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Water wave scattering by finite arrays of circular structures

P. G. CHAMBERLAIN†

Department of Mathematics, The University of Reading, PO Box 220,
Whiteknights, Reading RG6 6AX, UK

[Received on 22 March 2006; accepted on 18 October 2006]

The scattering of small amplitude water waves by a finite array of locally axisymmetric structures is
considered. Regions of varying quiescent depth are included and their axisymmetric nature, together with
a mild-slope approximation, permits an adaptation of well-known interaction theory which ultimately
reduces the problem to a simple numerical calculation. Numerical results are given and effects due to
regions of varying depth on wave loading and free-surface elevation are presented.
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1. Introduction

The scattering of water waves by natural or man-made structures is a long-standing problem of wide-
spread interest. Explicit expressions for analytic solutions to the modelling equations are rare and prob-
lems involving ‘realistic’ domains will typically require some computational effort, if those solutions
are to be approximated.

Often, if the domain of the problem is of a special type, then some analytic progress can be made
to facilitate any numerical procedure. For example, if the depth contours are concentric circles, then
solutions may be sought in terms of the independent radial variable (see, e.g. Chamberlain & Porter,
1999). Recently, Hughes (2005) was able to make progress in this area on the assumption that depth
contours were confocal ellipses.

In this paper, we will consider the scattering of water waves by a finite array of locally axisymmetric
structures. This problem area includes the possibility of an array of submerged islands, or of surface-
piercing cylinders or of a combination of the two types of structures.

Motivated in part by the significant engineering applications, much of the relevant existing literature
has concentrated on arrays of identical vertical cylinders. One contribution is that by Linton & Evans
(1990) who adapted the interaction theory of Spring & Monkmeyer (1974) to derive simple formulae
for wave forcing and free-surface amplitude. The interaction theory has been used by many authors (see
Walker & Eatock Taylor, 2005, for a recent survey of the work that has been carried out) and we will
adapt it for our purposes in what follows here.

Our approach will be to adapt the interaction theory to allow for regions of varying quiescent depth.
Thus, we may think of a submerged circular island or of a bottom-mounted cylinder with a foot-
ing structure at its base or of a circular island with an underwater shoal (such as that considered by
Homma, 1950, e.g.). The case of a single circular structure was dealt with using a mild-slope approxi-
mation by Chamberlain & Porter (1999), and this paper extends some of the results of that publica-
tion to problems involving more than one structure. Chamberlain (2004) has given evidence that the
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evanescent modes have little qualitative effect in the related problem of wave scattering by a single
axisymmetric structure and we will model the scattered wave in this paper using only the travelling
waves.

The ‘classical’ mild-slope equation was derived independently by Berkhoff (1973, 1976) and
Smith & Sprinks (1975), and its range of validity was later extended in the modified mild-slope equation
of Chamberlain & Porter (1995). The most important part of Chamberlain & Porter’s improvement was
in retaining a term involving second derivatives of the quiescent depth h. The appearance of ∇∇∇2h, where
∇∇∇ is the gradient operator, in the modified mild-slope equation implies (Porter & Staziker, 1995) that
matching conditions must be applied to the dependent variable when ∇∇∇h is discontinuous, but we will
avoid this technicality using a variable change proposed by Porter (2003).

Silva et al. (2005) developed a numerical method for the modified mild-slope equation (their model
also includes energy dissipation) and presented a selection of results for problems involving arrays of
cylinders between which the quiescent depth is allowed to vary. Their approach could be used for the
problems considered in this paper, but the aim here is to restrict attention to depth profiles that vary in
a way that facilitates the development of a method requiring only very simple numerical calculations.
The (locally) axisymmetric nature of the scatterers implies that the numerical effort can be reduced to
the solution of some initial-value problems and then of a linear system of equations.

The plan of the paper is as follows. In Section 2, we review the mild-slope approximations that we
will use and in Section 3, the interaction theory is adapted to our present purposes. In Sections 4 and 5,
we give expressions for the far field coefficient and wave-loading forces. Numerical results are given in
Section 6 and conclusions are summarized in Section 7.

