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Abstract

The interaction of water waves with arrays of bottom-mounted, surface-piercing circular
cylinders is investigated theoretically. The sidewall of each cylinder is porous and thin. Under
the assumptions of potential flow and linear wave theory, a semi-analytical solution is obtained
by an eigenfunction expansion approach first proposed for impermeable cylinders by Spring
and Monkmeyer (1974), and later simplified by Linton and Evans (1990). Analytical
expressions are developed for the wave motion in the exterior and all interior fluid regions.
Numerical results are presented which illustrate the effects of various wave and structural
parameters on the hydrodynamic loads and the diffracted wave field. It is found that the
porosity of the structures may result in a significant reduction in both the hydrodynamic loads
experienced by the cylinders and the associated wave runup. 2000 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Quantifying the hydrodynamic interactions between the members of an array of
cylindrical structures is an important topic in ocean engineering. These interactions
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may result in hydrodynamic loads and wave runup on the individual structures that
differ significantly from the loads and runup they would experience in isolation. An
exact solution for the diffraction of linear water waves by arrays of bottom-mounted,
surface-piercing, impermeable circular cylinders was first given by Spring and Monk-
meyer (1974) using an eigenfunction expansion approach. Subsequently, Linton and
Evans (1990) made a major simplification to the theory proposed by Spring and
Monkmeyer (1974), which allowed the evaluation of near-field quantities such as
loads and runup on the cylinders in a much more straightforward manner. Kagemoto
and Yue (1986) have developed another solution that is formally exact within the
context of the linear theory. They have shown how a general three-dimensional
water-wave diffraction problem concerning a structure consisting of a number of
separated elements can be solved exactly in terms of the diffraction characteristics
of each of the individual elements.

In the case where the cylinder spacing is large relative to the incident wavelength,
approximate techniques may reasonably be used to quantify the hydrodynamic inter-
actions between the members of multi-column structures. A popular approach, based
on the wide-spacing assumption is the so-called modified plane-wave approach first
developed by McIver and Evans (1984), and later used in a number of applications
by McIver (1984), Williams and Demirbilek (1988), Williams and Abul-Azm (1989),
and Williams and Rangappa (1994). All of the above studies, however, assume that
the cylinders are impermeable.

There have been several studies dealing with wave diffraction by thin-walled
porous cylindrical structures. Wang and Ren (1994) studied wave interaction with
a concentric surface-piercing two-cylinder system. Wave interaction with a semi-
porous cylindrical breakwater protecting an impermeable circular cylinder was inves-
tigated by Darwiche et al. (1994). Williams and Li (1998) recently extended this
analysis to deal with the case where the interior cylinder is mounted on a large
storage tank.

In this paper, The hydrodynamics of arrays of bottom-mounted surface-piercing
circular cylinders each with a porous side-wall is investigated theoretically. The
porous side-wall is considered to be thin and there exists an enclosed fluid region
inside each cylinder. Under the assumptions of linearized potential flow, analytical
expressions are obtained for the wave motion in each of the flow regions based on
the eigenfunction expansion approach originally given by Spring and Monkmeyer
(1974), as simplified by Linton and Evans (1990). Semi-analytical expressions are
obtained for the hydrodynamic loads and runup on each cylinder and for the free
surface elevation in the vicinity of the array. Numerical results are presented which
illustrated the effects of the various wave and structural parameters on these quan-
tities. It is found that the porosity of the cylinders may have a significant influence
on the diffracted wave field and hydrodynamic loads experienced by the structures.

