identical
equally spaced cylinders with µ = 1

2
, whose variation of trapped mode frequencies

with λ has already been presented in figure 8. We shall only discuss the Neumann
case since similar behaviour occurs for the Dirichlet modes as shown in figure 8.
Because of the symmetry we consider only the first two cylinders in the row, cylinders
3 and 4 having either equal or opposite amplitudes to cylinders 2 and 1 respectively
depending on whether the trapped mode is symmetric or antisymmetric. We label
the four curves in figure 8(a) starting with the lowest as s1, a1, s2, a2 (s1 is the first
symmetric mode, a1 the first antisymmetric and so on). Figure 11 describes the
variation of Amp(1)( 1

2
)/Amp(2)( 1

2
) (the ratio of maximum amplitudes at cylinder 1 to

cylinder 2) along each curve in figure 8. The surprising feature of the curves is their
behaviour for large λ when the trapped modes in figure 8 all approach the isolated
trapped mode value. Thus the curves a1 and s2 appear to converge to a common
value such that the maximum around the end cylinder is ≈ 1.6 times that of its
neighbour, whilst the curves s1 and a2 converge to a different lower value which in
fact turns out to mean that the maximum motion around cylinder 2 is again ≈ 1.6
times that around the end cylinder. It might have been expected that all four cylinders
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would have converged to unity as λ increased but the limit λ = ∞ would decouple the
system (2.19) and the Akm (k = 1, 2, 3, 4) would become independent. For any finite λ
the coupling remains, however weak, resulting in an apparent non-uniform limit for
Amp(1)( 1

2
)/Amp(2)( 1

2
) as λ→∞.

Because of the weak interaction between the adjacent cylinders it might be ex-
pected that a ‘wide-spacing’ approximation utilizing the trapped mode properties of
each cylinder in isolation could be used. However such approximation succeeds by
transferring information between cylinders through planes with the neglect of the
local field. Since in a trapped mode problem there is no radiated wave and only a
local field, such an approach will not work.

4. Conclusion
A combination of multipole expansions methods and the use of addition theorems

for Bessel functions has enabled accurate computations to be made of the trapped
modes which arise in a narrow wave channel containing any number of bottom-
mounted circular cylinders of arbitrary size and spacing positioned on the centreplane
of the channel. It has been shown that in general there are up to N trapped
mode frequencies below the lowest cut-off for the channel, corresponding to any
configuration of N cylinders, the precise number depending critically on whether
the mode is of Dirichlet or Neumann type and on the precise geometry of the
configuration. As has been pointed out by Maniar & Newman (1997) trapped modes
of both types are important in offshore engineering where long floating structures
such as bridges or floating airports requiring many cylindrical supports are being
considered, since large forces at frequencies close to the trapped mode frequencies
can occur on those supports near the centre of a long periodic array.

The present paper, as well as extending our fundamental understanding of trapped
modes in channels, has applications in other areas and in particular in acoustics
where they are termed acoustic resonances. Our extension to any number of cylinders
suggests that in any situation where multiple periodic arrays of cylinders occur, such
as banks of heat exchangers for example, large forces can occur if the frequency of
the acoustical excitation should coincide with the trapped mode frequencies. These
implications are currently being explored.

R.P. is supported by EPSRC research grant no. GR/K67526.

Note added in proof. Whilst this paper was being prepared for publication one of the
authors (R.P.) discovered, numerically, further Neumann modes for multiple cylinders
for µ(= a/d) sufficiently large. For a single cylinder, the new mode, in addition to being
antisymmetric with respect to the centreplane of the channel, is also antisymmetric
about a plane through the centre of the cylinder which is perpendicular to the channel
walls. For two identical cylinders the new modes approach the corresponding value
for a single cylinder as the spacing increases. The only figure affected is figure 3 which
is now completed by the inclusion of the sequence of curves shown in figure 12.
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Appendix A. Multipole derivation
We start with the following integral representation of the Hankel function, see

Callan et al. (1991, Appendix A):

Hn(κr)i
neinθ = − i

π

∫ iπ+∞

−∞
eiκx cosh veκy sinh venv dv, 0 6 θ 6 π (A 1)

where x = r cos θ, y = r sin θ. It follows that

Hn(κr) sin nθ =
(−i)n

2π

∫ iπ+∞

−∞
eγy−nv{eiκx cosh v − (−1)ne−iκx cosh v} dv

=
i

π

∫ iπ+∞

−∞
eγy−nv sin(κx cosh v − nπ/2) dv, 0 6 θ 6 π (A 2)

where γ = κ sinh v. This vanishes on θ = 0. We need to add an expression to the
integral (A 2) which is odd in y such that the combination also satisfies zero normal
derivative on y = d. Thus, we note that

∂

∂y
{eγy + A(v) sinh γy} = 0 (A 3)

on y = d when

A(v) = −eγd/ cosh γd. (A 4)

So we define our multipoles by

ψn(r, θ) = Hn(κr) sin nθ − i

π

∫ iπ+∞

−∞

eγd−nv sinh γy

cosh γd
sin(κx cosh v − nπ/2) dv (A 5)

=
i

π

∫ iπ+∞

−∞

cosh γ(y − d)
cosh γd

e−nv sin(κx cosh v − nπ/2) dv. (A 6)
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The form of (A 5) clearly satisfies ψn(r, 0) = 0, whilst the form of (A 6) shows that
∂ψn/∂y = 0 on y = d.