2. Mild-slope approximations

Let (x, y, z) be the Cartesian coordinates arranged so that z = 0 corresponds to the quiescent free-
surface position of an incompressible fluid in an irrotational motion. Polar coordinates defined by x =
r cos θ and y = r sin θ will also be used. Usual assumptions imply the existence of a complex-valued
velocity potential Ψ (x, y, z, t) = ψ(x, y, z)e−iωt , assuming periodic time dependence. The (complex-
valued) free-surface elevation, with time dependence removed, is given by

η(x, y) = iω

g
ψ(x, y, 0),

where g is the acceleration due to gravity.
Anticipating the use of a mild-slope approximation, ψ for z ∈ (−h, 0), where h = h(x, y) is the

quiescent depth, may be estimated from η as

ψ(x, y, z) ≈ g

iω
η(x, y)

cosh κ(z + h)

cosh κh
,

in which κ = κ(h) > 0 satisfies the local dispersion relation

κ tanh(κh) = K ≡ ω2/g.

The modified mild-slope equation (Chamberlain & Porter, 1995) may be written as

∇∇∇ · u∇∇∇η + vη = 0, (2.1)

where u = u(h) = (2κh+sinh(2κh))/4κ cosh2(κh) > 0 and v = v(h) = κ2u+u1(∇∇∇h)2+u2∇∇∇2h. The
functions u1 = u1(h) and u2 = u2(h) will not be referred to again after this section and their definitions,
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which are given in Chamberlain & Porter (1995), are omitted. Following the recent reappraisal of the
mild-slope approximation by Porter (2003), we change the dependent variable in (2.1) by defining

φ = ηκ(h)
√

u(h)/κ0

√
u(h0), (2.2)

a constant denominator has been included in (2.2) so that φ and η coincide when h = h0, the depth at
large r . Here, κ0 = κ(h0). This change of variable leads to

∇∇∇ · κ−2∇∇∇φ + (1 − w(∇∇∇h)2)φ = 0, (2.3)

in which

w(h) = 3(2κ̃ + sinh κ̃)(sinh 2κ̃ − sinh κ̃) − 3κ̃2(cosh 2κ̃ + 2) − 4κ̃3 sinh κ̃ − κ̃4

3(κ̃ + sinh κ̃)2
,

where κ̃ = 2κh.
Equations (2.3) and (2.1) are equivalent, since they differ only by a change of variable, but (2.3) has

a number of advantages over (2.1). Firstly, there is no need to know (or approximate) second derivatives
of h, and the absence of ∇∇∇2h implies that ∇∇∇φ is continuous even when ∇∇∇h is not. This fact simplifies
the analysis and the calculation of numerical solutions to (2.3) when compared with (2.1) since ∇∇∇η will,
in general, be discontinuous when ∇∇∇h is discontinuous, as shown by Porter & Staziker (1995).

Another advantage that (2.3) has over (2.1) manifests itself when simplifying the equation. If u1 and
u2 are neglected in the definition of v in (2.1) then the classical mild-slope equation emerges (Berkhoff,
1973, 1976, or Smith & Sprinks, 1975), and a great deal of work has been done in the last 30 years in
attempts to patch that approximation (see, e.g. Kirby, 1986) in cases where the results are disappointing,
i.e. in cases where ∇∇∇h is discontinuous or rapidly varying. The problem with the final step taken to derive
the mild-slope equation is the neglect of u2; it is not always justified to disregard the term involving ∇∇∇2h.
No such problem arises when carrying out the analogous step to simplify (2.3), for there is no appearance
of ∇∇∇2h, and neglect of w(∇∇∇h)2 leads to a revised mild-slope equation

∇∇∇ · κ−2∇∇∇φ + φ = 0, (2.4)

which (as shown by Porter, 2003) avoids the deficiencies of the classical mild-slope equation, in that
effects due to ∇∇∇2h have not been removed.

For the time being, in the interests of generality, we will retain the term w(h)(∇∇∇h)2 in (2.3). There
will be some discussion in Section 6 concerning how results are changed when (2.4) is used instead
of (2.3).