2. Theoretical development

The geometry of the problem is shown in Fig. 1. An arbitrary array ofN bottom-
mounted, surface-piercing, thin-walled porous cylinders of radiusaj, j 5 1,2,…, N,
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Fig. 1. Definition sketch for multiple porous cylinder diffraction problem.

is situated in water of uniform depthd. The global Cartesian coordinate system is
defined with an origin located on the still-water level with thez-axis directed verti-
cally upwards. The center of each cylinder, at (xj, yj), j 5 1, 2,…,N, is taken as the
origin of a local polar coordinate system (rj, uj), whereuj is measured counterclock-
wise from the positivex-axis. The center of thekth cylinder has polar coordinates
(Rjk, ajk) relative to thejth cylinder, j, k 5 1, 2, …, N. The coordinate relationship
between thejth andkth cylinders is also shown in Fig. 1.

The array is subjected to a train of regular surface waves of heightH and angular
frequencyv propagating at an angleb to the positivex-axis. The small-amplitude,
irrotational motion of the inviscid, incompressible fluid may be described in terms
of velocity potentialf(x, y, z, t). The uniform geometry of the array members in
the vertical allows the depth dependency in the solution to be factored out to give
f(x, y, z, t) 5 Re{F(x, y) f(z)e−ivt} where Re{} denotes the real part of a complex
expression, and

f (z) 5 2
igH
2v

cosh k(z 1 d)
cosh kd

(1)

In Eq. (1),g is the acceleration due to gravity and the wavenumberk is the positive
real root of the dispersion relationv2 5 gk tanh kd. The free-surface elevation is
given by J(x, y, t) 5 Re{h(x, y)e−ivt} where h(x, y) is defined by

h(x,y) 5
H
2

F(x,y) (2)

The fluid domain is divided intoN 1 1 regions: a single exterior region andN
interior regions, defined by 0# rj # aj, j 5 1, 2, …, N. The velocity potentials in
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these regions will be denoted byF1(x, y) andF2
j(x, y), j 5 1, 2, …,N, respectively.

It can be shown that these two-dimensional velocity potentialsF(x, y) must satisfy
a Helmholtz equation in each flow region, namely

=2Cj 1 k2Cj 5 0 j 5 0,1,2,$,N (3)

whereC0 5 F1(x, y) and Cj 5 Fj
2(x,y), j 5 1, 2, …, N, as appropriate.

The boundary condition on the surface of cylinderj can be expressed as

∂F1

∂r
5

∂Fj
2

∂r
on rj 5 aj j 5 1,2,…,N (4)

∂Fj
2

∂r
5 Wj (uj ) on rj 5 aj j 5 1,2,…,N (5)

whereWj(uj) is the spatial component of the normal velocitywj(uj, z) of the fluid
passing through thejth porous cylinder from the exterior region to thejth interior
region, that iswj(uj, z, t) 5 Re{Wj(uj) f(z) e−ivt} for j 5 1, 2, …, N.

The wall of each cylinder is assumed to be thin with fine pores. The fluid flow
passing through the porous walls is assumed to obey Darcy’s law. Hence, the porous
flow velocity w is linearly proportional to the pressure difference across the thickness
of the porous cylinder. Now the hydrodynamic pressurep(x, y, z, t) 5 Re{P(x, y)
f(z)e−ivt} at any point in the fluid domain may be determined from the linearized
Bernoulli equation asP(x, y) 5 riv F(x, y) wherer is the fluid density. Therefore
it follows that

Wj (uj ) 5
g

m
riv[Fj

2 2 F1] on rj 5 aj j 5 1,2,…,N (6)

wherem is the coefficient of dynamic viscosity andg is a material constant having
the dimension of length. Subsequently, the porosity of the breakwater will be charac-
terized by the dimensionless parameterG0 5 rvg/(mk).

Finally, the diffracted component of the velocity potential in the exterior region
must satisfy the usual radiation boundary condition, that is

lim
r→`

√rF ∂
∂r

(F1 2 FI) 2 ik(F1 2 FI)G 5 0 (7)

whereFI is the spatial component of the incident wave potential, given byFI 5
eikrcos(u 2 b), wherer is a global polar coordinate.

