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NORMAL MODES

frequency corresponds to a solution where the string and rod are moving with
opposite phase and x; : x> = 9.359 : —16.718. The two situations are shown in
figure 9.1.

In connection with quadratic forms it was shown in section 8.17 how to make
a change of coordinates such that the matrix for a particular form becomes
diagonal. In exercise 9.6 a method is developed for diagonalising simultaneously
two quadratic forms (though the transformation matrix may not be orthogonal).
If this process is carried out for A and B in a general system undergoing stable
oscillations, the kinetic and potential energies in the new variables »; take the
forms

T=> wif =n"Ma, M =diag (u.f,....1tx), (9.11)
V= Z vii =n'Nn, N =diag (vi,v2....vx), (9.12)

and the equations of motion are the uncoupled equations
i =00, =12, 0., N, (9.13)

Clearly a simple renormalisation of the n; can be made that reduces all the y;
in (9.11) to unity. When this is done the variables so formed are called normal
coordinates and equations (9.13) the normal equations.

When a system is executing one of these simple harmonic motions it is said to
be in a normal mode, and once started in such a mode it will repeat its motion
exactly after each interval of 2z/m;. Any arbitrary motion of the system may
be written as a superposition of the normal modes, and each component mode
will execute harmonic motion with the corresponding eigenfrequency: however,
unless by chance the eigenfrequencies are in integer relationship, the system will
never return to its initial configuration after any finite time interval.

As a second example we will consider a number of masses coupled together by
springs. For this type of situation the potential and kinetic energies are automat-
ically quadratic functions of the coordinates and their derivatives, provided the
elastic limits of the springs are not exceeded, and the oscillations do not have to
be vanishingly small for the analysis to be valid.

» Find the normal frequencies and modes of oscillation of three particles of masses m, pm,
m connected in that order in a straight line by two equal light springs of force constant k.
This arrangement could serve as a model for some linear molecules, e.g. COa.

The situation is shown in figure 9.2: the coordinates of the particles, x;. x». x3, are
measured from their equilibrium positions, at which the springs are neither extended nor
compressed.

The kinetic energy of the system is simply

T =im (& +p%3+43), f’/ IQ‘L
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Figure 9.2 Three masses m, um and m connected by two equal light springs
of force constant k.
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Figure 9.3  The normal modes of the masses and springs of a linear molecule
such as COs. (a) w® =0; (b) w* = k/m: (c) @* = [(u+ 2)/u)ik fm).

whilst the potential energy stored in the springs is i '{ ‘\: = WM ‘\C
V.= %k [[.\'3 = R < (g — _\-3]:] : i

The kinetic- and potential-energy symmetric matrices are thus

10 0 fi g
A=210 u 0|, it b =tmitghietoks
210 0 1 2% 0. Lyl

From (9.10), to find the normal frequencies we have to solve |B — w?A| = 0. Thus, writing
ma [k = /. we have

which leads to 2 =0, 1 or 14 2/u. The corresponding eigenvectors are respectivel
P! g P y

iE : x:—-l—- (') x' = I *"}*’,u
Vili) VA A @@\ 1)

The physical motions associated with these normal modes are illustrated in figure 9.3.
The first, with 2 = & = 0 and all the x; equal, merely describes bodily translation of the
whale system, with no (ie. zero-frequency) internal oscillations.

In the second solution the central particle remains stationary, x: = 0. whilst the other
two oscillate with equal amplitudes in antiphase with each other. This motion, which has
frequency @ = (k/m)"/2, is illustrated in figure 9.3(b).
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NORMAL MODES

The final and most complicated of the three normal modes has angular frequency
@ = [(p + 2)/ultk/m)}'?, and involves a motion of the central particle which is in
antiphase with that of the two outer ones and which has an amplitude 2/ times as great.
In this motion (see figure 9.3(c)) the two springs are compressed and extended in turn, We
also note that in the second and third normal modes the centre of mass of the molecule
remains stationary. <

9.2 Symmetry and normal modes

It will have been noticed that the system in the above example has an obvious
symmetry under the interchange of coordinates | and 3: the matrices A and B,
the equations of motion and the normal modes illustrated in figure 9.3 are all
unaltered by the interchange of x; and —x;. This reflects the more general result
that for each physical symmetry possessed by a system, there is at least one
normal mode with the same symmetry.

The general question of the relationship between the symmetries possessed by
a physical system and those of its normal modes will be taken up more formally
in chapter 29 where the representation theory of groups is considered. However,
we can show here how an appreciation of a system’s symmetry properties will
sometimes allow its normal modes to be guessed (and then verified), something
that is particularly helpful if the number of coordinates involved is greater than
two and the corresponding eigenvalue equation (9.10) is a cubic or higher-degree
polynomial equation.

Consider the problem of determining the normal modes of a system consist-
ing of four equal masses M at the corners of a square of side 2L, each pair
of masses being connected by a light spring of modulus k that is unstretched
in the equilibrium situation. As shown in figure 9.4, we introduce Cartesian
coordinates X, ., with n = 1,2.3,4, for the positions of the masses and de-
note their displacements from their equilibrium positions R, by q, = x,i + v.j.
Thus

r.,=R,+q, with R,=+Li+Lj

The coordinates for the system are thus xp.yj,X2....,ys and the kinetic en-
ergy matrix A is given trivially by Mlg, where Iy is the 8 x 8 identity ma-
trix.

The potential energy matrix B is much more difficult to calculate and involves,
for each pair of values m.n. evaluating the quadratic approximation to the
expression

2
by = %k (lrm —Xnl — R — Rnl) .
Expressing each r; in terms of g; and R; and making the normal assumption that
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