國立臺灣海洋大學河海工程學系 2000 工程數學 (一) 第一次大考解答

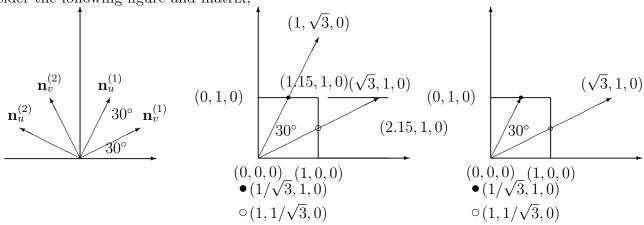
1. Given two lines,

$$\mathbf{u} = \lambda(\mathbf{i} + \mathbf{j} + \mathbf{k}), \ \mathbf{v} = \mathbf{k} + \mu(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$$

determine the minimum distance between the two lines. (5 %) Also, find the specific two points on those two lines make minimum distance. (5 %)

Ans: The two points are $(\lambda, \lambda, \lambda)$ and $(\mu, 2\mu, 3\mu + 1)$ where $\lambda = -2/3, \mu = -1/2$. The minimum distance is $1/\sqrt{6}$.

2. Consider the following figure and matrix,



$$F = RU = VR = \begin{bmatrix} 1 & 2/\sqrt{3} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$U = \sqrt{F^T F} = \begin{bmatrix} \sqrt{3}/2 & 1/2 & 0 \\ 1/2 & \frac{5}{2\sqrt{3}} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad V = \begin{bmatrix} 5\sqrt{3}/6 & 1/2 & 0 \\ 1/2 & \sqrt{3}/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad R = FU^{-1} = \begin{bmatrix} \sqrt{3}/2 & 1/2 & 0 \\ -1/2 & \sqrt{3}/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{P} = \left\{ \begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right\}$$

Decompose the **P** vector into the combination of $\mathbf{n}_u^{(1)}$ and $\mathbf{n}_u^{(2)}$, i.e.,

$$\mathbf{P} = \alpha \mathbf{n}_u^{(1)} + \beta \mathbf{n}_u^{(2)}$$

determine α and β . (5 %) Also, calculate and plot the following vectors, (1). $U\alpha\mathbf{n}_u^{(1)}$ and $RU\alpha\mathbf{n}_u^{(1)}$ (5 %) (2). $U\beta\mathbf{n}_{u}^{(2)}$ and $RU\beta\mathbf{n}_{u}^{(2)}$ (5 %) (3). $R\alpha\mathbf{n}_{u}^{(1)}$ and $VR\alpha\mathbf{n}_{u}^{(1)}$ (5 %) (4). $R\beta\mathbf{n}_{u}^{(2)}$ and $VR\beta\mathbf{n}_{u}^{(2)}$. (5 %) (5). Sum the vectors of $RU\alpha\mathbf{n}_{u}^{(1)} + RU\beta\mathbf{n}_{u}^{(2)}$ (5 %) (6). Sum the vectors of $VR\alpha\mathbf{n}_{u}^{(1)} + VR\beta\mathbf{n}_{u}^{(2)}$. (5 %)

Ans: $\alpha = 1/2, \beta = -\sqrt{3}/2$.

- (1). $\{\sqrt{3}/4, 3/4, 0\}$ (60°), $\{3/4, \sqrt{3}/4, 0\}$ (30°),
- (2). $\{\sqrt{3}/4, -1/4, 0\}(-30^{\circ}), \{1/4, -\sqrt{3}/4, 0\}(-60^{\circ}), (3). \{\sqrt{3}/4, 1/4, 0\}(30^{\circ}), \{3/4, \sqrt{3}/4, 0\}(30^{\circ}),$
- (4). $\{\sqrt{3}/4, -3/4, 0\}(-60^{\circ}), \{1/4, -\sqrt{3}/4, 0\}(-60^{\circ}),$
- (5). (1,0,0), (0^o) , (6). (1,0,0) (0^o)
- **3.** Fill in the direction of the following vectors in table by (1), (2) \cdots (7).

Table 1: Direction of the following vectors. (10 %)

vector	$R^T \mathbf{n}_u^{(1)}$	$VR^3\mathbf{n}_v^{(2)}$	$\sqrt{U}\mathbf{n}_u^{(1)}$	$e^V \mathbf{n}_v^{(1)}$	$F^T \mathbf{n}_v^{(1)}$
direction	4	2	3	2	3

4. Given $x^2 - xy + y^2 = 1$, rewrite to the quadratic form $\mathbf{v}^T[A]\mathbf{v} = 1$, where $\mathbf{v} = \{x, y\}$ and $[A] = [A]^T$. Find [A] (5 %) and determine its eigenvalues and eigenvectors. (5 %) Explain the geometric meaning for the eigenvalues and eigenvectors. (5 %) Ans:

$$A = \left[\begin{array}{cc} 1 & -1/2 \\ -1/2 & 1 \end{array} \right]$$

Eigenvalues are 1/2 and 3/2. Eigenvectors are $\{1,1\}$ and $\{1,-1\}$. The two axises are $1/\sqrt{\lambda_1}$ and $1/\sqrt{\lambda_2}$. The two eigenvectors are the principal axises.

5. Fill in the following table.

Table 2: Direction of the following vectors. (10 %)

matrix	$A = [A]^T$	$[A][A]^{\dagger} = [A]^{\dagger}[A]$	$A = -[A]^T$	$[A] = [A]^{\dagger}$	$A = -[A]^{\dagger}$	$A][A]^{\dagger} = [I]$
[A]	symmetric	normal	skew	Hermitian	skew	unitary
			symmetric		Hermitian	

- **6.** Choose the right sentences. (10 %)
- (1). Hermitian, anti-Hermitian and unitary matrices are all normal matrices.
- (2). The absolute values of eigenvalues for any unitary matrix must be one.
- (3). Real symmetric matrix must have real eigenvalues.
- (4). The eigenvalues of anti-symmetric real matrix must be pure imaginary or zero.
- (5). The eigenvectors of a Hermitian matrix w.r.t. different eigenvalues are orthogonal.

Ans: All are right.

7. Given a vibration system with two degrees of freedom with the following governing equations:

$$\begin{cases} m_1\ddot{x}_1(t) = k(-x_1(t) + x_2(t)) \\ m_2\ddot{x}_2(t) = k(x_1(t) - x_2(t)) \end{cases}$$

$$m_1$$
 k m_2 two d.o.f.s system

- (1) Assume $x_1(t) = \alpha \cos(\omega t)$, $x_2(t) = \beta \cos(\omega t)$ are the solutions for the vibration, reduce the governing equations into eigen equations in the form of $\mathbf{Kp} = \omega^2 \mathbf{p}$, where $\mathbf{p} = \{x_{10}, x_{20}\}^T$. Find the matrix of \mathbf{K} . (5%) (For simplicity, setting $m_1 = m_2 = k = 1$)
- (2) Find the eigenvalues and eigenvectors of \mathbf{K} . (5%)

(3) Find the Rayleigh quotients of the eigenvectors. (5%) Ans:

$$K = \left[\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right]$$

The eigenvalues are 0 and 2. The eigenvectors are $\{1,1\}$ and $\{1,-1\}$. The two Rayleigh quotients are 0 and 2.