3. A scattering problem

In this section, we define the scattering problem and adapt the well-known interaction theory (see, e.g.
Linton & Evans, 1990) for our present purposes.

We suppose that an incident wave train is scattered by an array of N circular features centred at
(x j , y j ), for j = 1, 2, . . . , N . Polar coordinates (r j , θ j ) local to these features such that x − x j =
r j cos θ j and y − y j = r j sin θ j will be used in what follows. The j th scatterer has radius b j > 0
and these radii are constrained so that no two scatterers overlap, i.e. R jk ≡ ((x j − xk)

2 + (y j −
yk)

2)1/2 � b j + bk for j, k = 1, 2, . . . , N , where j �= k. It is convenient at this stage to define
D = R

2\ ∪N
k=1 {(x, y) : (x − xk)

2 + (y − yk)
2 � b2

k }, which is a part of the (x, y) plane excluding the
circular regions rk � bk , k = 1, 2, . . . , N .
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Angles α jk are defined by

xk − x j = R jk cos α jk, yk − y j = R jk sin α jk,

so that the relative positions of scattering structure centres can be inferred from R jk and α jk . Figure 1
summarizes some of the notations that we will use.

The quiescent depth h is taken to be equal to h0 for all points (x, y) that are not within one of the
disjoint circular regions defined above, i.e. when r j > b j for all j = 1, 2, . . . , N . We will say more, in
Section 3.1, about what form the scattering structures take for r j < b j ( j = 1, 2, . . . , N ).

We suppose that waves are incident at an angle β to the x-axis and take an incident wave given by

φ I = eiκ0r cos(θ−β) = I j (β)eiκ0r j cos(θ j −β),

in which I j (β) = eiκ0(x j cos β+y j sin β) is a phase term that allows us to write φ I in terms of any of the
scatterer-centred polar coordinates defined above. This incident wave may be written as

φ I = I j (β)

∞∑
m=−∞

Jm(κ0r j )e
im( π

2 +θ j −β). (3.1)

We require the scattered wave to be outgoing at infinity; to be consistent with the mild-slope approx-
imation, we omit evanescent waves and write

φS(x, y) =
∞∑

m=−∞

N∑
j=1

B j
m Hm(κ0r j )e

imθ j , (x, y) ∈ D, (3.2)

where Hm is a Hankel function of the first kind. The coefficients B j
m must be found as part of the solution

procedure. This expression for φS omits the term Zm denoted by Linton & Evans (1990); the difference
is only a notational one and reflects the fact that the significant algebraic advantage offered by Zm only
arises when the scatterer is a vertical cylinder and our aim here is to consider more general structures.

FIG. 1. Plan view sketch showing notation relevant to the j th and the kth scatterers. It is assumed here that the j th scatterer is the
one closest to the kth; this fact allows us to show Rk on the diagram.
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We now fix the integer k (where 1 � k � N ) and consider the effect of and on the scatterer
centred at (xk, yk). We use Graf’s addition theorem for Bessel functions (Gradshteyn & Ryzhik, 1965,
p. 979, equation WA394(6)) to write the expression for φS in terms of the polar coordinates (rk, θk) that
leads to

φS(x, y) =
∞∑

m=−∞

⎡
⎣Bk

m Hm(κ0rk)e
imθk +

N∑
j=1, j �=k

B j
m

∞∑
p=−∞

Jp(κ0rk)Hm−p(κ0 R jk)e
ipθk ei(m−p)α jk

⎤
⎦ ,

(3.3)

which is valid at points (x, y) ∈ D which also satisfy rk < Rk ≡ minN
j=1, j �=k(R jk − b j ). The quantity

Rk is the largest radius around the kth scatterer which does not intersect any part of another scatterer. It
is worth noting that the addition theorem for Bessel functions is valid for a larger range of rk than that
mentioned here, but the definition of Rk is sufficient in what follows and it is convenient later to be able
to note that the quiescent depth h is equal to h0 for all rk ∈ [bk, Rk].

It simplifies matters that are to follow if we define φk
m(rk) as the coefficient of eimθk near

(xk, yk), i.e.