3. Analytical solutions

The incident plane wave potential can be expressed in thejth local polar coordinate
system by

Fj
1 5 Ij eikrjcos(uj 2 b) (8)
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whereIj 5 eik(xjcosb 1 yjsinb) is a phase factor associated with cylinderj. This in turn
can be written as [see, for example, Abramowitz and Stegun (1972)]

Fj
I 5 Ij On 5 `

n 5 2 `

Jn(krj )ein((p/2) 2 b 1 uj) (9)

in which Jn() denotes the Bessel function of the first kind of ordern.
Following Linton and Evans (1990), the general form for the scattered wave eman-

ating from cylinderj can be written as

Fj
s 5 O`

n 5 2 `

Aj
nZj

nHn(krj )einuj (10)

for some set of complex numbersAj
n. In Eq. (10),Zj

n 5 J9
n(kaj )/H9

n(kaj ) whereHn()
is the Hankel function of the first kind of ordern. The introduction of the factor
Zj

n simplifies the results that will eventually be obtained. The total potential in the
exterior region can therefore be written as

F1 5 FI 1 ON
j 5 1

Fj
s 5 eikrcos(u 2 b) 1 ON

j 5 1

O`
n 5 2 `

Aj
nZj

nHn(krj )einuj (11)

To account for interactions among the bodies, it is necessary to evaluate the scattered
potentialFl

s in terms of the representation of the incident potentialFl
I at body j, j

5 1, 2, …,N, jÞl. This can be accomplished by using Graf’s addition theorem for
Bessel functions (Abramowitz and Stegun, 1972) to give

Hn(krl)ein(u
l

2 a
l

j) 5 O`
m 5 2 `

Hn 1 m(kRlj )Jm(krj )eim(p 2 alj 2 uj) (12)

for l, j 5 1, 2, …, N, l Þ j. Eq. (12) is valid forrj , Rlj, which is true on the
boundary of thejth cylinder for alll. The exterior region potential can be written as

Fj
1(rj ,uj ) 5 O`

n 5 2 `

[Ij Jn(krj )ein((p/2) 2 b 2 uj) 1 Aj
nZj

nHn(krj )einuj ] (13)

1 ON
l 5 1,lÞj

O`
n 5 2 `

Al
nZl

n O`
m 5 2 `

Jm(krj )Hn 1 m(kRlj )eim(p 2 uj 1 a
l

j) 1 ina
l

j

valid if rj , Rlj for all l, i.e., this expansion is valid near cylinderj. The final term
in Eq. (13) may be rearranged to give

Fj
1(rj ,uj ) 5 O`

n 5 2 `

h[Ijein(p/2 2 b)

1 ON
l 5 1,lÞj

O`
m 5 2 `

Al
mZl

mHm 2 n(kRlj )ei(m 2 n)alj ]Jn(krj )
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1 Aj
nZj

nHn(krj )jeinuj . (14)

The potential in thejth interior region,Fj
2, can be written as

Fj
2 5 O`

n 5 2 `

Bj
nJn(krj )einuj (15)

for j 5 1, 2, …, N, where theBj
n are unknown potential coefficients. Applying

boundary conditions, Eqs. (10) and (11), utilizing the orthogonality properties of
eigenfunctions, leads to the following relationships between the potential coefficients
Aj

n andBj
n,

Ijein(p/2 2 b) 1 ON
l 5 1,lÞj

O`
m 5 2 `

Al
mZl

mHl
m 2 n(kRlj )ei(m 2 n)alj 5 Bj

n 2 Aj
n (16)

[Ijein(p/2 2 b) 1 Aj
nZj

nHn(kaj )

1 ON
l 5 1,lÞj

O`
m 5 2 `

Al
mZl

mHl
m 2 n(kRlj )ei(m 2 n)a

l
j ]G0i 5 Bj

n[G0iJn(kaj ) (17)

2 J9
n(kaj )]

for j 5 1, 2, …,N, 2 ` , n , 1 `. Combining Eqs. (16) and (17), and using the
Wronskian relationship for the Bessel functions results in the following infinite sys-
tems of equations,