The contour in the integral in (A 6) is split into three parts: C1 = (−∞, 0),
C2 = (0, iπ), C3 = (iπ, iπ +∞). Then straightforward changes of variable applied to
(A 6) with n even and odd considered separately give the following result:

ψ2n(r, θ) =
2i(−1)n

π

∫ ∞
0

cosh γ(y − d)
cosh γd

sinh 2nv sin(κx cosh v) dv

−2i

π

∫ π/2

0

cos β(y − d)
cos βd

sin(κx sin u) sin 2nu du (A 7)

and

ψ2n+1(r, θ) =
−2i(−1)n

π

∫ ∞
0

cosh γ(y − d)
cosh γd

sinh(2n+ 1)v cos(κx cosh v) dv

+
2i

π

∫ π/2

0

cos β(y − d)
cos βd

cos(κx sin u) cos(2n+ 1)u du (A 8)

where β = κ sin u. The expression (A 8) agrees with Callan et al. (1991, Appendix
A). Since neither cosh γd nor cos βd vanishes on the paths of integration, provided
κd < π/2, it follows from the Riemann–Lebesgue lemma that ψn(r, θ)→ 0 as |x| → ∞.
Clearly, from (A 7), (A 8), ψn(r, θ) is pure imaginary, and so from (A 5) discarding a
factor i, we define

ψn(r, θ) = Yn(κr) sin nθ −Re
1

π

∫ iπ+i∞

−∞

eγd−nv sinh γy

cosh γd
sin(κx cosh v − nπ/2) dv. (A 9)

In the case of Dirichlet modes, instead of satisfying (A 3), we impose eγy +
A(v) sinh γy = 0 on y = d giving

A(v) = −eγd/ sinh γd. (A 10)

Then following the procedure outlined above shows that the Dirichlet multipoles are
indeed purely imaginary for κd < π and are thus given by

ψn(r, θ) = Yn(κr) sin nθ −Re
1

π

∫ iπ+i∞

−∞

eγd−nv sinh γy

sinh γd
sin(κx cosh v − nπ/2) dv. (A 11)

The only change has been in the replacement of cosh γd by sinh γd in the denominator
of the integrand.

Appendix B. Coordinate shifts
We are required to transfer Yn(κrj) sin nθj where (rj , θj) are measured from (dj, 0)

to coordinates (rk, θk) associated with the cylinder placed at (dk, 0) and vice versa.
We use Graf’s Addition theorem for Bessel functions (Watson 1966) applied to the
triangle with sides of length rj , rk , |dk − dj | in figure 2 and consider the cases of
dj < dk , dj > dk separately.

The result is

Yn(rj) sin nθj =

∞∑
m=1

FjkmnJm(κrk) sinmθk (B 1)

where

Fjkmn = Yn−m(κ|dk − dj |) cos(n− m)γjk − (−1)mYn+m(κ|dk − dj |) cos(n+ m)γjk (B 2)
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with

γjk =

{
0, dj < dk
π, dj > dk.

(B 3)

Notice that

Fjkmn = (−1)n−mFkjmn = (−1)n−mFjknm. (B 4)

The shift in coordinates for the integrand in (2.10) uses the following result:

eiκxj cosh v sinh γyj = −2i

∞∑
m=1

eimπ/2Jm(κrj) sinmθj sinhmv, j = 1, . . . , N (B 5)

which is derived from the identity (Watson 1966, p.15)

exp { 1
2
z(τ− τ−1)} = J0(z) +

∞∑
n=1

(τn + (−1)nτ−n)Jn(z) (B 6)

with the substitutions z = κrj , τ = ie±iθjev . Using xj = dk − dj + xk and yj = yk in
(B 5) gives

eiκxj cosh ve−inπ/2 sinh γyj = −2ieiκ(dk−dj ) cosh v

∞∑
m=1

ei(m−n)π/2Jm(κrk) sinmθk sinhmv (B 7)

and taking the imaginary part leaves us with

sinh γyj sin(κx cosh yj − nπ/2)

= −2

∞∑
m=1

cos{κ(dk − dj) cosh v + 1
2
(m− n)π}Jm(κrk) sinmθk sinhmv. (B 8)
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