φ = φ I + φS =
∞∑

m=−∞
φk

m(rk)e
imθk (rk < Rk).

Equations (3.1) and (3.2) can now be used to deduce that

φk
m(rk) = λk

m Jm(κ0rk) + Bk
m Hm(κ0rk) (bk � rk � Rk), (3.4)

where

λk
m = Ik(β)eim( π

2 −β) +
N∑

j=1 j �=k

∞∑
p=−∞

B j
p Hp−m(κ0 R jk)e

i(p−m)α jk .

The term λk
m is a measure of all the waves incident on the kth scatterer in the mth angular mode. The

first term in λk
m is part of φ I and the summation gathers together waves diffracted from scatterers other

than the kth.
We have now reached a point where it is useful to be a little more specific about the scattering

structure in rk < bk .

3.1 Wave-scattering structures

We list the three types of wave-scattering structure to be considered in this paper. In each case, we
suppose that the scatterer centred at (xk, yk) can be defined independently of θk , i.e. each scatterer is
locally axisymmetric.

Suppose that we now restrict attention to points (x, y) such that (x − xk)
2 + (y − yk)

2 < R2
k , it now

follows that (2.3) reduces to

(κ−2rkφ
k
m

′)′ + (rk(1 − wh′2) − r−1
k m2κ−2)φk

m = 0 (ak < rk, 0 � θk < 2π),

since h = h(rk) where ′ denotes differentiation with respect to the radial derivative rk and it will prove
convenient later to have defined the first-order system(

Rk
m

κ−2rk Rk
m

′

)′
=

(
0 κ2r−1

k

r−1
k m2κ−2 − rk(1 − wh′2) 0

)(
Rk

m

κ−2rk Rk
m

′

)
. (3.5)
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FIG. 2. Radial cross-section sketches of the three types of wave-scattering structure considered in this paper. Subplot (a) is an
example of a submerged island, (b) is a surface-piercing structure with a shoal and (c) is a bottom-mounted cylinder. In each case,
the centre line corresponds to rk = 0.

Clearly, φk
m can be found as a constant multiple of Rk

m , and we will exploit this fact in the three cases
below.

3.1.1 A submerged island. In this case, the depth profile h is supposed to be continuous and equal to
a constant hk within the circle rk < ak , for some ak < bk (see Fig. 2a). That is

h =
{

hk, rk � ak,

h0, bk � rk � Rk .

The radial derivative h′ is assumed to be continuous everywhere except, possibly, at rk = ak and rk = bk .
We now specify which solutions to (3.5) are appropriate in the present case. In the region rk < ak ,

we reject unbounded Bessel functions on the grounds that they are unphysical and take

φk
m = Ak

m Jm(κkrk) (rk � ak),

where κk = κ(hk). The coefficients Ak
m will be found as part of the solution procedure.

It is now clear that if, in addition to (3.5), we impose

Rk
m(ak) = Jm(κkak), Rk

m
′(ak) = κk J ′

m(κkak), (3.6)

then it follows that φk
m(rk) = Ak

m Rk
m(rk) for ak � rk � bk .

One advantage in defining Rk
m and then seeking φk

m subsequently is that the initial-value prob-
lem (3.5) and (3.6) is entirely real valued. The complex-valued nature of φk

m is wholly due to the co-
efficient Ak

m .
Note that in deriving (3.6), we have used the fact that φk

m
′ is continuous at rk = ak , even though h′

is allowed to be discontinuous there. This helpful fact is a feature of using (2.3) and solving for φ and
would not be the case if we were using (2.1) and solving for η.

The values Rk
m(bk) and Rk

m
′(bk), which emerge from a solution to the initial-value problem (3.5)

and (3.6), will be referred to later when expressions for the solution in rk > bk are derived.