ON
l 5 1,lÞj

O`
m 5 2 `

Al
mZl

mHl
m 2 n(kRlj )ei(m 2 n)alj 1 Ijein(p/2 2 b) 5 (18)

2 F 2G0

pkajH9
n(kaj )J9

n(kaj )
1 1GAj

n

Bj
n 5 2

2G0

pkaj

Aj
n

H9
n(kaj )J9

n(kaj )
(19)

for j 5 1, 2, …,N, 2 ` , n 1 `. Taking Eq. (18) into Eq. (14) gives the following
simple form forF1(rj, uj),

Fj
1(rj ,uj ) 5 O`

n 5 2 `

Aj
nF 2

2G0Jn(krj )
pkajH9

n(kaj )J9
n(kaj )

2 Jn(krj ) 1 Zj
nHn(krj )Geinuj (20)

valid for rj , Rlj, l 5 1, 2, …, N. In particular, takingrj 5 aj and applying the
Wronskian relationships for the Bessel functions to this Eq. (30), gives the exterior
region velocity potential on thejth cylinder. This quantity is useful in calculating
the force, moment and run-up on thejth cylinder, and is given by

Fj
1(aj ,uj ) 5 O`

n 5 2 `

2 2Aj
n

kpajH9
n(kaj )

Fi 1
G0Jn(kaj )
J9

n(kaj )
Geinuj (21)
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for j 5 1, 2, …, N. In order to calculate the potential coefficientsAj
n the infinite

system in Eq. (18) is truncated to a (2M 1 1)N system of equations in (2M 1 1)N
unknowns, i.e.,

ON
l 5 1,lÞj

OM
m 5 2 M

Al
mZl

mHl
m 2 n(kRlj )ei(m 2 n)alj 1 Ijein(p/2 2 b) 5 (22)

2 F 2G0

pkajH9
n(kaj )J9

n(kaj )
1 1GAj

n

for j 5 1, 2, …,N, n 5 2 M, $, M. This system may be solved by standard matrix
techniques. The potential coefficientsBj

n may then be obtained from Eq. (19). In this
manner the velocity potentials in each fluid region may be determined.

The solution to a number of limiting cases may be obtained from Eq. (22). If the
porosity parameterG0 5 0 (which corresponds to an impermeable cylinder), the
linear system in Eq. (22) becomes

ON
l 5 1,l 6 j

OM
m 5 2 M

Al
mZl

mHl
m 2 n(kRlj )ei(m 2 n)alj 1 Aj

n 5 2 Ijein(p/2 2 b) (23)

for j 5 1, 2, …, N, n 5 2 M, $, M, which recovers the result of Linton and
Evans (1990).

Also, takingN 5 1 in Eq. (22) and assuming that the cylinder center is located
at the origin, then forb 5 0,

A1
n 5 2

ein(p/2)H9
n(ka1)J9

n(ka1)
2G0

pka1
1 H9

n(ka1)J9
n(ka1)

(24a)

B1
n 5

ein(p/2)
2G0

pka1

2G0

pka1
1 H9

n(ka1)J9
n(ka1)

(24b)

for n 5 2 M, …, M. Eq. (24a) and (24b) recover the limiting case of wave interaction
with a hollow porous cylinder reported by Wang and Ren (1994).

Finally if G0 5 0 and N 5 1, and again assuming that the cylinder center is
located at the origin, then forb 5 0,

A1
n 5 2 in (25)

which recovers the result of MacCamy and Fuchs (1954).
Returning to the multiple porous cylinder case, various quantities of engineering

interest may now be computed. The exciting forces on an individual cylinder in the
two orthogonal directions in the horizontal plane,Fj

x and Fj
y are obtained by the

integration of the pressure on the surface of the cylinder, namely
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FFj
x

Fj
y
G 5 2

rgHaj

2k
tanh kdE

2p

0

[Fj
1(aj ,uj ) 2 Fj

2(aj )]Fcosuj

sinuj
Gduj (26)