3.1.2 A surface-piercing structure surrounded by a shoal. Here, we suppose that h varies in ak <
rk < bk and that a circular cylinder of radius ak centred at (xk, yk) surmounts the bedform, see Fig. 2(b).
This situation may be thought of as a model for an axisymmetric island, see e.g. Homma (1950), or
for a bottom-mounted circular cylinder with an axisymmetric footing structure at its base. Here, as in
Section 3.1.1, we seek a solution of (3.5) and appropriate initial conditions to use in conjunction with
that system are

Rk
m(ak) = 1, Rk

m
′(ak) = 0,

so that φk
m(rk) = Ak

m Rk
m(rk) for ak � rk � bk , for some Ak

m that are to be found.
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The values Rk
m(bk) and Rk

m
′(bk) are found by solving the initial-value problem and will be referred

to later.

3.1.3 A bottom-mounted cylinder. In this case, we suppose that the scatterer takes the form of a
vertical cylinder of radius bk , which meets the flat bottom at z = −h0, see Fig. 2(c). This form of
scatterer involves no (local) region of varying quiescent depth and has been considered by many authors,
we include it here for completeness. Here, we simply require that

φk
m

′(bk) = 0.

In order that this case can be dealt with using a notation containing the two cases in Sections 3.1.1
and 3.1.2, we define Rk

m(bk) = 1, Rk
m

′(bk) = 0 and let

φk
m(bk) = Ak

m Rk
m(bk) = Ak

m,

this last equation defines the quantity Ak
m for scatterers of this type.

It is notationally convenient if we set ak = bk , in particular, therefore it follows that Rk
m(ak) = 1.

3.2 Implementation

In each of the three cases discussed above, we found that

φk
m(bk) = Ak

m Rk
m(bk), φk

m
′(bk) = Ak

m Rk
m

′(bk), (3.7)

where Rk
m(bk) and Rk

m
′(bk) are either found via an initial-value problem (as in Sections 3.1.1 and 3.1.2)

or known by definition (as in Section 3.1.3). Eliminating the unknown coefficient Ak
m , we obtain

φk
m

′(bk)Rk
m(bk) − φk

m(bk)Rk
m

′(bk) = 0. (3.8)

The next step is to combine (3.8), which was derived from inside the circle rk = bk , with (3.4) which is
valid for bk < rk < Rk . This matching is easily carried out since we know that φk

m
′ is continuous even

if ∇∇∇h is discontinuous at rk = bk , and we find that

λk
mRe(Y k

m) + Bk
mY k

m = 0, k = 1, 2, . . . , N , m ∈ Z,

which is an infinite system of equations for the scattering coefficients Bk
m . Here, Y k

m ≡ κ0 Rk
m(bk)

H ′
m(κ0bk) − Rk

m
′(bk)Hm(κ0bk) is never zero, since if it vanishes then the consideration of its real and

imaginary parts would imply that Rk
m(bk) = Rk

m
′(bk) = 0, and the functions Rk

m and Rk
m

′ cannot be zero
simultaneously. We conclude that Y k

m �= 0 for k = 1, 2, . . . , N and m ∈ Z.
We can find the coefficients Ak

m by using (3.7) to form an expression for Ak
mY k

m , leading to

Ak
m = 2iλk

m

πbkY k
m

, (3.9)

by using a Wronskian to simplify the right-hand side.
When seeking numerical solutions, we must replace infinite sums with finite ones. We choose a

natural number M and write

φS ≈ φ̃S =
M∑

m=−M

N∑
j=1

B̃ j
m Hm(κ0r j )e

imθ j ,



WATER WAVE SCATTERING 59

in which approximations B̃k
m to a finite number of the coefficients Bk

m are found from the system of
(2M + 1)N equations

λ̃k
mRe(Y k

m) + B̃k
mY k

m = 0, k = 1, 2, . . . , N , m = −M, . . . , M, (3.10)

where Y k
m is as given earlier and

λ̃k
m = Ik(β)eim( π

2 −β) +
N∑

j=1 j �=k

M∑
p=−M

B̃ j
p Hp−m(κ0 R jk)e

i(p−m)α jk .

Once (3.10) has been solved for B̃k
m , we can evaluate λ̃k

m and hence find

Ak
m ≈ Ãk

m = 2iλ̃k
m

πbkY k
m

,

which can be used to approximate φ in rk < bk .

4. Far-field solution

Here, we find an expression for the scattered wave for large values of r . Another application of Graf’s
addition theorem leads to

Hm(κ0rk)e
imθk =

∞∑
n=−∞

Jn(κ0ρk)Hm+n(κ0r)ei(m+n)θ e−inψk ,

in which r = ρk and θ = ψk are the polar coordinates of (xk, yk). Substituting this expression into
(3.2), anticipating the truncation of infinite sums for numerical purposes and replacing each appearance
of Hm+p with its large argument asymptotic approximation, we obtain

φS ≈ φ̃S =
M∑

m=−M

N∑
k=1

Bk
m Hm(κ0rk)e

imθk ≈ eiκ0r

√
r

M∑
m=−M

N∑
k=1

Bk
mFk

m(θ) = eiκ0r

√
r
F(β, θ) (say), (4.1)

for large r , where

Fk
m(θ) =

√
2

κ0π

M∑
n=−M

Jn(κ0ρk)e
i((m+n)(θ− π

2 )−nψk− π
4 ).

5. Forces

The forces acting on the cylindrical parts of the scattering structures may be found by integrating the
pressure over the cylinder’s surface. We suppose that the j th scatterer is of the type shown in Fig. 2(b)
or 2(c) and then the force acting on the cylindrical part of the structure is the real part of

(X j , Y j )e−iωt = ρ

∫ 0

−h j

∫ 2π

0

∂Ψ

∂t
(cos θ j , sin θ j )a j dθ j dz

≈ −e−iωtρga j

∫ 0

−h j

cosh κ j (z + h j )

cosh κ j h j
dz

∫ 2π

0
[η]r j =a j (cos θ j , sin θ j )dθ j

= e−iωt ρga j

κ j
tanh κ j h j

κ0
√

u(h0)

κ j
√

u(h j )
(i(A j

−1 + A j
1), A j

−1 − A j
1),
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in which ρ is density, since R j
m(a j ) = 1 for scatterers of the type under consideration in this section.

The appearances of κ
√

u are a consequence of (2.2).

6. Numerical results

In this section, we consider two test problems. The first is a new example involving a small array of
submerged islands and the second is based on a test problem considered by Maniar & Newman (1997).
The second test problem involves an array of vertical cylinders and typifies those that have received a
great deal of attention (as briefly discussed in Section 1). Here, we will investigate how certain ampli-
fications in wave force and free-surface elevation might be reduced by the introduction of a shoal or
footing structure.

Numerical calculations have been carried out using MATLAB. Examples involving scattering struc-
tures of the types seen in Fig. 2(a) or 2(b) involve a region of varying quiescent depth and therefore
require us to approximate a solution of the System (3.5). Approximations were found using an error-
checking Runge–Kutta method.

The choice M = 6 was made for computations. This value is consistent with what other authors
have used in the constant depth case and an extensive experimentation has shown that larger values of
M do not significantly alter any of what follows.

Earlier, we presented two models ((2.3) and (2.4)) for approximating wave motion above regions of
varying depth. In what follows, the results presented are mainly for the full model (2.3), but we show
the effect of the mild-slope reduction (2.4) for each test problem.

6.1 Test problem involving submerged topography

Here, we consider a particular arrangement of four submerged islands. Much of the geometry of the
problem is summarized in Table 1.

We choose the topography of each island as follows:

h =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h0 + (h1 − h0)((r1 − b1)/(a1 − b1))
2, a1 < r1 < b1,

1
2 (h0 + h2) − 1

2 (h2 − h0) cos((r2 − b2)/(a2 − b2)), a2 < r2 < b2,

h0 + (h3/h0)((r3 − b3)/(a3 − b3)), a3 < r3 < b3,

1
2 (h0 + h4) − 1

2 (h4 − h0) cos((r4 − b4)/(a4 − b4)), a4 < r4 < b4,

these representing a conical shoal ( j = 3), a quadratic shoal with a discontinuity in ∇∇∇h at r1 = a1 and
two cosine-shaped shoals ( j = 2 and j = 4).