Simplifying algebraically leads to the following result,

FFj
x

Fj
y
G 5 2 F i

1
G rgH

k2H9
1(kaj )

tanh kdFAj
−1 2 Aj

1

Aj
−1 1 Aj

1
G (27)

Similarly, the exciting moments onjth cylinder about thex andy axes about point
(xj, yj, 0) can be written as

FMj
y

Mj
x
G 5 F i

2 1
G rgH

k3H9
1(kaj )

cosh kd 2 1
cosh kd FAj

−1 2 Aj
1

Aj
−1 1 Aj

1
G (28)

For bottom-mounted, surface-piercing cylinders, the moments can be expressed in
terms of the force components, namely

FMj
y

Mj
x
G 5

cosh kd 2 1
k sinh kd F 2 Fx

Fy
G (29)

and so in the discussion of the numerical results, attention will be focussed on
forces only.

The amplitude of the free surface is given in terms of the velocity potential by

Fig. 2. Definition sketches for (a) four-cylinder array and (b) six-cylinder array.
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Eq. (2). Eq. (20) provides an efficient method for the evaluation of free-surface
amplitudes near a particular cylinder, while Eq. (21) allows for the efficient calcu-
lation of the wave runup on the outer surface of thejth cylinder, that is

|h(x,y)| 5
H
2

ueikrcos(u 2 b) 1 ON
j 5 1

O`
n 5 2 `

Aj
nZj

nHn(krj )einuj u (30)

Fig. 3. Dimensionless hydrodynamic forces on a single circular cylinder ford/a 5 5. Notations: ——
G0 5 0; - - - G0 5 1; – – –G0 5 2. The symbols show the results of MacCamy and Fuchs (1954).

Fig. 4. Run-up profiles on the outer (a) and inner (b) walls of a single circular cylinder forka 5 6.
Notations: ——G0 5 0; - - - G0 5 1; – – – G0 5 2. The symbols show the results of MacCamy and
Fuchs (1954).
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and

|hj
1(aj ,uj )| 5

H
2 | O`

n 5 2 `

2 2Aj
n

kpajH9
n(kaj )

Fi 1
G0Jn(kaj )
J9

n(kaj )
Geinuj | (31)

Fig. 5. Free-surface elevation in the vicinity of a single circular cylinder ford/a 5 5, ka 5 p/2.
Notations: (a)G0 5 0; (b) G0 5 1.
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Finally, for the jth interior region, the free-surface amplitude and run-up may be
calculated from the following equations,

|hj
2(rj ,uj )| 5

H
2

u O`
n 5 2 `

Bj
nJn(krj )einuj u (32)

Fig. 6. Dimensionless hydrodynamic force inx-direction on a four-cylinder array withd/a 5 5, s/a 5
4 for (a) b 5 0°; (b) b 5 22.5°; (c) b 5 45°. Notations: ——G0 5 0; - - - G0 5 1; – – –G0 5 2. The
symbols in (a) are the results of Chakrabarti (1987).
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|hj
2(aj ,uj )| 5

H
2

u O`
n 5 2 `

Bj
nJn(kaj )einuj u (33)

4. Numerical results and discussions

A computer program has been written to implement the above analysis, and the
diffraction characteristics of several configurations have been studied. It is found

Fig. 7. Dimensionless hydrodynamic force inx-direction on a four-cylinder array withd/a 5 5, s/a 5
6 for (a) b 5 0°; (b) b 5 22.5°; (c) b 5 45°. Notations: ——G0 5 0; - - - G0 5 1; – – –G0 5 2. The
symbols in (a) are the results of Chakrabarti (1987).
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that takingM 5 10 in Eq. (22) for the all calculations appearing herein provides
sufficient accuracy for engineering applications (1–2%). The correctness of the
present theory and the associated computer program is verified through several limit-
ing solutions appearing in the open literature. The following example configurations
will be considered: an isolated cylinder; a structure possessing four columns of equal
diameter in a configuration similar to large four-column platform [see Fig. 2(a)];
and, a breakwater system with six identical equally-spaced columns located in a
straight line [see Fig. 2(b)]. In all figures, the forces are nondimensionalized by