TABLE 1 Island centres, radii and central quiescent depth
definitions for the submerged topography test problem

j x j/h0 y j/h0 a j/h0 b j/h0 h j/h0

1 5.0 8.0 2.0 4.0 0.50
2 8.0 0.0 1.0 3.0 0.25
3 0.0 −4.0 2.0 3.0 0.30
4 −3.0 3.0 1.0 3.0 0.25
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One feature chosen for this example is the fact that the second and the fourth scattering structures
have the same shape. This permits a numerical saving because R2

m(r2) = R4
m(r4) for 1 < r2/h0 =

r4/h0 < 3, so the number of times we must approximate a solution to an initial-value problem is
reduced. (This is not to say that η(x, y) will be the same near (x2, y2) and (x4, y4), of course, since we
can expect that A2

m �= A4
m and B2

m �= B4
m , in general.) This property of the current solution procedure

will be significant, if the problem in hand involves many repetitions of the same scatterer; numerical
solutions to a differential equation need only be found once per scatterer, for each value of m.

Figure 3 shows the free-surface elevation in the case where K h0 = 1 and β = π/3. The dotted
circles show the radii a j/h0 and b j/h0 centred at (x j/h0, y j/h0) for j = 1, . . . , 4. Numerical solutions
in the four annular regions where h varies were found using (2.3). If (2.4) is used instead, then we obtain
contours which, to the eye, are almost identical to those shown in Fig. 3. Another comparison we can

FIG. 3. Absolute free-surface elevation |η(x, y)| computed using (2.3). This case corresponds to an incident angle β = π
3 .

FIG. 4. Far-field coefficient |F(0, θ)| corresponding to an incident angle β = 0 for the submerged topography test problem. The
solid line was computed using (2.3) and the broken line using (2.4).
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FIG. 5. Far-field coefficient |F( π
2 , θ)| corresponding to an incident angle β = π

2 for the submerged topography test problem. The
solid line was computed using (2.3) and the broken line using (2.4).

make concerns the far-field coefficient F(β, θ). Figure 4 considers the case β = 0 and we see that the
two models (2.3) and (2.4) are in very good agreement, both predicting similar behaviour in respect of
the position and magnitude of the peaks in F .

Corresponding comparisons have been made for β taking many values between 0 and 2π and the
behaviour seen in Fig. 4 for β = 0 is typical. For example, the case β = π

2 is shown in Fig. 5.

6.2 Maniar and Newman test problem

Maniar & Newman (1997) considered wave diffraction by a linear array of bottom-seated cylinders and
found that the forces acting on (e.g.) the middle cylinder can be greatly increased, compared to the
forces acting on an isolated cylinder. Here, we will consider one of their test problems.

To replicate already published results, we let N = 9, x j/h0 = −20 + 4 j , y j = 0, a j/h0 =
b j/h0 = 1, for j = 1, 2, · · · , 9, and take each structure to be of the type shown in Fig. 2(c). (This is the
‘ a

d = 1
2 ’ case, in Maniar and Newman’s notation.) The horizontal wave load in response to head waves

(β = 0), normalized with respect to unit cylinder radius, h0, ρ and g is shown plotted against 2K/π
(equal to Kd/π in Maniar and Newman’s notation) as a solid line in Fig. 6(a) and 6(b), the second
figure concentrating attention near the principal peak in force. The broken line in Fig. 6(a) shows the
force acting on an isolated cylinder and was included by Maniar and Newman to show the significant
magnification caused by the addition of the other eight cylinders.

We now investigate how the force is affected, if we introduce a shoal around just one of the cylinders.
To this end, we redefine b3/h0 = 2.5 with a view to the third cylinder, centred at (x3, y3) = (−8h0, 0),
now being of the type considered in Fig. 2(b). The shape of the shoal is taken to be one of the simple
profiles considered in the previous test problem:

h(r3) = 1

2
(h0 + h3 − (h3 − h0) cos(π(b3 − r3)/(b3 − a3))), a3 � r3 � b3.

Figure 6(b) shows the (normalized) force near its largest local maximum. The dotted line is for the
case h3 = 0.05h0, the ‘dash–dot’ line is for h3 = 0.15h0 and the evenly broken line is for h3 = 0.25h0.
The solid line once again gives the Maniar and Newman curve, which we may think of as corresponding
to h3 = h0. We see that the peak in force on the fifth cylinder is decreased by the inclusion of a shoal
on the third cylinder and that the decrease is more apparent for a larger departure from constant depth.



WATER WAVE SCATTERING 63

FIG. 6. Normalized force acting on a vertical cylinder in the Maniar and Newman test problem. In Fig. 6(a), the solid line shows
the force acting on the fifth of nine cylinders and the broken line shows the corresponding force on an isolated cylinder (these
curves were given in Fig. 1b of Maniar and Newman). In Fig. 6(b), the solid line is the same as in Fig. 6(a) and the broken lines
show the change in the force acting on the fifth cylinder when the third cylinder has a shoal, as described in the text, put around it.

The local maximum in force is 12.281 (to three decimal places) when h3/h0 = 1 and this is reduced,
e.g. to 6.946 (to three decimal places computed using (2.3)) when h3/h0 = 0.05. Those two data points
form part of the curve shown in Fig. 7, which shows the normalized force plotted against h3/h0. Values
of h3/h0 > 1 correspond to a trench dug around the base of the third cylinder and are included for
completeness. Figure 7 also serves to show how the two mild-slope models (2.3) and (2.4) compare
for this test problem, with results from the simplified model being given by a broken line: clearly, the
agreement is very good.

To make it clear that the effect of the shoal (or trench) is not just on the fifth cylinder, we now give
some free-surface elevation plots. Figure 8 shows the free-surface elevation |η(x, y)| computed using
(2.3) for four different values of h3/h0. The topmost plot corresponds to h3/h0 = 1.5, the second
plot to h3/h0 = 1 (so that this plot shows |η| for the Maniar and Newman test problem involving
constant depth) and the third and the fourth plots show results corresponding to h3/h0 = 0.5 and 0.05,
respectively.

In the first plot, we see that the inclusion of a trench with h3/h0 = 1.5 around the third cylinder
causes an increase in wave height to the left, when compared with the contours for the Maniar and
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FIG. 7. Maximum normalized force on the fifth cylinder plotted against h3/h0. Values of h3/h0 < 1 correspond to a shoal built
around the third cylinder, values of h3/h0 > 1 correspond to a trench dug around that cylinder. The solid line was computed
using (2.3) and the broken line with (2.4).

FIG. 8. Free-surface elevation |η(x, y)| for variations on the Maniar and Newman test problem. From top to bottom, we have
h3/h0 = 1.50, 1.00, 0.50 and 0.05, respectively.

Newman case of h3/h0 = 1, but that |η| is reduced to the right. The third plot shows that the inclusion
of a shoal occupying up to one-half the quiescent depth has little effect. In the fourth plot, h3/h0 = 0.05
and the effect here is that the free-surface elevation is increased near the modified cylinder, but that there
is a significant reduction in wave height in the vicinity of the other eight cylinders.
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7. Conclusions

Interaction theory has been adapted for use in a range of problems involving regions of varying qui-
escent depth. This ultimately reduces the problem to a simple numerical calculation involving some
initial-value problems and a linear system. The method was applied first to a test problem involving a
finite array of submerged circular islands.

There may be some interest in coastal engineering applications where topographic features can re-
duce wave loading and free-surface elevation. Some numerical evidence has been given to show how
both these quantities can be reduced in a test problem previously considered by Maniar and Newman.

There remains, as an open question, how to solve an ‘inverse problem’ in which we state in advance
what maximum in (say) free-surface elevation can be tolerated and then seek to find adjustments to a
given array of columns or to the nearby quiescent depth to achieve that goal. We have made no attempt
at this inverse problem, except of course that one must be able to solve the forward problem first and the
approach described here is an efficient method for the scattering problem.

As something of an aside, we have also looked into the revised mild-slope equation (2.4) of Porter
(2003). We have found that agreement with the modified mild-slope equation is excellent. Further ex-
tensive numerical experimentation has been carried out and there is strong evidence that (2.4) should
now be considered as ‘state of the art’ in its class, for it combines simplicity (e.g. no derivatives of h are
required) with accuracy.
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