Fig. 8. Dimensionless hydrodynamic force inx-direction on a four-cylinder array withd/a 5 5, s/a 5
8 for (a) b 5 0°; (b) b 5 22.5°; (c) b 5 45°. Notations: ——G0 5 0; - - - G0 5 1; – – –G0 5 2. The
symbols in (a) are the results of Chakrabarti (1987).
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rgHpa2 and the magnitudes of free-surface elevations and runup are nondimen-
sionalized byH.

Fig. 3 presents the results for the dimensionless wave forces for the isolated cylin-
der with d/a 5 5 and G0 5 0, 1, 2. ForG0 5 0, it is noted that the results of
MacCamy and Fuchs (1954) are recovered. It can be seen that the force on the
column can be reduced significantly by the porosity and the forces tend to decrease
as the porosity parameterG0 increases. Fig. 4 shows the runup amplitude both inside
and outside the column forka 5 0.6. In Fig. 4(a) the results of MacCamy and Fuchs
(1954) are again rcovered. It can be seen, as expected, that the maximum runup

Fig. 9. Dimensionless hydrodynamic force iny-direction on a four-cylinder array withd/a 5 5, b 5
22.5°, for (a) s/a 5 4; (b) s/a 5 6; (c) s/a 5 8. Notations: ——G0 5 0; - - - G0 5 1; – – –G0 5 2.
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occurs atu 5 180° and asG0 increases, the maximum runup tends to decrease. It
can be seen from Fig. 4(b) that the maximum run-up inside the column occurs atu
5 0° and the magnitude of this maximum run-up increases as the porosity parameter
G0 increases. Fig. 5 presents the magnitude of the free surface elevation in the vicin-
ity of single cylinder withd/a 5 5, ka 5 p/2 and for a porosity parameterG0 5 0

Fig. 10. Dimensionless run-up on outer wall of each cylinder of four-cylinder array fors/a 5 4, b 5
45° andka 5 p/2. Notations: ——G0 5 0; - - - G0 5 1; – – –G0 5 2.
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and 1. The diffraction of the incident wave field by the column is clearly shown. It
also shows that the porosity of the column decreases the diffracted wave field.

A four-cylinder array is now considered. The origin of the global coordinate sys-
tem is at the geometric center of the array and the cylinders are numbered according
to Fig. 2(a). Results are again presented ford/a 5 5. The total forces in thex-
direction are shown in Figs. 6–8 for a relative cylinder spacings/a 5 4, 6, and 8,
incident wave anglesb 5 0°, 22.5° and 45°, and porosity parameterG0 5 0, 1, 2.
The symbols in these figures represent the results of Chakrabarti (1987) for an array

Fig. 11. Dimensionless run-up on inner wall of each cylinder of four-cylinder array fors/a 5 4, b 5
45° andka 5 p/2. Notations: ——G0 5 0; - - - G0 5 1; – – –G0 5 2.
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of impermeable cylinders. The total forces iny-direction for b 5 22.5° are shown
in Fig. 9. For the other angles of wave incidence the forces iny-direction are either
zero or may be inferred from symmetry. Generally speaking, the total loading on
the four cylinder array can be reduced significantly by the cylinders’ porosity. As
an example of the influence of porosity on runup for this array configuration, Figs.
10–13 present the run-up on each cylinder for a cylinder spacing to radius ratios/a

Fig. 12. Dimensionless run-up on outer wall of each cylinder of four-cylinder array fors/a 5 4, b 5
45° andka 5 p. Notations: ——G0 5 0; - - - G0 5 1; – – –G0 5 2.
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5 4, an incident wave angleb 5 45°, porosity parametersG0 5 0, 1, 2, for diffrac-
tion parameterska 5 p/2 and p. It can be seen that the porosity decreases the
magnitude of the maximum run-up on the outer walls of the cylinders, and makes
the run-up relatively insensitive to location on the cylinder. Furthermore, increasing
the porosity parameterG0 from 1 to 2 does not appear to have a significant influence
on the wave runup.

The influence of porosity on the magnitude of the free surface elevation on, and
in the vicinity of a four cylinder array is presented in Figs. 14–17 ford/a 5 5, s/a
5 4, 8, b 5 0°, 45°, and ka 5 p/2. Each figure shows the results forG0 5 0

Fig. 13. Dimensionless run-up on inner wall of each cylinder of four-cylinder array fors/a 5 4, b 5
45° andka 5 p. Notations: ——G0 5 0; - - - G0 5 1; – – –G0 5 2.
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Fig. 14. Free surface elevations for the four-cylinder array ford/a 5 5, s/a 5 4, ka 5 p/2 andb 5
0°. Notations: (a)G0 5 0; (b) G0 5 1.

(impermeable) andG0 5 1. The figures clearly show the diffraction of the incident
wave field by the cylinders, and demonstrate the dramatic effect that the porosity of
these cylinders may have on the diffracted wave field especially at the smaller rela-
tive spacing,s/a 5 4.

Figs. 18–20 represent the magnitude of free surface elevation fors/a 5 4, d/a 5
5, G0 5 0, 1, incident waveka 5 p/2, andb 5 0°, 45° and 90° for the case of a
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Fig. 15. Free surface elevations for the four-cylinder array ford/a 5 5, s/a 5 4, ka 5 p/2 andb 5
45°. Notations: (a)G0 5 0; (b) G0 5 1.

six cylinder array, arranged as shown in Fig. 2(b). Again, the diffraction of the
incident wave field by the cylinders is shown, together with the influence of the
cylinders’ porosity on the diffracted wave field. From a practical viewpoint, these
figures also highlight the possibility of utilizing a row of porous cylinders as an
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Fig. 16. Free surface elevations for the four-cylinder array ford/a 5 5, s/a 5 8, ka 5 p/2 andb 5
0°. Notations: (a)G0 5 0; (b) G0 5 1.

offshore breakwater, where their superiority over an array of impermeable cylinders
is clearly demonstrated, especially for non-normal wave incidence (Fig. 19).
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Fig. 17. Free surface elevations for the four-cylinder array ford/a 5 5, s/a 5 8, ka 5 p/2 andb 5
45°. Notations: (a)G0 5 0; (b) G0 5 1.

5. Conclusions

The interaction of water waves with arrays of bottom-mounted, surface-piercing
porous circular cylinders has been investigated theoretically. Under the assumptions
of potential flow and linear wave theory, a semi-analytical solution has been obtained
by an eigenfunction expansion approach. Analytical expressions have been developed
for the wave motion in the exterior and all interior fluid regions. Numerical results
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Fig. 18. Free surface elevations for the six-cylinder array ford/a 5 5, s/a 5 4, ka 5 p/2 andb 5 0°.
Notations: (a)G0 5 0; (b) G0 5 1.

have been presented which illustrate the effects of various wave and structural para-
meters on the hydrodynamic loads and the diffracted wave field. It has been found
that the porosity of the structures may result in a significant reduction in both the
hydrodynamic loads experienced by the cylinders and the associated wave runup.



864 A.N. Williams, W. Li /Ocean Engineering 27 (2000) 841–866

Fig. 19. Free surface elevations for the six-cylinder array ford/a 5 5, s/a 5 4, ka 5 p/2 andb 5 45°.
Notations: (a)G0 5 0; (b) G0 5 1.
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Fig. 20. Free surface elevations for the six-cylinder array ford/a 5 5, s/a 5 4, ka 5 p/2 andb 5 90°.
Notations: (a)G0 5 0; (b) G0 5 1.
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